ONSEMI MC33076D

Order this document by MC33076/D
DUAL HIGH OUTPUT
CURRENT OPERATIONAL
AMPLIFIER
The MC33076 operational amplifier employs bipolar technology with
innovative high performance concepts for audio and industrial applications.
This device uses high frequency PNP input transistors to improve frequency
response. In addition, the amplifier provides high output current drive
capability while minimizing the drain current. The all NPN output stage
exhibits no deadband crossover distortion, large output voltage swing,
excellent phase and gain margins, low open loop high frequency output
impedance and symmetrical source and sink AC frequency performance.
The MC33076 is tested over the automotive temperature range and is
available in an 8–pin SOIC package (D suffix) and in both the standard 8 pin
DIP and 16–pin DIP packages for high power applications.
• 100 Ω Output Drive Capability
•
•
•
•
•
•
•
SEMICONDUCTOR
TECHNICAL DATA
8
8
1
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
P1 SUFFIX
PLASTIC PACKAGE
CASE 626
Large Output Voltage Swing
PIN CONNECTIONS
Low Total Harmonic Distortion
High Gain Bandwidth: 7.4 MHz
Output 1
High Slew Rate: 2.6 V/µs
Dual Supply Operation: ±2.0 V to ±18 V
Inputs 1
8
VCC
2
7
Output 2
3
High Output Current: ISC = 250 mA typ
VEE
Similar Performance to MC33178
1
–
+1
4
– 6
2 +
5
Inputs 2
(8 Pin Pkg, Top View)
Equivalent Circuit Schematic
(Each Amplifier)
P2 SUFFIX
PLASTIC PACKAGE
CASE 648C
DIP (12+2+2)
16
1
VCC
PIN CONNECTIONS
1
Inputs 1
Iref
NC
VEE
Vin+
CC
CM
Output 1
15
NC
3
14
VCC
4
13
5
12
6
11
NC
10
NC
9
Output 2
2
Iref
Vin–
16
–
+ 1
NC
Vout
7
+
– 2
Inputs 2
8
VEE
(16 Pin Pkg, Top View)
ORDERING INFORMATION
Device
VEE
MC33076D
MC33076P1
MC33076P2
Operating
Temperature Range
TA = – 40° to + 85°C
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
Package
SO–8
Plastic DIP
Power Plastic
Rev 0
1
MC33076
MAXIMUM RATINGS
Symbol
Value
Unit
Power Supply Voltage (Note 2)
Rating
VCC to
VEE
+36
V
Input Differential Voltage Range
VIDR
(Note 1)
V
Input Voltage Range
VIR
(Note 1)
V
Output Short Circuit Duration (Note 2)
tSC
5.0
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
–60 to +150
°C
Maximum Power Dissipation
PD
(Note 2)
mW
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ)
is not exceeded (see power dissipation performance characteristic, Figure 1).
See applications section for further information.
