Order this document by MC33282/D & !%$ #$ & $ &$ !%$ !"$ !"# The MC33282/284 series of high performance operational amplifiers are quality fabricated with innovative bipolar and JFET design concepts. This dual and quad amplifier series incorporates JFET inputs along with a patented Zip–R–Trim element for input offset voltage reduction. These devices exhibit low input offset voltage, low input bias current, high gain bandwidth and high slew rate. Dual–doublet frequency compensation is incorporated to produce high quality phase/gain performance. In addition, the MC33282/284 series exhibit low input noise characteristics for JFET input amplifiers. Its all NPN output stage exhibits no deadband crossover distortion and a large output voltage swing. They also provide a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance. The MC33282/284 series are specified over –40° to +85°C and are available in plastic DIP and SOIC surface mount packages. • Low Input Offset Voltage: Trimmed to 200 µV • • • • • • • • • • • • HIGH PERFORMANCE OPERATIONAL AMPLIFIERS SEMICONDUCTOR TECHNICAL DATA DUAL 8 1 8 1 P SUFFIX PLASTIC PACKAGE CASE 626 D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) PIN CONNECTIONS Output 1 1 Low Input Bias Current: 30 pA Low Input Offset Current: 6.0 pA High Input Resistance: 1012 Ω 2 Inputs 1 Low Noise: 18 nV √ Hz @ 1.0 kHz 3 – + VEE 4 High Slew Rate: 15 V/µs VCC 7 Output 2 1 2 High Gain Bandwidth Products: 35 MHz @ 100 kHz 8 – 6 + 5 Inputs 2 (Top View) Power Bandwidth: 175 kHz Unity Gain Stable: w/Capacitance Loads to 300 pF Large Output Voltage Swing: +14.1 V/–14.6 V QUAD Low Total Harmonic Distortion: 0.003% Power Supply Drain Current: 2.15 mA per Amplifier 14 1 Dual Supply Operation: ± 2.5 V to ±18 V (Max) 14 D SUFFIX PLASTIC PACKAGE CASE 751A (SO–14) 1 P SUFFIX PLASTIC PACKAGE CASE 646 PIN CONNECTIONS Output 1 14 Output 4 1 ORDERING INFORMATION Op Amp Function Device Operating Temperature Range 2 Package MC33282D SOP–8 MC33282P Plastic DIP Dual MC33284D TA = –40° 40° to +85°C 85°C SO–14 Quad MC33284P Zip–R–Trim is a registered trademark of Motorola Inc. Inputs 1 3 – 1 + – + 4 5 6 Plastic DIP Output 2 Inputs 4 12 11 VEE VCC 4 Inputs 2 13 + 2 – 3 + – 7 10 Inputs 3 9 8 Output 3 (Top View) Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA Rev 0 1 MC33282 MC33284 MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V VIDR (Note 1) V Input Voltage Range VIR (Note 1) V Output Short Circuit Duration (Note 2) tSC Indefinite sec Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg – 60 to +150 °C Maximum Power Dissipation PD (Note 2) mW Supply Voltage (VCC to VEE) Input Differential Voltage Range NOTES: 1. Either or both input voltages should not exceed VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2). DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristics Symbol Figure Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C |VIO| 3 Average Temperature Coefficient of Input Offset Voltage RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh |∆VIO|/∆T Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C IIB Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C IIO Max 6 Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ) TA = +25°C TA = –40° to +85°C AVOL 7 Output Voltage Swing (VID = ±1.0 V) RL = 2.0 kΩ RL = 2.0 kΩ RL = 10 kΩ RL = 10 kΩ VO + VO – VO + VO – — — 0.2 — 2.0 4.0 — 15 — –200 –2.0 30 — 200 2.0 pA nA –100 –1.0 6.0 — 100 1.0 pA nA –11 — –12 +14 — +11 V 50 25 200 — — — 13.2 — 13.7 — +13.7 –13.9 +14.1 –14.6 — –13.2 — –14.3 70 90 — 75 100 — 15 — +21 –27 — –15 — — 2.15 — 2.75 3.0 mV µV/°C Common Mode Rejection (Vin = ±11 V) CMR 11 Power Supply Rejection VCC/VEE = +15 V/–15 V, +5.0 V/–15 V, +15 V/–5.0 V PSR 12 Output Short Circuit Current (VID = 1.0 V, output to ground) Source Sink ISC V/mV 8, 9, 10 ID Unit 4, 5 VICR 2 Typ 3 Common Mode Input Voltage Range (∆VIO = 5.0 mV, VO = 0 V) Power Supply Current (VO = 0 V, per amplifier) TA = +25°C TA = –40° to +85°C Min V dB dB 13, 14 mA 15 mA MOTOROLA ANALOG IC DEVICE DATA MC33282 MC33284 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Symbol Figure Min Typ Unit SR 16, 28, 29 8.0 15 V/µs Gain Bandwidth Product (f = 100 kHz) GBW 17 20 35 MHz AC Voltage Gain (RL = 2.0 kΩ, VO = 0 V, f = 20 kHz) AVO 18, 21 — 1750 V/V — 5.5 MHz 15 dB Characteristics Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF, AV = +1.0) Unity Gain Frequency (Open Loop) fU Gain Margin (RL = 2.0 kΩ, CL = 0 pF) Am 19, 20 — Phase Margin (RL = 2.0 kΩ, CL = 0 pF) φm 19, 20 — 40 Degrees Channel Separation (f = 20 Hz to 20 kHz) CS 22 — –120 dB — 175 kHz Power Bandwidth (VO = 20 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%) BWP Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD 23 — 0.003 % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| 24 — 37 Ω — 1012 Ω — 5.0 pF — 18 nV/ √ Hz — 0.01 pA/ √ Hz Differential Input Resistance (VCM = 0 V) Rin Differential Input Capacitance (VCM = 0 V) Cin Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz) en Equivalent Input Noise Current (f = 1.0 kHz) in 25 Figure 1. Equivalent Circuit Schematic (Each Amplifier) VCC D1 R2 R3 R6 R10 R13 Q15 Q8 D2 C1 Q17 C3 + Q5 Vin D3 J4 J3 Vin Q11 J5 J2 C4 D4 R16 Q9 Q18 C5 J1 C6 A B C Q7 D R17 Q10 D5 Q13 VO Q4 Q6 Q12 Q14 R5 Z1 Q1 Q2 R12 R4 Q3 R1 C2 R8 Q16 R15 R13 VEE MOTOROLA ANALOG IC DEVICE DATA 3 MC33282 MC33284 PD (max), MAXIMUM POWER DISSIPATION (mW) Figure 2. Maximum Power Dissipation versus Temperature Figure 3. Input Offset Voltage versus Temperature for Typical Units 2400 VIO , INPUT OFFSET VOLTAGE (mV) 5.0 2000 MC33282P & MC33284P 1600 1200 MC33284D 800 MC33282D 400 0 –60 –40 –20 0 20 40 60 80 3.0 1.0 Unit 2 Unit 2 –1.0 Unit 3 –25 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) Figure 4. Input Bias Current versus Temperature Figure 5. Input Bias Current versus Common Mode Voltage 125 600 IIB, INPUT BIAS CURRENT (pA) 300 250 200 VCC, VEE = ±2.5 V 150 100 50 0 –55 VCC, VEE = ±15 V –25 0 25 50 75 100 500 400 300 200 100 0 –15 125 VCC = +15 V VEE = –15 V TA = 25°C –12 –9.0 –6.0 TA, AMBIENT TEMPERATURE (°C) VCC–1.5 V VEE+1.5 V VEE+1.0 V VEE+0.5 V VEE –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 AVOL, OPEN LOOP VOLTAGE GAIN (dB) VCC = +5.0 V to +18 V VEE = –5.0 V to –18 V ∆VIO = 5.0 mV VO = 0 V VCC–1.0 V 0 3.0 6.0 9.0 12 15 Figure 7. Open Loop Voltage Gain versus Temperature VCC VCC–0.5 V –3.0 VCM, COMMON MODE VOLTAGE (V) Figure 6. Input Common Mode Voltage Range versus Temperature VICR , INPUT COMMON MODE VOLTAGE RANGE (V) 0 TA, AMBIENT TEMPERATURE (°C) 350 4 Unit 1 –3.0 –5.0 –55 100 120 140 160 180 Unit 3 Unit 1 400 IIB, INPUT BIAS CURRENT (pA) VCC = +15 