Order this document by MC33272A/D " ! ! HIGH PERFORMANCE OPERATIONAL AMPLIFIERS The MC33272/74 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts. This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip–R–Trim element for input offset voltage reduction. The MC33272/74 series of operational amplifiers exhibits low input offset voltage and high gain bandwidth product. Dual–doublet frequency compensation is used to increase the slew rate while maintaining low input noise characteristics. Its all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, and an excellent phase and gain margin. It also provides a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance. The MC33272/74 series is specified over –40° to +85°C and are available in plastic DIP and SOIC surface mount packages. • Input Offset Voltage Trimmed to 100 µV (Typ) • • • • • • • • • • • • • • SEMICONDUCTOR TECHNICAL DATA DUAL 8 8 1 1 D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) P SUFFIX PLASTIC PACKAGE CASE 626 Low Input Bias Current: 300 nA Low Input Offset Current: 3.0 nA PIN CONNECTIONS High Input Resistance: 16 MΩ Low Noise: 18 nV/ √ Hz @ 1.0 kHz Output 1 High Gain Bandwidth Product: 24 MHz @ 100 kHz Inputs 1 High Slew Rate: 10 V/µs VEE Power Bandwidth: 160 kHz 1 8 2 7 3 – + – + 4 6 VCC Output 2 Inputs 2 5 (Top View) Excellent Frequency Stability Unity Gain Stable: w/Capacitance Loads to 500 pF Large Output Voltage Swing: +14.1 V/ –14.6 V QUAD Low Total Harmonic Distortion: 0.003% Power Supply Drain Current: 2.15 mA per Amplifier Single or Split Supply Operation: +3.0 V to +36 V or ±1.5 V to ±18 V ESD Diodes Provide Added Protection to the Inputs Device Dual MC33272AD SO–8 MC33272AP Plastic DIP Quad MC33274AD MC33274AP 1 D SUFFIX PLASTIC PACKAGE CASE 751A (SO–14) P SUFFIX PLASTIC PACKAGE CASE 646 Op Amp Function 40° to +85°C 85°C TA = –40° 14 1 ORDERING INFORMATION Operating Temperature Range 14 Package SO–14 Plastic DIP PIN CONNECTIONS Output 1 1 14 2 13 Inputs 1 3 VCC 1 4 – + Inputs 4 12 4 11 5 10 Inputs 2 6 Output 2 – + + – 2 3 7 + – Output 4 9 8 VEE Inputs 3 Output 3 (Top View) Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA Rev 0 1 MC33272A MC33274A MAXIMUM RATINGS Rating Symbol Value Unit VCC to VEE +36 V VIDR (Note 1) V Input Voltage Range VIR (Note 1) V Output Short Circuit Duration (Note 2) tSC Indefinite sec Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg –60 to +150 °C Maximum Power Dissipation PD (Note 2) mW Supply Voltage Input Differential Voltage Range NOTES: 1. Either or both input voltages should not exceed VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2). DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristics Figure Symbol Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V) (VCC = +15 V, VEE = –15 V) TA = +25°C TA = –40° to +85°C (VCC = 5.0 V, VEE = 0) TA = +25°C 3 |VIO| Average Temperature Coefficient of Input Offset Voltage RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = –40° to +85°C 3 Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C 4, 5 Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C 6 Large Signal Voltage Gain (VO = 0 V to 10 V, RL = 