DC ELECTRICAL CHARACTERICISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Input Offset Voltage (RS = 50 Ω, VCM = 0 V)
(VS = ±2.5 V to ±15 V)
TA = +25°C
TA = –40° to +85°C
Figure
Symbol
2
|VIO|
Large Signal Voltage Gain (VO = –10 V to +10 V)
(TA = +25°C)
RL = 100 Ω
RL = 600 Ω
(TA = –40° to +85°C)
RL = 600 Ω
Output Voltage Swing (VID = ±1.0 V)
(VCC = +15 V, VEE = –15 V)
RL = 100 Ω
RL = 100 Ω
RL = 600 Ω
RL = 600 Ω
(VCC = +2.5 V, VEE = –2.5 V)
RL = 100 Ω
RL = 100 Ω
3, 4
0.5
0.5
µV/°C
—
2.0
—
—
—
100
—
500
600
—
—
5.0
—
70
100
–13
–14
+14
13
nA
|IIO|
5
6
VICR
Unit
4.0
5.0
IIB
nA
V
AVOL
kV/V
25
50
—
200
—
—
25
—
—
7, 8, 9
V
VO+
VO–
VO+
VO–
10
—
13
—
+11.7
–11.7
+13.8
–13.8
—
–10
—
–13
VO+
VO–
1.2
—
+1.66
–1.74
—
–1.2
80
116
—
80
120
—
Common Mode Rejection (Vin = ±13 V)
10
CMR
Power Supply Rejection
(VCC/VEE = +15 V/–15 V, +5.0 V/–15 V, +15 V/–5.0 V)
11
PSR
2
Max
∆VIO/∆T
Input Offset Current (VCM = 0 V)
TA = +25°C
TA = –40° to +85°C
Common Mode Input Voltage Range
Typ
mV
—
—
Input Offset Voltage Temperature Coefficient
(RS = 50 Ω, VCM = 0 V)
TA = –40° to +85°C
Input Bias Current (VCM = 0 V)
TA = +25°C
TA = –40° to +85°C
Min
dB
dB
MOTOROLA ANALOG IC DEVICE DATA
MC33076
DC ELECTRICAL CHARACTERICISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Output Short Circuit Current (VID = ±1.0 V Output to Gnd)
(VCC = +15 V, VEE = –15 V)
Source
Sink
(VCC = +2.5 V, VEE = –2.5 V)
Source
Sink
Power Supply Current per Amplifier (VO = 0 V)
(VS = ±2.5 V to ±15 V)
TA = +25°C
TA = –40° to +85°C
Figure
Symbol
12, 13
ISC
14
Min
Typ
Max
Unit
mA
190
—
+250
–280
—
–215
63
—
+94
–80
—
–46
ID
mA
—
—
2.2
—
2.8
3.3
AC ELECTRICAL CHARACTERICISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Figure
Symbol
Min
Typ
Max
Unit
Slew Rate (Vin = –10 V to +10 V, RL = 100 Ω, CL = 100 pF, AV = +1)
15
SR
1.2
2.6
—
V/µs
Gain Bandwidth Product (f = 20 kHz)
16
GBW
4.0
7.4
—
MHz
Unity Gain Frequency (Open Loop) (RL = 600 Ω, CL = 0 pF)
—
fU
—
3.5
—
MHz
Gain Margin (RL = 600 Ω, CL = 0 pF)
19, 20
Am
—
15
—
dB
Phase Margin (RL = 600 Ω, CL = 0 pF)
19, 20
∅m
—
52
—
Deg
Characteristics
Channel Separation (f = 100 Hz to 20 kHz)
21
CS
—
–120
—
dB
Power Bandwidth (VO = 20 Vpp, RL = 600 Ω, THD ≤ 1%)
—
BWp
—
32
—
kHz
Total Harmonic Distortion (RL = 600 Ω, VO = 2.0 Vpp, AV = +1)
f = 1.0 kHz
f = 10 kHz
f = 20 kHz
22
THD
—
—
—
0.0027
0.011
0.022
—
—
—
Open Loop Output Impedance (VO = 0 V, f = 2.5 MHz, AV = 10)
23
|ZO|
—
75
—
Ω
Differential Input Resistance (VCM = 0 V)
—
Rin
—
200
—
kΩ
Differential Input Capacitance (VCM = 0 V)
—
Cin
—
10
—
pF
Equivalent Input Noise Voltage (RS = 100 Ω)
f = 10 Hz
f = 1.0 kHz
24
en
—
—
7.5
5.0
—
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
—
—
—
0.33
0.15
—
—
MOTOROLA ANALOG IC DEVICE DATA
%
nV/√Hz
in
pA/√Hz
3
MC33076
