STMICROELECTRONICS LM258

LM158,A-LM258,A
LM358,A
LOW POWER DUAL OPERATIONAL AMPLIFIERS
■ INTERNALLY FREQUENCY COMPENSATED
■ LARGE DC VOLTAGE GAIN: 100dB
■ WIDE BANDWIDTH (unity gain): 1.1MHz
(temperature compensated)
■ VERY LOW SUPPLY CURRENT/OP (500µA)
■
■
■
■
■
■
ESSENTIALLY INDEPENDENT OF SUPPLY
VOLTAGE
LOW INPUT BIAS CURRENT: 20nA
(temperature compensated)
LOW INPUT OFFSET VOLTAGE: 2mV
LOW INPUT OFFSET CURRENT: 2nA
INPUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND
DIFFERENTIAL INPUT VOLTAGE RANGE
EQUAL TO THE POWER SUPPLY VOLTAGE
LARGE OUTPUT VOLTAGE SWING 0V TO
(Vcc - 1.5V)
N
DIP8
(Plastic Package)
D&S
SO8 & miniSO8
(Plastic Micropackage)
DESCRIPTION
These circuits consist of two independent, high
gain, internally frequency compensated which
were designed specifically to operate from a single power supply over a wide range of voltages.
The low power supply drain is independent of the
magnitude of the power supply voltage.
Application areas include transducer amplifiers,
dc gain blocks and all the conventional op-amp
circuits which now can be more easily implemented in single power supply systems. For example,
these circuits can be directly supplied with the
standard +5V which is used in logic systems and
will easily provide the required interface electronics without requiring any additional power supply.
Inthe linear mode the input common-mode voltage
range includes ground and the output voltage can
also swing to ground, even though operated from
only a single power supply voltage.
P
TSSOP8
(Thin Shrink Small Outline Package)
ORDER CODE
Part
Number
Temperature
Range
LM158,A
-55°C, +125°C
LM258,A
-40°C, +105°C
LM358,A
0°C, +70°C
Example : LM258N
Package
N
•
•
•
S
D
P
•
•
•
•
•
•
•
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
S = Small Outline Package (miniSO) only available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape
&Reel (PT)
PIN CONNECTIONS (top view)
1
2
-
3
+
4
July 2003
8
7
-
6
+
5
1
2
3
4
5
6
7
8
- Output 1
- Inverting input
- Non-inverting input
- VCC- Non-inverting input 2
- Inverting input 2
- Output 2
- VCC+
1/12
LM158,A-LM258,A-LM358,A
SCHEMATIC DIAGRAM (1/2 LM158)
V CC
6µA
4µA
100µA
Q5
Q6
CC
Q3
Q2
Inverting
input
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q12
Q9
50µA
GND
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Parameter
LM158,A
LM258,A
LM358,A
Unit
Supply voltage
+/-16 or 32
Vi
Input Voltage
-0.3 to +32
V
Vid
Differential Input Voltage
+32
V
Ptot
Power Dissipation 1)
500
mW
Output Short-circuit Duration
Iin
Input Current
2)
Opearting Free-air Temperature Range
Tstg
Storage Temperature Range
1.
2.
3.
2/12
Infinite
3)
Toper
V
50
-55 to +125
-40 to +105
-65 to +150
mA
0 to +70
°C
°C
Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.
Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent
of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP
transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on
the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive)
for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.
LM158,A-LM258,A-LM358,A
ELECTRICAL CHARACTERISTICS
VCC+ = +5V, VCC-= Ground, V o = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol
Parameter
LM158A-LM258A
LM358A
Min.
Vio
Input Offset Voltage - note 1)
Tamb = +25°C
LM158, LM258
LM158A
Tmin ≤ Tamb ≤ Tmax
LM158, LM258
Typ.
Max.
1
3
LM158-LM258
LM358
Min.
Typ.
Max.
2
7
5
2
4
Unit
mV
9
7
Iio
Input Offset Current
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
2
10
30
2
30
40
nA
Iib
Input Bias Current - note 2)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
20
50
100
20
150
200
nA
Avd
Large Signal Voltage Gain
VCC = +15V, R L = 2kΩ, Vo = 1.4V to 11.4V
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
50
25
100
50
25
100
65
65
100
65
65
100
V/mV
Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)
SVR
ICC
VCC+ = 5V to 30V
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
Supply Current, all Amp, no load
Tmin ≤ Tamb ≤ Tmax
VCC = +5V
Tmin ≤ Tamb ≤ Tmax
VCC = +30V
0.7
Input Common Mode Voltage Range
VCC = +30V - note 3)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
0
0
CMR
Common Mode Rejection Ratio (Rs ≤ 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
70
60
85
Isource
Output Current Source
VCC = +15V, Vo = +2V, Vid = +1V
20
40
Output Sink Current (Vid = -1V)
VCC = +15V, Vo = +2V
VCC = +15V, Vo = +0.2V
10
12
20
50
Output Voltage Swing ( RL = 2kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
0
0
Vicm
Isink
VOPP
1.2
1
VCC+ -1.5
VCC+ -2
60
VCC+ -1.5
VCC+ -2
0.7
0
0
1.2
2
mA
VCC+ -1.5
V
VCC+ -2
70
60
85
20
40
10
12
20
50
0
0
dB
dB
60
mA
mA
µA
VCC+ -1.5
VCC+ -2
3/12
LM158,A-LM258,A-LM358,A
Symbol
VOH
LM158A-LM258A
LM358A
Parameter
High Level Output Voltage (VCC+ = 30V)
Tamb = +25°C
RL = 2kΩ
Tmin ≤ Tamb ≤ Tmax
Tamb = +25°C
RL = 10kΩ
Tmin ≤ Tamb ≤ Tmax
Min.
Typ.
26
26
27
27
27
LM158-LM258
LM358
Max.
28
Min.
Typ.
26
26
27
27
27
Low Level Output Voltage (RL = 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
SR
Slew Rate
VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ,
CL = 100pF, unity Gain
0.3
0.6
0.3
0.6
Gain Bandwidth Product
VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ,
CL = 100pF
0.7
1.1
0.7
1.1
GBP
THD
Total Harmonic Distortion
f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp,
CL = 100pF, VO = 2Vpp
20
20
Max.
V
28
VOL
5
Unit
5
20
20
mV
V/µs
MHz
%
0.02
0.02
Equivalent Input Noise Voltage
f = 1kHz, Rs = 100Ω, VCC = 30V
55
55
DVio
Input Offset Voltage Drift
7
15
7
30
µV/°C
DIIio
Input Offset Current Drift
10
200
10
300
pA/°C
en
4)
Vo1/Vo2 Channel Separation - note
1kHz ≤ f ≤ 20kHZ
1.
2.
3.
4.
120
dB
120
Vo = 1.4V, Rs = 0Ω, 5V < VCC + < 30V, 0 < Vic < V CC+ - 1.5V
The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change
exists on the input lines.
The input common-mode voltage of either
input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the
common-mode voltage range is VCC + - 1.5V, but either or both inputs can go to +32V without damage.
Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically
can be detected as this type of capacitance increases at higher frequences.
OPEN LOOP FREQUENCY RESPONSE (NOTE 3)
LARGE SIGNAL FREQUENCY RESPONSE
20
140
0.1m F
100
VCC
-
VI
VCC/2
80
VO
+
VCC = 30V &
-55°C Tamb
60
100k W
10M W
+125°C
40
20
0
VCC = +10 to + 15V &
-55°C Tamb +125°C
1.0
10
100
1k
OUTPUT SWING (Vpp)
VOLTAGE GAIN (dB)
120
1k W
15
-
+15V
VO
VI
+7V
+
2k W
10
5
0
10k
100k
FREQUENCY (Hz)
4/12
nV
-----------Hz
1M
10M
1k
10k
100k
FREQUENCY (Hz)
1M
LM158,A-LM258,A-LM358,A
VOLAGE FOLLOWER PULSE RESPONSE
OUTPUT CHARACTERISTICS
10
RL 2 k W
VCC = +15V
3
OUTPUT VOLTAGE (V)
OUTPUT
VOLTAGE (V)
4
2
1
INPUT
VOLTAGE (V)
0
3
2
1
VCC = +5V
VCC = +15V
VCC = +30V
1
0.1
IO
10
20
30
40
Tamb = +25°C
0,001
eO
-
50pF
400
Input
350
Output
300
Tamb = +25°C
