LM158,A-LM258,A LM358,A LOW POWER DUAL OPERATIONAL AMPLIFIERS ■ INTERNALLY FREQUENCY COMPENSATED ■ LARGE DC VOLTAGE GAIN: 100dB ■ WIDE BANDWIDTH (unity gain): 1.1MHz (temperature compensated) ■ VERY LOW SUPPLY CURRENT/OP (500µA) ■ ■ ■ ■ ■ ■ ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE LOW INPUT BIAS CURRENT: 20nA (temperature compensated) LOW INPUT OFFSET VOLTAGE: 2mV LOW INPUT OFFSET CURRENT: 2nA INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE LARGE OUTPUT VOLTAGE SWING 0V TO (Vcc - 1.5V) N DIP8 (Plastic Package) D&S SO8 & miniSO8 (Plastic Micropackage) DESCRIPTION These circuits consist of two independent, high gain, internally frequency compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. Inthe linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. P TSSOP8 (Thin Shrink Small Outline Package) ORDER CODE Part Number Temperature Range LM158,A -55°C, +125°C LM258,A -40°C, +105°C LM358,A 0°C, +70°C Example : LM258N Package N • • • S D P • • • • • • • N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) S = Small Outline Package (miniSO) only available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape &Reel (PT) PIN CONNECTIONS (top view) 1 2 - 3 + 4 July 2003 8 7 - 6 + 5 1 2 3 4 5 6 7 8 - Output 1 - Inverting input - Non-inverting input - VCC- Non-inverting input 2 - Inverting input 2 - Output 2 - VCC+ 1/12 LM158,A-LM258,A-LM358,A SCHEMATIC DIAGRAM (1/2 LM158) V CC 6µA 4µA 100µA Q5 Q6 CC Q3 Q2 Inverting input Q1 Q7 Q4 R SC Q11 Non-inverting input Output Q13 Q10 Q8 Q12 Q9 50µA GND ABSOLUTE MAXIMUM RATINGS Symbol VCC Parameter LM158,A LM258,A LM358,A Unit Supply voltage +/-16 or 32 Vi Input Voltage -0.3 to +32 V Vid Differential Input Voltage +32 V Ptot Power Dissipation 1) 500 mW Output Short-circuit Duration Iin Input Current 2) Opearting Free-air Temperature Range Tstg Storage Temperature Range 1. 2. 3. 2/12 Infinite 3) Toper V 50 -55 to +125 -40 to +105 -65 to +150 mA 0 to +70 °C °C Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. LM158,A-LM258,A-LM358,A ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC-= Ground, V o = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol Parameter LM158A-LM258A LM358A Min. Vio Input Offset Voltage - note 1) Tamb = +25°C LM158, LM258 LM158A Tmin ≤ Tamb ≤ Tmax LM158, LM258 Typ. Max. 1 3 LM158-LM258 LM358 Min. Typ. Max. 2 7 5 2 4 Unit mV 9 7 Iio Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 2 10 30 2 30 40 nA Iib Input Bias Current - note 2) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 20 50 100 20 150 200 nA Avd Large Signal Voltage Gain VCC = +15V, R L = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 50 25 100 50 25 100 65 65 100 65 65 100 V/mV Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR ICC VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Supply Current, all Amp, no load Tmin ≤ Tamb ≤ Tmax VCC = +5V Tmin ≤ Tamb ≤ Tmax VCC = +30V 0.7 Input Common Mode Voltage Range VCC = +30V - note 3) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 CMR Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 70 60 85 Isource Output Current Source VCC = +15V, Vo = +2V, Vid = +1V 20 40 Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 10 12 20 50 Output Voltage Swing ( RL = 2kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 Vicm Isink VOPP 1.2 1 VCC+ -1.5 VCC+ -2 60 VCC+ -1.5 VCC+ -2 0.7 0 0 1.2 2 mA VCC+ -1.5 V VCC+ -2 70 60 85 20 40 10 12 20 50 0 0 dB dB 60 mA mA µA VCC+ -1.5 VCC+ -2 3/12 LM158,A-LM258,A-LM358,A Symbol VOH LM158A-LM258A LM358A Parameter High Level Output Voltage (VCC+ = 30V) Tamb = +25°C RL = 2kΩ Tmin ≤ Tamb ≤ Tmax Tamb = +25°C RL = 10kΩ Tmin ≤ Tamb ≤ Tmax Min. Typ. 26 26 27 27 27 LM158-LM258 LM358 Max. 28 Min. Typ. 26 26 27 27 27 Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax SR Slew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain 0.3 0.6 0.3 0.6 Gain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ, CL = 100pF 0.7 1.1 0.7 1.1 GBP THD Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VO = 2Vpp 20 20 Max. V 28 VOL 5 Unit 5 20 20 mV V/µs MHz % 0.02 0.02 Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, VCC = 30V 55 55 DVio Input Offset Voltage Drift 7 15 7 30 µV/°C DIIio Input Offset Current Drift 10 200 10 300 pA/°C en 4) Vo1/Vo2 Channel Separation - note 1kHz ≤ f ≤ 20kHZ 1. 