ONSEMI MC33272AP

Order this document by MC33272A/D
" ! ! HIGH PERFORMANCE
OPERATIONAL
AMPLIFIERS
The MC33272/74 series of monolithic operational amplifiers are quality
fabricated with innovative Bipolar design concepts. This dual and quad
operational amplifier series incorporates Bipolar inputs along with a patented
Zip–R–Trim element for input offset voltage reduction. The MC33272/74
series of operational amplifiers exhibits low input offset voltage and high gain
bandwidth product. Dual–doublet frequency compensation is used to
increase the slew rate while maintaining low input noise characteristics. Its
all NPN output stage exhibits no deadband crossover distortion, large output
voltage swing, and an excellent phase and gain margin. It also provides a
low open loop high frequency output impedance with symmetrical source
and sink AC frequency performance.
The MC33272/74 series is specified over –40° to +85°C and are available
in plastic DIP and SOIC surface mount packages.
• Input Offset Voltage Trimmed to 100 µV (Typ)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
SEMICONDUCTOR
TECHNICAL DATA
DUAL
8
8
1
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
P SUFFIX
PLASTIC PACKAGE
CASE 626
Low Input Bias Current: 300 nA
Low Input Offset Current: 3.0 nA
PIN CONNECTIONS
High Input Resistance: 16 MΩ
Low Noise: 18 nV/ √ Hz @ 1.0 kHz
Output 1
High Gain Bandwidth Product: 24 MHz @ 100 kHz
Inputs 1
High Slew Rate: 10 V/µs
VEE
Power Bandwidth: 160 kHz
1
8
2
7
3
–
+
–
+
4
6
VCC
Output 2
Inputs 2
5
(Top View)
Excellent Frequency Stability
Unity Gain Stable: w/Capacitance Loads to 500 pF
Large Output Voltage Swing: +14.1 V/ –14.6 V
QUAD
Low Total Harmonic Distortion: 0.003%
Power Supply Drain Current: 2.15 mA per Amplifier
Single or Split Supply Operation: +3.0 V to +36 V or ±1.5 V to ±18 V
ESD Diodes Provide Added Protection to the Inputs
Device
Dual
MC33272AD
SO–8
MC33272AP
Plastic DIP
Quad
MC33274AD
MC33274AP
1
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
P SUFFIX
PLASTIC PACKAGE
CASE 646
Op Amp
Function
40° to +85°C
85°C
TA = –40°
14
1
ORDERING INFORMATION
Operating
Temperature Range
14
Package
SO–14
Plastic DIP
PIN CONNECTIONS
Output 1
1
14
2
13
Inputs 1
3
VCC
1
4
–
+
Inputs 4
12
4
11
5
10
Inputs 2
6
Output 2
–
+
+
–
2
3
7
+
–
Output 4
9
8
VEE
Inputs 3
Output 3
(Top View)
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
Rev 0
1
MC33272A MC33274A
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCC to VEE
+36
V
VIDR
(Note 1)
V
Input Voltage Range
VIR
(Note 1)
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
–60 to +150
°C
Maximum Power Dissipation
PD
(Note 2)
mW
Supply Voltage
Input Differential Voltage Range
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see Figure 2).