VCC = 30 V
250
0
1
2
3
4
5
1
10
100
6
7
OUTPUT CHARACTERISTICS
V CC
7
6
+
V CC /2
5
VO
IO
-
4
Independent of V CC
3
T amb = +25°C
2
1
0,001 0,01
8
0,1
1
10
100
OUTPUT SOURCE CURRENT (mA)
TIME (m s)
CURRENT LIMITING (Note 1)
INPUT CURRENT (Note 1)
90
90
80
OUTPUT CURRENT (mA)
VI = 0 V
70
VCC = +30 V
60
50
VCC = +15 V
40
30
VCC = +5 V
20
-
80
IO
70
60
+
50
40
30
20
10
10
-55 -35
0,1
8
TO VCC+ (V)
+
OUTPUT VOLTAGE REFERENCED
OUTPUT VOLTAGE (mV)
500
el
0,01
OUTPUT SINK CURRENT (mA)
VOLTAGE FOLLOWER PULSSE RESPONSE
(SMALL SIGNAL)
450
VO
+
TIME (m s)
INPUT CURRENT (mA)
-
0.01
0
0
v cc
v cc /2
0
-15
5
25
45
65
85 105
TEMPERATURE (°C)
125
-55 -35
-15
5
25
45
65
85 105
125
TEMPERATURE (°C)
5/12
LM158,A-LM258,A-LM358,A
INPUT VOLTAGE RANGE
SUPPLY CURRENT
4
VCC
10
SUPPLY CURRENT (mA)
INPUT VOLTAGE (V)
15
Négative
Positive
5
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
0
5
10
0
15
R L = 20k W
INPUT CURRENT (nA)
VOLTAGE GAIN (dB)
30
100
160
120
R L = 2k W
80
40
0
10
20
30
40
R L = 20k W
120
R L = 2k W
80
40
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
GAIN BANDWIDTH PRODUCT (MHz)
160
75
50
25
Tamb= +25°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
POSITIVE SUPPLY VOLTAGE (V)
VOLTAGE GAIN (dB)
20
POSITIVE SUPPLY VOLTAGE (V)
POWER SUPPLY VOLTAGE (±V)
6/12
10
1.5
1.35
1.2
1.05
0.9
0.75
VCC =
15V
0.6
0.45
0.3
0.15
0
-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
COMMON MODE REJECTION RATIO (dB)
POWER SUPPLY REJECTION RATIO (dB)
LM158,A-LM258,A-LM358,A
115
110
SVR
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
115
110
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
TYPICAL APPLICATIONS (single supply voltage) Vcc = +5Vdc
AC COUPLED INVERTING AMPLIFIER
Rf
100k W
CI
R1
100kW
Rf
R1
(as shown A V = -10)
R1
10kW
1/2
LM158
eI ~
R2
VCC 100k W
AV= -
AC COUPLED NON-INVERTING AMPLIFIER
RB
6.2kW
R3
100kW
2VPP
Co
1/2
LM158
CI
RL
10k W
R3
1M W
eI ~
2VPP
0
eo
RB
6.2kW
RL
10k W
R4
100kW
VCC
C1
10m F
C2
10m F
NON-INVERTING DC AMPLIFIER
R5
100kW
DC SUMMING AMPLIFIER
e1
100kW
A V = 1 + R2
R1
(As shown A V = 101)
10k W
R2
1M W
eO
100kW
+5V
e2
100k W
e3
100kW
e O (V)
1/2
LM158
R1
10k W
A = 1 + R2
V
R1
(as shown A V = 11)
C1
0.1m F
Co
0
eo
R2
1MW
1/2
LM158
eO
100kW
e4
0
e I (mV)
100kW
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
7/12
LM158,A-LM258,A-LM358,A
HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER
R4
100kW
R2
100kW
R1
100kW
1/2
LM158
USING SYMMETRICAL AMPLIFIERS TO
REDUCE INPUT CURRENT
I
eI
R3
100kW
1/2
LM158
+V1
+V2
IB
I
IB
1/2
LM158
eo
2N 929
Vo
0.001m F
IB
IB
if R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2 R 1 ] ( (e2 + e1)
----------R2
1/2
LM158
3MW
Input current compensation
IB
As shown eo = 101 (e2 + e1)
1.5MW
HIGH INPUT Z ADJUSTABLE GAIN DC
INSTRUMENTATION AMPLIFIER
LOW DRIFT PEAK DETECTOR
R1
100k W
e1
R2
2k W
R3
100k W
1/2
LM158
R4
100k W
1/2
LM158
Gain adjust
IB
eO
C
eI
1/2
LM158
IB
1/2
LM158
R5
100k W
R6
100k W
R7
100k W
1m F
ZI
2N 929
0.001m F
IB
2IB
R
1MW
3R
3MW
IB
As shown eo = 101 (e2 + e1)
ACTIVE BAND-PASS FILTER
R1
100kW
C1
330pF
R2
100kW
+V1
1/2
LM158
R5
470kW
R4
10MW
1/2
LM158
C2
R3
100kW
330 pF
R6
470kW
Vo
1/2
LM158
R7
100kW
VCC
R8
100kW
8/12
C3
10m F
eo
Zo
2I B
e2
if R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2 R 1 ] ( (e2 + e1)
----------R2
1/2
LM158
1/2
LM158
Input current
compensation
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Millimeters
Inches
Dim.