V VEE = –15 V RS = 10 Ω VCM = 0 V 150 140 130 VCC = +15 V VEE = –15V RL = 2.0 kΩ f = 10 Hz ∆VO = 10 V to +10 V 120 110 100 –55 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA MC33282 MC33284 Figure 8. Output Voltage Swing versus Supply Voltage Figure 9. Output Voltage versus Frequency 40 30 27 VO, OUTPUT VOLTAGE (Vpp ) VO, OUTPUT VOLTAGE (Vpp ) 36 TA = 25°C 32 28 24 RL = 10 k 20 RL = 2.0 k 16 12 8.0 24 21 18 15 12 9.0 6.0 3.0 4.0 0 0 2.0 4.0 6.0 8.0 10 12 14 16 18 VCC = +15 V VEE = –15 V RL = 2.0 kΩ AV = +1.0 THD = ≤ 1.0% TA = 25°C 0 1.0 k 20 10 k VCC TA = –55°C VCC = +15 V RL to Gnd VEE = –15 V VCC–8.0 V TA = 125°C TA = +25°C VCC–12 V VEE+4.0 V TA = 125°C VEE+2.0 V VEE 2.0 4.0 6.0 8.0 10 TA = –55°C 12 14 TA = +25°C 18 20 16 120 VCC = +15 V VEE = –15 V VCM = 0 V ∆VCM = ±1.5 V 100 80 60 – ADM + ∆VCM 40 20 0 10 CMR = 20Logǒ 100 1.0 k PSR– 40 – ADM + VEE 20 0 10 +PSR = 20Lo ǒ g 100 ∆VO ∆VO/ADM MMNI Ǔ ∆VCC MMM 1.0 k VCC = +15 V VEE = –15 V ∆VCC = ±1.5 V TA = 25°C 10 k f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 100 k 1.0 M |ISC|, OUTPUT SHORT CIRCUIT CURRENT (mA) +PSR, POWER SUPPLY REJECTION (dB) PSR+ VCC 100 k 1.0 M Figure 13. Output Short Circuit Source Current versus Temperature 120 60 10 k f, FREQUENCY (Hz) Figure 12. Positive Power Supply Rejection versus Frequency 80 ∆VO ∆VCM MVMNI x Axmi DM Ǔ ∆VO MMM IL, LOAD CURRENT (mA) 100 1.0 M Figure 11. Common Mode Rejection versus Frequency CMR, COMMON MODE REJECTION (dB) Vsat , OUTPUT SATURATION VOLTAGE (V) Figure 10. Output Saturation Voltage versus Load Current VCC–4.0 V 100 k f, FREQUENCY (Hz) VCC, VEE SUPPLY VOLTAGE (V) 50 VID = ±1.0 V RL < 100 Ω 45 40 35 30 VCC, VEE = ±15 V 25 20 15 10 VCC, VEE = ±2.5 V 5.0 0 –55 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) 5 Figure 14. Output Short Circuit Sink Current versus Temperature 3.0 ID , POWER SUPPLY CURRENT (mA) VID = ±1.0 V RL < 100 Ω 45 VCC, VEE = ±15 V 40 35 30 25 20 VCC, VEE = ±2.5 V 15 10 5.0 0 –55 –25 0 25 50 75 100 SR, SLEW RATE (V/µs) VCC, VEE = ±2.5 V 1.0 0.5 0 –55 –25 0 Noninverting Amplifier VCC = +15 V VEE = –15 V ∆Vin = 20 V CL = 100 pF RL = 2.0 kΩ 6.0 4.0 2.0 100 0 25 50 75 100 50 40 30 20 10 0 –55 125 –25 0 80 2A 0 1B 2B –20 1A) Phase VCC = 18 V, VEE = –18 V –30 2A) Phase VCC = 1.5 V, VEE = –1.5 V –40 1B) Gain VCC = 18 V, VEE = –18 V 2B) Gain VCC = 1.5 V, VEE = –1.5 V –50 100 k 1.0 M 10 M f, FREQUENCY (Hz) 140 160 180 200 220 240 A m, GAIN MARGIN (dB) 1A 10 100 125 16 – + Vin VO R2 40 30 12 Gain Margin 8.0 4.0 260 100 M R1 Phase Margin φ , PHASE (DEGREES) 20 75 50 20 100 120 30 50 Figure 19. Phase Margin and Gain Margin versus Differential Source Resistance TA = 25°C CL = 0 pF 40 25 TA, AMBIENT TEMPERATURE (°C) Figure 18. Gain and Phase versus Frequency 50 125 VCC = +15 V VEE = –15 V f = 100 kHz RL = 2 kΩ CL = 0 pF TA, AMBIENT TEMPERATURE (°C) A V , VOLTAGE GAIN (dB) 75 Figure 17. Gain Bandwidth Product versus Temperature 8.0 6 50 Figure 16. Slew Rate versus Temperature 10 –10 25 TA, AMBIENT TEMPERATURE (°C) Inverting Amplifier –25 1.5 TA, AMBIENT TEMPERATURE (°C) 12 0 –55 2.0 125 16 14 VCC, VEE = ±15 V 2.5 0 10 20 VCC = +15 V VEE = –15 V RT = R1 + R2 VO = 0 V TA = 25°C 10 φ m , PHASE MARGIN (DEGREES) 50 Figure 15. Power Supply Current versus Supply Voltage GBW, GAIN BANDWIDTH PRODUCT (MHz) |ISC |, OUTPUT SHORT CIRCUIT