2.0 kΩ) TA = +25°C TA = –40° to +85°C 7 Common Mode Rejection (Vin = +13.2 V to –15 V) Power Supply Rejection VCC/VEE = +15 V/ –15 V, +5.0 V/ –15 V, +15 V/ –5.0 V Max Unit mV — — 0.1 — 1.0 1.8 — — 2.0 — 2.0 — — — 300 — 650 800 — — 3.0 — 65 80 ∆VIO/∆T µV/°C IIB nA nA VICR V VEE to (VCC –1.8) AVOL dB 90 86 100 — — — 8, 9, 12 V VO + VO – VO + VO – 13.4 — 13.4 — 13.9 –13.9 14 –14.7 — –13.5 — –14.1 VOL VOH — 3.7 — — 0.2 5.0 13 CMR 80 100 — 14, 15 PSR 80 105 — +25 –25 +37 –37 — — 10, 11 Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink 16 Power Supply Current Per Amplifier (VO = 0 V) (VCC = +15 V, VEE = –15 V) TA = +25°C TA = –40° to +85°C (VCC = 5.0 V, VEE = 0 V) TA = +25°C 17 2 Typ |IIO| Common Mode Input Voltage Range (∆VIO = 5.0 mV, VO = 0 V) TA = +25°C Output Voltage Swing (VID = ±1.0 V) (VCC = +15 V, VEE = –15 V) RL = 2.0 kΩ RL = 2.0 kΩ RL = 10 kΩ RL = 10 kΩ (VCC = 5.0 V, VEE = 0 V) RL = 2.0 kΩ RL = 2.0 kΩ Min dB dB ISC mA ICC mA — — 2.15 — 2.75 3.0 — — 2.75 MOTOROLA ANALOG IC DEVICE DATA MC33272A MC33274A AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristics Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF, AV = +1.0 V) Gain Bandwidth Product (f = 100 kHz) AC Voltage Gain (RL = 2.0 kΩ, VO = 0 V, f = 20 kHz) Figure Symbol Min Typ Max Unit 18, 33 SR 8.0 10 — V/µs 19 GBW 17 24 — MHz 20, 21, 22 AVO — 65 — dB fU — 5.5 — MHz Unity Gain Frequency (Open Loop) Gain Margin (RL = 2.0 kΩ, CL = 0 pF) 23, 24, 26 Am — 12 — dB Phase Margin (RL = 2.0 kΩ, CL = 0 pF) 23, 25, 26 φm — 55 — Degrees 27 CS — –120 — dB BWP — 160 — kHz Channel Separation (f = 20 Hz to 20 kHz) Power Bandwidth (VO = 20 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%) Total Harmonic Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) 28 THD — 0.003 — % Open Loop Output Impedance (VO = 0 V, f = 6.0 MHz) 29 |ZO| — 35 — Ω Differential Input Resistance (VCM = 0 V) RIN — 16 — MΩ Differential Input Capacitance (VCM = 0 V) CIN — 3.0 — pF Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz) 30 en — 18 — nV/ √ Hz Equivalent Input Noise Current (f = 1.0 kHz) 31 in — 0.5 — pA/ √ Hz Figure 1. Equivalent Circuit Schematic (Each Amplifier) VCC Vin + – Vin + Sections B C D VO + VEE MOTOROLA ANALOG IC DEVICE DATA 3 Figure 2. Maximum Power Dissipation versus Temperature Figure 3. Input Offset Voltage versus Temperature for Typical Units 5.0 2400 V IO , INPUT OFFSET VOLTAGE (mV) P D (MAX), MAXIMUM POWER DISSIPATION (mW) MC33272A MC33274A 2000 MC33272P & MC33274P 1600 MC33274D 1200 800 MC33272D 400 0 –60 –40 –20 0 20 40 60 2 1. VIO > 0 @ 25°C 2. VIO = 0 @ 25°C 3. VIO < 0 @ 25°C –3.0 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) Figure 4. Input Bias Current versus Common Mode Voltage Figure 5. Input Bias Current versus Temperature I IB, INPUT BIAS CURRENT (nA) 350 300 250 200 150 VCC = +15 V VEE = –15 V TA = 25°C 100 50 –12 –8.0 –4.0 0 4.0 8.0 12 500 100 125 100 125 400 300 200 100 0 –55 16 VCC = +15 V VEE = –15 V VCM = 0 V –25 VCC VCC VCC –1.0 VCC –1.5 VCC –2.0 VCC = +5.0 V to +18 V VEE = –5.0 V to –18 V ∆VIO = 5.0 mV VO = 0 V VEE +1.0 VEE +0.5 VEE –55 VEE –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 25 50 