Min.
A
a1
B
b
b1
D
E
e
e3
e4
F
i
L
Z
Typ.
Max.
Min.
3.32
0.51
1.15
0.356
0.204
0.020
0.045
0.014
0.008
0.065
0.022
0.012
0.430
0.384
0.313
2.54
7.62
7.62
3.18
Max.
0.131
1.65
0.55
0.304
10.92
9.75
7.95
Typ.
0.100
0.300
0.300
6.6
5.08
3.81
1.52
0.125
0260
0.200
0.150
0.060
9/12
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE ( miniSO )
k
0,25 mm
.010 inch
GAGE PLANE
C
SEATING
PLANE
E1
L1
L
c
A
E
A2
A1
4
8
1
e
C
ccc
b
D
5
PIN 1 IDENTIFICATION
Dim.
A
A1
A2
b
c
D
E
E1
e
L
L1
k
ccc
10/12
Millimeters
Min.
Typ.
0.050
0.780
0.250
0.130
2.900
4.750
2.900
0.100
0.860
0.330
0.180
3.000
4.900
3.000
0.650
0.550
0.950
3d
0.400
0d
Inches
Max.
Min.
Typ.
1.100
0.150
0.940
0.400
0.230
3.100
5.050
3.100
0.002
0.031
0.010
0.005
0.114
0.187
0.114
0.700
0.016
6d
0.100
0d
0.004
0.034
0.013
0.007
0.118
0.193
0.118
0.026
0.022
0.037
3d
Max.
0.043
0.006
0.037
0.016
0.009
0.122
0.199
0.122
0.028
6d
0.004
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
s
b1
b
a1
A
a2
C
c1
a3
L
E
e3
D
M
5
1
4
F
8
Millimeters
Inches
Dim.
Min.
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Typ.
Max.
0.65
0.35
0.19
0.25
1.75
0.25
1.65
0.85
0.48
0.25
0.5
4.8
5.8
5.0
6.2
0.1
Min.
Typ.
Max.
0.026
0.014
0.007
0.010
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.189
0.228
0.197
0.244
0.004
45° (typ.)
1.27
3.81
3.8
0.4
0.050
0.150
4.0
1.27
0.6
0.150
0.016
0.157
0.050
0.024
8° (max.)
11/12
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA
8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
k
c
0.25mm
.010 inch
GAGE PLANE
L1
L
L
L1
C
SEATING
PLANE
E1
A
E
A2
A1
5
4
4
5
D
b
e
8
1
8
1
PIN 1 IDENTIFICATION
Millimeters
Inches
Dim.
Min.
A
A1
A2
b
c
D
E
E1
e
k
l
L
L1
0.05
0.80
0.19
0.09
2.90
4.30
0°
0.50
0.45
Typ.
1.00
3.00
6.40
4.40
0.65
0.60
0.600
1.000
Max.
Min.
1.20
0.15
1.05
0.30
0.20
3.10
0.01
0.031
0.007
0.003
0.114
4.50
0.169
8°
0.75
0.75
0°
0.09
0.018
Typ.
0.039
0.118
0.252
0.173
0.025
0.0236
0.024
0.039
Max.
0.05
0.006
0.041
0.15
0.012
0.122
0.177
8°
0.030
0.030
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
http://www.st.com
12/12