CURRENT (mA) MC33282 MC33284 0 100 1.0 k 10 k RT, DIFFERENTIAL SOURCE RESISTANCE (Ω) MOTOROLA ANALOG IC DEVICE DATA MC33282 MC33284 Figure 21. Gain and Phase versus Frequency 50 0 10 Gain Margin 8.0 20 6.0 30 Phase Margin 4.0 40 Vin +– 2.0 kΩ 2.0 VO CL VCC = +15 V VEE = –15 V VO = 0 V 0 10 50 100 50 500 30 140 1A 10 0 –10 –20 –30 Gain THD, TOTAL HARMONIC DISTORTION (%) Drive Channel VCC = +15 V VEE = –15 V RL = 2.0 kΩ ∆VOD = 20 Vpp TA = 25°C |zo |, OUTPUT IMPEDANCE ( Ω ) 1.0 220 2B 240 10 M 1.0 M VCC = +15 V VEE = –15 V VO = 2 Vpp TA = 25°C 0.1 100 M AV = +1000 AV = +100 0.01 AV = +10 AV = +1.0 0.001 1.0 k 10 k 100 k 1.0 M 10 k 100 k Figure 25. Input Referred Noise Voltage versus Frequency AV = 10 AV = 100 AV = 1000 30 20 10 0 10 k 1.0 k Figure 24. Output Impedance versus Frequency 60 40 100 f, FREQUENCY (Hz) VCC = +15 V VEE = –15 V VO = 0 V TA = 25°C 50 10 f, FREQUENCY (Hz) AV = 1.0 100 k 1.0 M f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 10 M e n , INPUT REFERRED NOISE VOLTAGE (nV/√ Hz) CS, CHANNEL SEPARATION (dB) 130 70 200 Figure 23. Total Harmonic Distortion versus Frequency 140 80 180 1B f, FREQUENCY (Hz) 150 100 90 160 2A VCC = 15 V VEE = –15 V 1A) Phase, VO = 10 V 2A) Phase, VO = –10 V 1B) Gain, VO = 10 V 2B) Gain, VO = –10 V –40 –50 100 k 60 1.0 k 160 100 100 120 20 Figure 22. Channel Separation versus Frequency 110 100 Phase CL, OUTPUT LOAD CAPACITANCE (pF) 120 80 TA = 25°C CL = 0 pF 40 A V , VOLTAGE GAIN (dB) 10 φ m , PHASE MARGIN (DEGREES) A m, OPEN LOOP GAIN MARGIN (dB) 12 φ, PHASE (DEGREES) Figure 20. Open Loop Gain and Phase Margin versus Output Load Capacitance 50 Input Noise Voltage Test Circuit 40 30 + – 200 200 VO 2.0k 20 10 VCC = +15 V VEE = –15 V TA = 25° C 0 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 7 MC33282 MC33284 Figure 26. Percent Overshoot versus Load Capacitance Figure 27. Noninverting Amplifier Overshoot 80 70 VO, OUTPUT VOLTAGE (50 MV/DIV) VCC = +15 V VEE = –15 V RL = 2.0 k TA = 25° C 90 60 50 40 30 20 10 0 10 100 CL, LOAD CAPACITANCE (pF) 1.0 k t, TIME (1.0 µS/DIV) Figure 28. Noninverting Amplifier Slew Rate t, TIME (1.0 µS/DIV) 8 Figure 29. Inverting Amplifier Slew Rate VO, OUTPUT VOLTAGE (5.0 V/DIV) VO, OUTPUT VOLTAGE (5.0 V/DIV) PERCENT OVERSHOOT (%) 100 t, TIME (1.0 µS/DIV) MOTOROLA ANALOG IC DEVICE DATA MC33282 MC33284 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 DIM A B C D F G H J K L M N F –A– NOTE 2 L C J –T– MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 N SEATING PLANE D M K G H 0.13 (0.005) M T A M B M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 8 5 0.25 H E B M M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 M C B S A S MOTOROLA ANALOG IC DEVICE DATA DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ 9 MC33282 MC33284 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G SEATING PLANE D K M D SUFFIX PLASTIC PACKAGE CASE 751A–03 (SO–14) ISSUE F 8 –B– 1 P 7 PL 0.25 (0.010) 7 G M F –T– 10 D 14 PL 0.25 (0.010) M K M T B S M R X 45 _ C SEATING PLANE B A S MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 MOTOROLA ANALOG IC DEVICE DATA MC33282 MC33284 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA ANALOG IC DEVICE DATA 11 MC33282 MC33284 How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 12 ◊ *MC33282/D* MOTOROLA ANALOG IC DEVICE DATA MC33282/D