75 Figure 7. Open Loop Voltage Gain versus Temperature 100 125 A VOL, OPEN LOOP VOLTAGE GAIN (X 1.0 kV/V) Figure 6. Input Common Mode Voltage Range versus Temperature VCC –0.5 0 TA, AMBIENT TEMPERATURE (°C) VCM, COMMON MODE VOLTAGE (V) V ICR, INPUT COMMON MODE VOLTAGE RANGE (V) 2 1 3 –1.0 600 0 –16 4 3 1 TA, AMBIENT TEMPERATURE (°C) 400 I IB, INPUT BIAS CURRENT (nA) 1.0 –5.0 –55 80 100 120 140 160 180 VCC = +15 V VEE = –15 V VCM = 0 V 3.0 180 160 140 120 100 –55 VCC = +15 V VEE = –15 V RL = 2.0 kΩ f = 10 Hz ∆VO = –10 V to +10 V –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA MC33272A MC33274A Figure 9. Split Supply Output Saturation Voltage versus Load Current V sat , OUTPUT SATURATION VOLTAGE (V) Figure 8. Split Supply Output Voltage Swing versus Supply Voltage VO, OUTPUT VOLTAGE (Vpp ) 40 TA = 25°C 30 RL = 10 kΩ 20 RL = 2.0 kΩ 10 0 0 5.0 10 15 VCC Source VCC –1.0 TA = –55°C TA = 125°C VCC –2.0 TA = 25°C VEE +2.0 Sink VEE +1.0 TA = 125°C TA = 25°C TA = –55°C VCC = +5.0 V to +18 V VEE = –5.0 V to –18 V VEE 20 0 5.0 VCC, VEE SUPPLY VOLTAGE (V) TA = 125°C VCC VCC –4.0 VCC = +5.0 V to +18 V RL to Gnd VEE = Gnd TA = 55°C VCC –8.0 VCC –12 +0.2 TA = 125°C TA = +25°C TA = –55°C +0.1 Gnd 0 100 1.0 k 10 k 100 k TA = 125°C 14.6 TA = 25°C 14.2 1.0 M TA = 55°C 8.0 TA = 25°C 4.0 TA = –55°C 10 100 CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp ) 1.0 k 10 k 100 k Figure 13. Common Mode Rejection versus Frequency 24 20 16 0 1.0 k VCC = +15 V RL to VCC VEE = Gnd RFdbk = 100 kΩ RL, LOAD RESISTANCE TO VCC (Ω) 28 4 TA = 125°C 0 Figure 12. Output Voltage versus Frequency 8 20 15 RL , LOAD RESISTANCE TO GROUND (kΩ) 12 15 Figure 11. Single Supply Output Saturation Voltage versus Load Resistance to VCC V sat , OUTPUT SATURATION VOLTAGE (V) V sat , OUTPUT SATURATION VOLTAGE (V) Figure 10. Single Supply Output Saturation Voltage versus Load Resistance to Ground VCC 10 IL, LOAD CURRENT (±mA) VCC = +15 V VEE = –15 V RL = 2.0 kΩ AV = +1.0 THD = ≤1.0% TA = 25°C 120 100 TA = –55°C TA = 125°C 80 60 – ADM + ∆VCM 40 20 CMR = 20Log VCC = +15 V VEE = –15 V VCM = 0 V ∆VCM = ±1.5 V ∆VO ∆VCM ∆VO X ADM 0 10 k 100 k 1.0 M f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 1 0M 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) 5 MC33272A MC33274A Figure 15. Negative Power Supply Rejection versus Frequency VCC = +15 V VEE = –15 V ∆VCC = ±1.5 V TA = 125°C 100 80 TA = –55°C 60 VCC – ADM + 40 ∆VO VEE 20 ∆VO/ADM ∆VCC +PSR = 20Log |I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA) 0 10 100 1.0 k 10 k 100 k TA = –55°C 80 60 VCC – ADM + 40 ∆VO VEE 20 –PSR = 20Log 10 TA = 125°C ∆VO/ADM ∆VEE 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) Figure 16. Output Short Circuit Current versus Temperature Figure 17. Supply Current versus Supply Voltage 1.0 M 11 VCC = +15 V VEE = –15 V VID = ±1.0 V RL < 100 Ω 50 Sink 40 Source Sink 30 Source 20 10 0 –55 –25 0 25 50 75 100 9.0 TA = +25°C 8.0 TA = –55°C 7.0 6.0 5.0 3.0 125 0 2.0 4.0 6.0 8.0 10 12 14 16 VCC, |VEE| , SUPPLY VOLTAGE (V) Figure 18. Normalized Slew Rate versus Temperature Figure 19. Gain Bandwidth Product versus Temperature GBW, GAIN BANDWIDTH PRODUCT (MHz) – ∆Vin + 2.0 kΩ VO 100 pF 1.0 VCC = +15 V VEE = –15 V ∆Vin = 20 V 0.95 0.9 0.85 –55 TA = +125°C TA, AMBIENT TEMPERATURE (°C) 1.1 1.05 10 4.0 1.15 SR, SLEW RATE (NORMALIZED) ∆VCC = ±1.5 V VCC = +15 V VEE = –15 V 100 f, FREQUENCY (Hz) 60 6 120 0 1 .0 M I CC , SUPPLY CURRENT (mA) +PSR, POWER SUPPLY REJECTION (dB) 120 –PSR, POWER SUPPLY REJECTION (dB) Figure 14. Positive Power Supply Rejection versus Frequency –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 18 20 50 VCC = +15 V VEE = –15 V f = 100 kHz RL = 2.0 kΩ CL = 0 pF 40 30 20 10 0 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 MOTOROLA ANALOG IC DEVICE DATA MC33272A MC33274A 80 25 80 20 100 20 100 140 Phase 5.0 160 0 180 –5.0 200 –15 VCC = +15 V VEE = –15 V RL = 2.0 kΩ TA = 25°C 220 240 260 –20 1.0 M 280 100 M 10 M 200 1B 220 –10 1A — Phase V = 18 V, V = –18 V CC EE –15 2A — Phase VCC = 1.5 V, VEE = –1.5 V 2B 1B — Gain V = 18 V, V = –18 V –20 2B — Gain VCC = 1.5 V, VEE = –1.5 V CC EE –25 100 k 1.0 M 10 M 240 100 M Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance 10 140 1A 160 2A 0 180 VCC = +15 V VEE = –15 V –10 Vout = 0 V TA = 25°C 1A — Phase (RL = 2.0 kΩ) –20 2A — Phase (RL = 2.0 kΩ, CL = 300 pF) 1B — Gain (RL = 2.0 kΩ) 2B — Gain (RL = 2.0 kΩ, CL = 300 pF) –30 3.0 4.0 6.0 8.0 10 200 1B 220 2B 240 260 280 20 0 12 100 Gain Margin 10 10 VCC = +15 V VEE = –15 V VO = 0 V 8.0 6.0 Vin 20 30 – VO + 2.0 kΩ 4.0 CL 40 50 2.0 Phase Margin 0 1.0 30 10 f, FREQUENCY (MHz) 100 1000 CL, OUTPUT LOAD CAPACITANCE (pF) Figure 24. Open Loop Gain Margin versus Temperature Figure 25. Phase Margin versus Temperature 12 60 CL = 10 pF 8.0 CL = 100 pF 6.0 CL = 300 pF φm, PHASE MARGIN (DEGREES) A m , OPEN LOOP GAIN MARGIN (dB) 180 2A Figure 22. Open Loop Voltage Gain and Phase versus Frequency 120 CL = 500 pF 4.0 2.0 0 –55 160 0 f, FREQUENCY (Hz) 20 10 140 f, FREQUENCY (Hz) φ EXCESS PHASE (DEGREES) A VOL , OPEN LOOP VOLTAGE GAIN (dB) –25 100 k 5.0 120 1A TA = 25°C CL = 0 pF 10 –5.0 A m , OPEN LOOP GAIN MARGIN (dB) –10 15 VCC = +15 V VEE = –15 V –25 0 25 50 φ m, PHASE MARGIN (DEGREES) 10 120 A V, VOLTAGE GAIN (dB) Gain φ, EXCESS PHASE (DEGREES) 25 15 A V, VOLTAGE GAIN (dB) Figure 21. Gain and Phase versus Frequency φ, PHASE (DEGREES) Figure 20. Voltage Gain and Phase versus Frequency 75 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA 100 125 CL = 10 pF 50 CL = 100 pF CL = 300 pF 40 30 CL = 500 pF 20 VCC = +15 V VEE = –15 V 10 0 –55 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) 7 MC33272A MC33274A Figure 26. Phase Margin and Gain Margin versus Differential Source Resistance A m , GAIN MARGIN (dB) Phase Margin 40 9.0 VCC = +15 V VEE = –15 V RT = R1+R2 VO = 0 V TA = 25°C 3.0 0 Vin 30 20 – R1 + R2 1.0 10 10 VO 100 CS, CHANNEL SEPERATION (dB) 50 12 6.0 160 60 Gain Margin φ m , PHASE MARGIN (DEGREES) 15 Figure 27. Channel Separation versus Frequency 0 10 k 1.0 k Driver Channel VCC = +15 V VEE = –15 V RL = 2.0 kΩ ∆VOD = 20 Vpp TA = 25°C 150 140 130 120 110 100 100 1.0 k 10 k RT, DIFFERENTIAL SOURCE RESISTANCE (Ω) 50 |Z O |, OUTPUT IMPEDANCE ( Ω ) AV = +1000 AV = +100 0.1 AV = +10 0.01 e n , INPUT REFERRED NOISE VOLTAGE ( nV/ √ Hz ) 