Figure 2. Distribution of Input
Offset Voltage
4000
25
PERCENTAGE OF AMPLIFIERS (%)
PD , MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation
versus Temperature
See Application Section
for Further Information
3500
3000
MC33076P2
2500
2000
MC33076P1
1500
1000
500
0
–60
MC33076D
–30
0
30
60
90
TA, AMBIENT TEMPERATURE (°C)
120
20
15
10
5
0
–2.0
150
180 amplifiers tested
from 3 wafer lots
VCC = ±15 V
TA = 25°C
(Plastic DIP package)
–1.5
–1.0 –0.5
0
0.5
1.0
1.5
VIO, INPUT OFFSET VOLTAGE (mV)
Figure 3. Input Bias Current versus
Common Mode Voltage
I IB , INPUT BIAS CURRENT (nA)
I IB , INPUT BIAS CURRENT (nA)
150
VCC = +15 V
VEE = –15 V
TA = 25°C
225
200
175
150
125
–10
–5.0
0
5.0
10
137
125
112
100
75
–55
15
VCC = +15 V
VEE = –15 V
VCM = 0 V
88
–25
VCM, COMMON MODE VOLTAGE (V)
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
VCC = + 5.0 V to +18 V
VEE = – 5.0 V to –18 V
∆VIO = 5.0 mV
VCC–0.50
VCC–0.75
VCC–1.0
VEE+0.25
VEE+0.125
4
–25
5.0
35
65
TA, TEMPERATURE (°C)
35
65
95
125
Figure 6. Open Loop Voltage Gain
versus Temperature
VCC
VCC–0.25
5.0
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Input Common Mode Voltage
Range versus Temperature
VEE
–55
2.5
Figure 4. Input Bias Current
versus Temperature
250
100
–15
2.0
95
125
120
115
RL = 2.0 kΩ
110
105
100
95
90
–55
VCC = +15 V
VEE = –15 V
f = 10 Hz
∆VO = –10 to +10 V
–25
RL = 100 Ω
5.0
35
65
TA, AMBIENT TEMPERATURE (°C)
95
125
MOTOROLA ANALOG IC DEVICE DATA
MC33076
Figure 7. Output Voltage Swing
versus Supply Voltage
Figure 8. Maximum Peak–to–Peak Output
Voltage Swing versus Load Resistance
30
VO , OUTPUT VOLTAGE SWING (Vpp)
VO, OUTPUT VOLTAGE (Vpp )
40
35
30
RL = 10 kΩ
TA = 25°C
25
RL = 100 Ω
20
15
10
5.0
0
TA = 25°C
f = 1.0 kHz
25
20
15
10
VS = ± 5.0 V
5.0
0
0
5.0
10
15
20
VCC, |VEE|, SUPPLY VOLTAGE (V)
25
10
Figure 9. Output Voltage
versus Frequency
CMR, COMMON MODE REJECTION (dB)
15
VCC = +15 V
VEE = –15 V
RL = 100 Ω
AV = +1.0
THD = ≤ 1.0%
TA = 25°C
5.0
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
100
80
+PSR
60
40
VCC = +15 V
VEE = –15 V
∆VCC = ±1.5 V
TA = – 55° to +125°C
–PSR
0
10
100
80
60
40
VCC = +15 V
VEE = –15 V
VCM = 0 V
∆VCM = ±1.5 V
TA = – 55° to +125°C
20
1.0 M
Figure 11. Power Supply Rejection
versus Frequency Over Temperature
20
10 k
0
0
100
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
1.0 M
10 M
10
|I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
VO, OUTPUT VOLTAGE (Vpp )
20
10
100
1.0 k
RL, LOAD RESISTANCE TO GROUND (Ω)
Figure 10. Common Mode Rejection
versus Frequency Over Temperature
25
PSR, POWER SUPPLY REJECTION (dB)
VS = ±15 V
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Figure 12. Output Short Circuit Current
versus Output Voltage
300
250
Sink
200
Source
150
100
VCC = +15 V
VEE = –15 V
VID = ±1.0 V
50
0
0
3.0