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Figure
Symbol
Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V)
(VCC = +15 V, VEE = –15 V)
TA = +25°C
TA = –40° to +85°C
(VCC = 5.0 V, VEE = 0)
TA = +25°C
3
|VIO|
Average Temperature Coefficient of Input Offset Voltage
RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = –40° to +85°C
3
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
4, 5
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
6
Large Signal Voltage Gain (VO = 0 V to 10 V, RL = 2.0 kΩ)
TA = +25°C
TA = –40° to +85°C
7
Common Mode Rejection (Vin = +13.2 V to –15 V)
Power Supply Rejection
VCC/VEE = +15 V/ –15 V, +5.0 V/ –15 V, +15 V/ –5.0 V
Max
Unit
mV
—
—
0.1
—
1.0
1.8
—
—
2.0
—
2.0
—
—
—
300
—
650
800
—
—
3.0
—
65
80
∆VIO/∆T
µV/°C
IIB
nA
nA
VICR
V
VEE to (VCC –1.8)
AVOL
dB
90
86
100
—
—
—
8, 9, 12
V
VO +
VO –
VO +
VO –
13.4
—
13.4
—
13.9
–13.9
14
–14.7
—
–13.5
—
–14.1
VOL
VOH
—
3.7
—
—
0.2
5.0
13
CMR
80
100
—
14, 15
PSR
80
105
—
+25
–25
+37
–37
—
—
10, 11
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source
Sink
16
Power Supply Current Per Amplifier (VO = 0 V)
(VCC = +15 V, VEE = –15 V)
TA = +25°C
TA = –40° to +85°C
(VCC = 5.0 V, VEE = 0 V)
TA = +25°C
17
2
Typ
|IIO|
Common Mode Input Voltage Range (∆VIO = 5.0 mV, VO = 0 V)
TA = +25°C
Output Voltage Swing (VID = ±1.0 V)
(VCC = +15 V, VEE = –15 V)
RL = 2.0 kΩ
RL = 2.0 kΩ
RL = 10 kΩ
RL = 10 kΩ
(VCC = 5.0 V, VEE = 0 V)
RL = 2.0 kΩ
RL = 2.0 kΩ
Min
dB
dB
ISC
mA
ICC
mA
—
—
2.15
—
2.75
3.0
—
—
2.75
MOTOROLA ANALOG IC DEVICE DATA
MC33272A MC33274A
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Slew Rate
(Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF, AV = +1.0 V)
Gain Bandwidth Product (f = 100 kHz)
AC Voltage Gain (RL = 2.0 kΩ, VO = 0 V, f = 20 kHz)
Figure
Symbol
Min
Typ
Max
Unit
18, 33
SR
8.0
10
—
V/µs
19
GBW
17
24
—
MHz
20, 21, 22
AVO
—
65
—
dB
fU
—
5.5
—
MHz
Unity Gain Frequency (Open Loop)
Gain Margin (RL = 2.0 kΩ, CL = 0 pF)
23, 24, 26
Am
—
12
—
dB
Phase Margin (RL = 2.0 kΩ, CL = 0 pF)
23, 25, 26
φm
—
55
—
Degrees
27
CS
—
–120
—
dB
BWP
—
160
—
kHz
Channel Separation (f = 20 Hz to 20 kHz)
Power Bandwidth (VO = 20 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%)
Total Harmonic Distortion
(RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
28
THD
—
0.003
—
%
Open Loop Output Impedance (VO = 0 V, f = 6.0 MHz)
29
|ZO|
—
35
—
Ω
Differential Input Resistance (VCM = 0 V)
RIN
—
16
—
MΩ
Differential Input Capacitance (VCM = 0 V)
CIN
—
3.0
—
pF
Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz)
30
en
—
18
—
nV/ √ Hz
Equivalent Input Noise Current (f = 1.0 kHz)
31
in
—
0.5
—
pA/ √ Hz
Figure 1. Equivalent Circuit Schematic
(Each Amplifier)
VCC
Vin
+
–
Vin
+
Sections
B
C
D
VO
+
VEE
MOTOROLA ANALOG IC DEVICE DATA
3
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Offset Voltage versus
Temperature for Typical Units
5.0
2400
V IO , INPUT OFFSET VOLTAGE (mV)
P D (MAX), MAXIMUM POWER DISSIPATION (mW)
MC33272A MC33274A
2000
MC33272P & MC33274P
1600
MC33274D
1200
800
MC33272D
400
0
–60 –40 –20
0
20
40
60
2
1. VIO > 0 @ 25°C
2. VIO = 0 @ 25°C
3. VIO < 0 @ 25°C
–3.0
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Input Bias Current versus
Common Mode Voltage
Figure 5. Input Bias Current