0.001 10 AV = +1.0 VO = 2.0 Vpp TA = 25°C 100 1.0 k VCC = +15 V VEE = –15 V 10 k 20 AV = 1000 AV = 100 10 AV = 1.0 AV = 10 100 k 1.0 M 10 M Figure 30. Input Referred Noise Voltage versus Frequency Figure 31. Input Referred Noise Current versus Frequency – 30 VO Input Noise Voltage Test Circuit 20 8 30 f, FREQUENCY (Hz) 40 VCC = +15 V VEE = –15 V TA = 25°C 10 40 f, FREQUENCY (Hz) + 0 VCC = +15 V VEE = –15 V VO = 0 V TA = 25°C 0 10 k 100 k 50 10 1.0 M Figure 29. Output Impedance versus Frequency 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k i n , INPUT REFERRED NOISE CURRENT ( pA/ √ Hz ) THD, TOTAL HARMONIC DISTORTION (%) Figure 28. Total Harmonic Distortion versus Frequency 1.0 100 k f, FREQUENCY (Hz) 2.0 Input Noise Current Circuit 1.8 + 1.6 RS 1.4 – VO 1.2 (RS = 10 kΩ) 1.0 0.8 0.6 VCC = +15 V VEE = –15 V TA = 25°C 0.4 0.2 0 10 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k MOTOROLA ANALOG IC DEVICE DATA MC33272A MC33274A Figure 32. Percent Overshoot versus Load Capacitance PERCENT OVERSHOOT (%) 60 VCC = +15 V VEE = –15 V RL = 2.0 kΩ TA = 25°C 50 40 30 20 10 0 10 100 CL, LOAD CAPACITANCE (pF) Figure 34. Noninverting Amplifier Overshoot for the MC33274 V O, OUTPUT VOLTAGE (5.0 V/DIV) V O, OUTPUT VOLTAGE (5.0 V/DIV) Figure 33. Noninverting Amplifier Slew Rate for the MC33274 VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 kΩ CL = 100 pF TA = 25°C t, TIME (2.0 µs/DIV) VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 kΩ TA = 25°C CL = φ Figure 36. Large Signal Transient Response for MC33274 VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 kΩ CL = 300 pF TA = 25°C V O, OUTPUT VOLTAGE (5.0 V/DIV) V O, OUTPUT VOLTAGE (50 mV/DIV) CL = 100 pF t, TIME (2.0 ns/DIV) Figure 35. Small Signal Transient Response for MC33274 VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 kΩ CL = 300 pF TA = 25°C 1.0 k t, TIME (2.0 µs/DIV) MOTOROLA ANALOG IC DEVICE DATA t, TIME (1.0 µs/DIV) 9 MC33272A MC33274A OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 DIM A B C D F G H J K L M N F –A– NOTE 2 L C J –T– MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 N SEATING PLANE D M K G H 0.13 (0.005) T A M B M M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 8 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 10 M C B S A S DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ MOTOROLA ANALOG IC DEVICE DATA MC33272A MC33274A OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 D SUFFIX PLASTIC PACKAGE CASE 751A–03 (SO–14) ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 8 –B– 1 P 7 PL 0.25 (0.010) 7 G M F –T– D 14 PL 0.25 (0.010) M K M T B S MOTOROLA ANALOG IC DEVICE DATA M R X 45 _ C SEATING PLANE B A S J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 11 MC33272A MC33274A Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 12 ◊ *MC33272A/D* MOTOROLA ANALOG IC DEVICE DATA MC33272A/D WWW.ALLDATASHEET.COM Copyright © Each Manufacturing Company. All Datasheets cannot be modified without permission. This datasheet has been download from : www.AllDataSheet.com 100% Free DataSheet Search Site. Free Download. No Register. Fast Search System. www.AllDataSheet.com