6.0
9.0
|VO|, OUTPUT VOLTAGE (V)
12
15
5
MC33076
Figure 14. Supply Current versus
Supply Voltage with No Load
5.0
I D, SUPPLY CURRENT/AMPLIFIER (mA)
320
300
Sink
280
260
240
220
200
180
–55
Source
VCC = +15 V
VEE = –15 V
VID = ±1.0 V
RL < 10 Ω
–25
5.0
35
65
TA, AMBIENT TEMPERATURE (°C)
95
4.0
TA = +125°C
3.0
TA = + 25°C
2.0
TA = – 55°C
1.0
0
125
0
3.0
3.0
SR, SLEW RATE (V/µS)
2.5
2.0
1.5
∆Vin
1.0
0.5
0
–55
VCC = +15 V
VEE = –15 V
∆Vin = 20 Vpp
–25
+–
100Ω
5.0
35
65
TA, AMBIENT TEMPERATURE (°C)
100pF
95
8.0
7.5
7.0
6.5
6.0
5.5
–55
125
2
B
120
160
1
B
200
–10
–30
–50
100 k
6
1A) Phase, VS = ±18 V
2A) Phase, VS = ±1.5 V
1B) Gain, VS = ±18 V
2B) Gain, VS = ±1.5 V
1.0 M
f, FREQUENCY (Hz)
240
10 M
280
30 M
AV, VOLTAGE GAIN (dB)
10
1
A
∅, EXCESS PHASE (DEGREES)
A V, VOLTAGE GAIN (dB)
2
A
VCC = +15 V
VEE = –15 V
f = 100 Hz
RL = 100 Ω
CL = 0 pF
–25
5.0
35
65
TA, AMBIENT TEMPERATURE (°C)
95
125
Figure 18. Voltage Gain and Phase
versus Frequency
80
30
18
8.5
Figure 17. Voltage Gain and Phase
versus Frequency
50
15
Figure 16. Gain Bandwidth Product
versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz)
Figure 15. Slew Rate
versus Temperature
6.0
9.0
12
VCC |VEE|, SUPPLY VOLTAGE (V)
50
80
30
120
10
160
–10
–30
1B
1A) Phase, (R = 100 Ω)
2A) Phase, (R = 100 Ω, C = 300 pF)
1B) Gain, (R = 100 Ω)
2B) Gain, (R = 100 Ω, C = 300 pF)
–50
100 k
1.0 M
2B
2
A
10 M
1
A
200
240
∅ , EXCESS PHASE (DEGREES)
|I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
Figure 13. Output Short Circuit Current
versus Temperature
280
30 M
f, FREQEUNCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
MC33076
12
Gain Margin
40
30
20
8.0
Phase Margin
4.0
10
0
2.0 k
4.0 k
6.0 k
8.0 k
10 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
∅ m, PHASE MARGIN (DEGREES)
16
0
60
50
VCC = +15 V
VEE = –15 V
RT = R1 + R2
VO = 0 V
TA = 25°C
∅ m, PHASE MARGIN (DEGREES)
A m , GAIN MARGIN (dB)
20
Figure 20. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
16
VCC = +15 V
VEE = –15 V
VO = 0 V
50
10
30
8.0
Phase Margin
0
2.0
0
THD, TOTAL HARMONIC DISTORTION (%)
100
Drive Channel
VCC = +15 V
VEE = –15 V
RL = 100 Ω
TA = 25°C
100 k
1.0 M
Figure 23. Output Impedance
versus Frequency
ZO , OUTPUT IMPEDANCE ( Ω )
100
VCC = +15 V
VEE = –15 V
VCM = 0 V
VO = 0 V
TA = 25°C
80
60
40
AV = 1000
20
AV = 100
0
10 k
AV = 10
AV = 1.0
100 k
1.0 M
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
10 M
e n , INPUT REFERRED NOISE VOLTAGE (NV/ √Hz)
CS, CHANNEL SEPARATION (dB)
110
10 k
f, FREQUENCY (Hz)
400
800
1200
1600
0
2000
Figure 22. Total Harmonic Distortion
versus Frequency
120
1.0 k
4.0
Gain Margin
10
CL, OUTPUT LOAD CAPACITANCE (pF)
130
70
100
6.0
20
0
12 k
140
80
12
40
Figure 21. Channel Separation
versus Frequency
90
14
A m , OPEN LOOP GAIN MARGIN (dB)