versus Temperature
I IB, INPUT BIAS CURRENT (nA)
350
300
250
200
150
VCC = +15 V
VEE = –15 V
TA = 25°C
100
50
–12
–8.0
–4.0
0
4.0
8.0
12
500
100
125
100
125
400
300
200
100
0
–55
16
VCC = +15 V
VEE = –15 V
VCM = 0 V
–25
VCC
VCC
VCC –1.0
VCC –1.5
VCC –2.0
VCC = +5.0 V to +18 V
VEE = –5.0 V to –18 V
∆VIO = 5.0 mV
VO = 0 V
VEE +1.0
VEE +0.5
VEE
–55
VEE
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
25
50
75
Figure 7. Open Loop Voltage Gain
versus Temperature
100
125
A VOL, OPEN LOOP VOLTAGE GAIN (X 1.0 kV/V)
Figure 6. Input Common Mode Voltage
Range versus Temperature
VCC –0.5
0
TA, AMBIENT TEMPERATURE (°C)
VCM, COMMON MODE VOLTAGE (V)
V ICR, INPUT COMMON MODE VOLTAGE RANGE (V)
2
1
3
–1.0
600
0
–16
4
3
1
TA, AMBIENT TEMPERATURE (°C)
400
I IB, INPUT BIAS CURRENT (nA)
1.0
–5.0
–55
80 100 120 140 160 180
VCC = +15 V
VEE = –15 V
VCM = 0 V
3.0
180
160
140
120
100
–55
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
f = 10 Hz
∆VO = –10 V to +10 V
–25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
MC33272A MC33274A
Figure 9. Split Supply Output Saturation
Voltage versus Load Current
V sat , OUTPUT SATURATION VOLTAGE (V)
Figure 8. Split Supply Output Voltage Swing
versus Supply Voltage
VO, OUTPUT VOLTAGE (Vpp )
40
TA = 25°C
30
RL = 10 kΩ
20
RL = 2.0 kΩ
10
0
0
5.0
10
15
VCC
Source
VCC –1.0
TA = –55°C
TA = 125°C
VCC –2.0
TA = 25°C
VEE +2.0
Sink
VEE +1.0
TA = 125°C
TA = 25°C
TA = –55°C
VCC = +5.0 V to +18 V
VEE = –5.0 V to –18 V
VEE
20
0
5.0
VCC, VEE SUPPLY VOLTAGE (V)
TA = 125°C
VCC
VCC –4.0
VCC = +5.0 V to +18 V
RL to Gnd
VEE = Gnd
TA = 55°C
VCC –8.0
VCC –12
+0.2
TA = 125°C
TA = +25°C
TA = –55°C
+0.1
Gnd
0
100
1.0 k
10 k
100 k
TA = 125°C
14.6
TA = 25°C
14.2
1.0 M
TA = 55°C
8.0
TA = 25°C
4.0
TA = –55°C
10
100
CMR, COMMON MODE REJECTION (dB)
VO, OUTPUT VOLTAGE (Vpp )
1.0 k
10 k
100 k
Figure 13. Common Mode Rejection
versus Frequency
24
20
16
0
1.0 k
VCC = +15 V
RL to VCC
VEE = Gnd
RFdbk = 100 kΩ
RL, LOAD RESISTANCE TO VCC (Ω)
28
4
TA = 125°C
0
Figure 12. Output Voltage versus Frequency
8
20
15
RL , LOAD RESISTANCE TO GROUND (kΩ)
12
15
Figure 11. Single Supply Output Saturation
Voltage versus Load Resistance to VCC
V sat , OUTPUT SATURATION VOLTAGE (V)
V sat , OUTPUT SATURATION VOLTAGE (V)
Figure 10. Single Supply Output Saturation
Voltage versus Load Resistance to Ground
VCC
10
IL, LOAD CURRENT (±mA)
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
AV = +1.0
THD = ≤1.0%
TA = 25°C
120
100
TA = –55°C
TA = 125°C
80
60
–
ADM
+
∆VCM
40
20
CMR = 20Log
VCC = +15 V
VEE = –15 V
VCM = 0 V
∆VCM = ±1.5 V
∆VO
∆VCM
∆VO
X ADM
0
10 k
100 k
1.0 M
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
1 0M
10
100
1.0 k
10 k
100 k
1.0 M
f, FREQUENCY (Hz)
5
MC33272A MC33274A
Figure 15. Negative Power Supply Rejection
versus Frequency
VCC = +15 V
VEE = –15 V
∆VCC = ±1.5 V
TA = 125°C
100
80
TA = –55°C
60
VCC
–
ADM
+
40
∆VO
VEE
20
∆VO/ADM
∆VCC
+PSR = 20Log
|I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
0
10
100
1.0 k
10 k
100 k
TA = –55°C
80
60
VCC
–
ADM
+
40
∆VO
VEE
20
–PSR = 20Log
10
TA = 125°C
∆VO/ADM
∆VEE
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
Figure 16. Output Short Circuit Current
versus Temperature
Figure 17. Supply Current versus
Supply Voltage
1.0 M
11
VCC = +15 V
VEE = –15 V
VID = ±1.0 V
RL < 100 Ω
50
Sink
40
Source
Sink
30
Source
20
10
0
–55
–25
0
25
50
75
100
9.0
TA = +25°C
8.0
TA = –55°C
7.0
6.0
5.0
3.0
125
0
2.0
4.0
6.0
8.0
10
12
14
16
VCC, |VEE| , SUPPLY VOLTAGE (V)
Figure 18. Normalized Slew Rate
versus Temperature
Figure 19. Gain Bandwidth Product
versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz)
–
∆Vin
+
2.0 kΩ
VO
100 pF
1.0
VCC = +15 V
VEE = –15 V
∆Vin = 20 V
0.95
0.9
0.85
–55
TA = +125°C
TA, AMBIENT TEMPERATURE (°C)
1.1
1.05
10
4.0
1.15
SR, SLEW RATE (NORMALIZED)
∆VCC = ±1.5 V
VCC = +15 V
VEE = –15 V
100
f, FREQUENCY (Hz)
60
6
120
0
1 .0 M
I CC , SUPPLY CURRENT (mA)
+PSR, POWER SUPPLY REJECTION (dB)
120
–PSR, POWER SUPPLY REJECTION (dB)
Figure 14. Positive Power Supply Rejection
versus Frequency
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
18
20
50
VCC = +15 V
VEE = –15 V
f = 100 kHz
RL = 2.0 kΩ
CL = 0 pF
40
30
20
10
0
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
MOTOROLA ANALOG IC DEVICE DATA
MC33272A MC33274A
80
25
80
20
100
20
100
140
Phase
5.0
160
0
180
–5.0
200
–15
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
TA = 25°C
220
240
260
–20
1.0 M
280
100 M
10 M
200
1B
220
–10 1A — Phase V = 18 V, V = –18 V
CC
EE
–15 2A — Phase VCC = 1.5 V, VEE = –1.5 V 2B
1B — Gain V = 18 V, V = –18 V
–20 2B — Gain VCC = 1.5 V, VEE = –1.5 V
CC
EE
–25
100 k
1.0 M
10 M
240
100 M
Figure 23. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
10
140
1A
160
2A
0
180
VCC = +15 V
VEE = –15 V
–10 Vout = 0 V
TA = 25°C
1A — Phase (RL = 2.0 kΩ)
–20 2A — Phase (RL = 2.0 kΩ, CL = 300 pF)
1B — Gain (RL = 2.0 kΩ)
2B — Gain (RL = 2.0 kΩ, CL = 300 pF)
–30
3.0
4.0
6.0
8.0 10
200
1B
220
2B
240
260
280
20
0
12
100
Gain Margin
10
10
VCC = +15 V
VEE = –15 V
VO = 0 V
8.0
6.0
Vin
20
30
–
VO
+
2.0 kΩ
4.0
CL
40
50
2.0
Phase Margin
0
1.0
30
10
f, FREQUENCY (MHz)
100
1000
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 24. Open Loop Gain Margin
versus Temperature
Figure 25. Phase Margin versus Temperature
12
60
CL = 10 pF
8.0
CL = 100 pF
6.0
CL = 300 pF
φm, PHASE MARGIN (DEGREES)
A m , OPEN LOOP GAIN MARGIN (dB)
180
2A
Figure 22. Open Loop Voltage Gain and
Phase versus Frequency
120
CL = 500 pF
4.0
2.0
0
–55
160
0
f, FREQUENCY (Hz)
20
10
140
f, FREQUENCY (Hz)
φ EXCESS PHASE (DEGREES)
A VOL , OPEN LOOP VOLTAGE GAIN (dB)
–25
100 k
5.0
120
1A
TA = 25°C
CL = 0 pF
10
–5.0
A m , OPEN LOOP GAIN MARGIN (dB)
–10
15
VCC = +15 V
VEE = –15 V
–25
0
25
50
φ m, PHASE MARGIN (DEGREES)
10
120
A V, VOLTAGE GAIN (dB)
Gain
φ, EXCESS PHASE (DEGREES)
25
15
A V, VOLTAGE GAIN (dB)
Figure 21. Gain and Phase
versus Frequency
φ, PHASE (DEGREES)
Figure 20. Voltage Gain and Phase
versus Frequency
75
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
100
125
CL = 10 pF
50
CL = 100 pF
CL = 300 pF
40
30
CL = 500 pF
20
VCC = +15 V
VEE = –15 V
10
0
–55
–25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
7
MC33272A MC33274A
Figure 26. Phase Margin and Gain Margin
versus Differential Source Resistance
A m , GAIN MARGIN (dB)
Phase Margin
40
9.0
VCC = +15 V
VEE = –15 V
RT = R1+R2
VO = 0 V
TA = 25°C
3.0
0
Vin
30
20
–
R1
+
R2
1.0
10
10
VO
100
CS, CHANNEL SEPERATION (dB)
50
12
6.0
160
60
Gain Margin
φ m , PHASE MARGIN (DEGREES)
15
Figure 27. Channel Separation