Figure 19. Phase Margin and Gain Margin
versus Differential Source Resistance
3.0
2.5
2.0
VCC = +15 V
VEE = –15 V
RL = 100 Ω
VO = 2.0 Vpp
TA = 25°C
1.5
AV = +10
1.0
AV = +1000
0.5
AV = +100
0
10
AV = +1
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 24. Input Referred Noise Voltage
versus Frequency
20
16
VCC = +15 V
VEE = –15 V
TA = 25°C
12
+
–
VO
Input Noise Voltage
Test Circuit
8.0
4.0
0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
7
MC33076
Figure 25. Percent Overshoot
versus Load Capacitance
Figure 26. PC Board Heatsink Example
os, PERCENT OVERSHOOT (%)
100
80
VCC = +15 V
VEE = –15 V
TA = 25°C
Copper
Pad
Copper
Pad
60
RL = 2.0 kΩ
40
20
0
10
RL = 100 Ω
100
1000
CL, LOAD CAPACITANCE (pF)
10 k
APPLICATIONS INFORMATION
The MC33076 dual operational amplifier is available in the
standard 8–pin plastic dual–in–line (DIP) and surface mount
packages, and also in a 16–pin batwing power package. To
enhance the power dissipation capability of the power
package, Pins 4, 5, 12, and 13 are tied together on the
leadframe, giving it an ambient thermal resistance of 52°C/W
8
typically, in still air. The junction–to–ambient thermal
resistance (RθJA) can be decreased further by using a copper
padb on the printed circuit board (as shown in Figure 26) to
draw the heat away from the package. Care must be taken
not to exceed the maximum junction temperature or damage
to the device may occur.
MOTOROLA ANALOG IC DEVICE DATA
MC33076
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
B
M
M
1
4
h
B
X 45 _
q
e
DIM
A
A1
B
C
D
E
e
H
h
L
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
M
C B
A
S
S
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
P1 SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
F
–A–
NOTE 2
L
C
J
–T–
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
N
SEATING
PLANE
D
H
DIM
A
B
C
D
F
G
H
J
K
L
M
N
M
K
G
0.13 (0.005)
MOTOROLA ANALOG IC DEVICE DATA
M
T A
M
B
M
9
MC33076
OUTLINE DIMENSIONS
P2 SUFFIX
PLASTIC PACKAGE
CASE 648C–03
(DIP (12+2+2))
ISSUE C
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. INTERNAL LEAD CONNECTION BETWEEN 4 AND
5, 12 AND 13.
–A–
16
9
1
8
–B–
L
NOTE 5
C
–T–
F
E
J
G
D 16 PL
0.13 (0.005)
10
M
N
SEATING
PLANE
16 PL
0.13 (0.005)
M
T A
M
T B
DIM
A
B
C
D
E
F
G
J
K
L
M
N
INCHES
MIN
MAX
0.740
0.840
0.240
0.260
0.145
0.185
0.015
0.021
0.050 BSC
0.040
0.70
0.100 BSC
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.040
MILLIMETERS
MIN
MAX
18.80
21.34
6.10
6.60
3.69
4.69
0.38
0.53
1.27 BSC
1.02
1.78
2.54 BSC
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
S
S
MOTOROLA ANALOG IC DEVICE DATA
MC33076
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
11
MC33076
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*MC33076/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC33076/D