versus Frequency
0
10 k
1.0 k
Driver Channel
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
∆VOD = 20 Vpp
TA = 25°C
150
140
130
120
110
100
100
1.0 k
10 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
50
|Z O |, OUTPUT IMPEDANCE ( Ω )
AV = +1000
AV = +100
0.1
AV = +10
0.01
e n , INPUT REFERRED NOISE VOLTAGE ( nV/ √ Hz )
0.001
10
AV = +1.0
VO = 2.0 Vpp
TA = 25°C
100
1.0 k
VCC = +15 V
VEE = –15 V
10 k
20
AV = 1000
AV = 100
10
AV = 1.0
AV = 10
100 k
1.0 M
10 M
Figure 30. Input Referred Noise Voltage
versus Frequency
Figure 31. Input Referred Noise Current
versus Frequency
–
30
VO
Input Noise Voltage
Test Circuit
20
8
30
f, FREQUENCY (Hz)
40
VCC = +15 V
VEE = –15 V
TA = 25°C
10
40
f, FREQUENCY (Hz)
+
0
VCC = +15 V
VEE = –15 V
VO = 0 V
TA = 25°C
0
10 k
100 k
50
10
1.0 M
Figure 29. Output Impedance versus Frequency
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
i n , INPUT REFERRED NOISE CURRENT ( pA/ √ Hz )
THD, TOTAL HARMONIC DISTORTION (%)
Figure 28. Total Harmonic Distortion
versus Frequency
1.0
100 k
f, FREQUENCY (Hz)
2.0
Input Noise Current Circuit
1.8
+
1.6
RS
1.4
–
VO
1.2
(RS = 10 kΩ)
1.0
0.8
0.6
VCC = +15 V
VEE = –15 V
TA = 25°C
0.4
0.2
0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
MOTOROLA ANALOG IC DEVICE DATA
MC33272A MC33274A
Figure 32. Percent Overshoot versus
Load Capacitance
PERCENT OVERSHOOT (%)
60
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
TA = 25°C
50
40
30
20
10
0
10
100
CL, LOAD CAPACITANCE (pF)
Figure 34. Noninverting Amplifier Overshoot
for the MC33274
V O, OUTPUT VOLTAGE (5.0 V/DIV)
V O, OUTPUT VOLTAGE (5.0 V/DIV)
Figure 33. Noninverting Amplifier Slew Rate
for the MC33274
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 2.0 kΩ
CL = 100 pF
TA = 25°C
t, TIME (2.0 µs/DIV)
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 2.0 kΩ
TA = 25°C
CL = φ
Figure 36. Large Signal Transient Response
for MC33274
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 2.0 kΩ
CL = 300 pF
TA = 25°C
V O, OUTPUT VOLTAGE (5.0 V/DIV)
V O, OUTPUT VOLTAGE (50 mV/DIV)
CL = 100 pF
t, TIME (2.0 ns/DIV)
Figure 35. Small Signal Transient Response
for MC33274
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 2.0 kΩ
CL = 300 pF
TA = 25°C
1.0 k
t, TIME (2.0 µs/DIV)
MOTOROLA ANALOG IC DEVICE DATA
t, TIME (1.0 µs/DIV)
9
MC33272A MC33274A
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
DIM
A
B
C
D
F
G
H
J
K
L
M
N
F
–A–
NOTE 2
L
C
J
–T–
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
N
SEATING
PLANE
D
M
K
G
H
0.13 (0.005)
T A
M
B
M
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
10
M
C B
S
A
S
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
MOTOROLA ANALOG IC DEVICE DATA
MC33272A MC33274A
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
F
–T–
D 14 PL
0.25 (0.010)
M
K
M
T B
S
MOTOROLA ANALOG IC DEVICE DATA
M
R X 45 _
C
SEATING
PLANE
B
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
11
MC33272A MC33274A
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*MC33272A/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC33272A/D
WWW.ALLDATASHEET.COM
Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.
This datasheet has been download from :
www.AllDataSheet.com
100% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com