2. 3. 4. 120 dB 120 Vo = 1.4V, Rs = 0Ω, 5V < VCC + < 30V, 0 < Vic < V CC+ - 1.5V The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC + - 1.5V, but either or both inputs can go to +32V without damage. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. OPEN LOOP FREQUENCY RESPONSE (NOTE 3) LARGE SIGNAL FREQUENCY RESPONSE 20 140 0.1m F 100 VCC - VI VCC/2 80 VO + VCC = 30V & -55°C Tamb 60 100k W 10M W +125°C 40 20 0 VCC = +10 to + 15V & -55°C Tamb +125°C 1.0 10 100 1k OUTPUT SWING (Vpp) VOLTAGE GAIN (dB) 120 1k W 15 - +15V VO VI +7V + 2k W 10 5 0 10k 100k FREQUENCY (Hz) 4/12 nV -----------Hz 1M 10M 1k 10k 100k FREQUENCY (Hz) 1M LM158,A-LM258,A-LM358,A VOLAGE FOLLOWER PULSE RESPONSE OUTPUT CHARACTERISTICS 10 RL 2 k W VCC = +15V 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 4 2 1 INPUT VOLTAGE (V) 0 3 2 1 VCC = +5V VCC = +15V VCC = +30V 1 0.1 IO 10 20 30 40 Tamb = +25°C 0,001 eO - 50pF 400 Input 350 Output 300 Tamb = +25°C VCC = 30 V 250 0 1 2 3 4 5 1 10 100 6 7 OUTPUT CHARACTERISTICS V CC 7 6 + V CC /2 5 VO IO - 4 Independent of V CC 3 T amb = +25°C 2 1 0,001 0,01 8 0,1 1 10 100 OUTPUT SOURCE CURRENT (mA) TIME (m s) CURRENT LIMITING (Note 1) INPUT CURRENT (Note 1) 90 90 80 OUTPUT CURRENT (mA) VI = 0 V 70 VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 - 80 IO 70 60 + 50 40 30 20 10 10 -55 -35 0,1 8 TO VCC+ (V) + OUTPUT VOLTAGE REFERENCED OUTPUT VOLTAGE (mV) 500 el 0,01 OUTPUT SINK CURRENT (mA) VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL) 450 VO + TIME (m s) INPUT CURRENT (mA) - 0.01 0 0 v cc v cc /2 0 -15 5 25 45 65 85 105 TEMPERATURE (°C) 125 -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) 5/12 LM158,A-LM258,A-LM358,A INPUT VOLTAGE RANGE SUPPLY CURRENT 4 VCC 10 SUPPLY CURRENT (mA) INPUT VOLTAGE (V) 15 Négative Positive 5 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 5 10 0 15 R L = 20k W INPUT CURRENT (nA) VOLTAGE GAIN (dB) 30 100 160 120 R L = 2k W 80 40 0 10 20 30 40 R L = 20k W 120 R L = 2k W 80 40 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) GAIN BANDWIDTH PRODUCT (MHz) 160 75 50 25 Tamb= +25°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) POSITIVE SUPPLY VOLTAGE (V) VOLTAGE GAIN (dB) 20 POSITIVE SUPPLY VOLTAGE (V) POWER SUPPLY VOLTAGE (±V) 6/12 10 1.5 1.35 1.2 1.05 0.9 0.75 VCC = 15V 0.6 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) COMMON MODE REJECTION RATIO (dB) POWER SUPPLY REJECTION RATIO (dB) LM158,A-LM258,A-LM358,A 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) TYPICAL APPLICATIONS (single supply voltage) Vcc = +5Vdc AC COUPLED INVERTING AMPLIFIER Rf 100k W CI R1 100kW Rf R1 (as shown A V = -10) R1 10kW 1/2 LM158 eI ~ R2 VCC 100k W AV= - AC COUPLED NON-INVERTING AMPLIFIER RB 6.2kW R3 100kW 2VPP Co 1/2 LM158 CI RL 10k W R3 1M W eI ~ 2VPP 0 eo RB 6.2kW RL 10k W R4 100kW VCC C1 10m F C2 10m F NON-INVERTING DC AMPLIFIER R5 100kW DC SUMMING AMPLIFIER e1 100kW A V = 1 + R2 R1 (As shown A V = 101) 10k W R2 1M W eO 100kW +5V e2 100k W e3 100kW e O (V) 1/2 LM158 R1 10k W A = 1 + R2 V R1 (as shown A V = 11) C1 0.1m F Co 0 eo R2 1MW 1/2 LM158 eO 100kW e4 0 e I (mV) 100kW eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V 7/12 LM158,A-LM258,A-LM358,A HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER R4 100kW R2 100kW R1 100kW 1/2 LM158 USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT I eI R3 100kW 1/2 LM158 +V1 +V2 IB I IB 1/2 LM158 eo 2N 929 Vo 0.001m F IB IB if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2 R 1 ] ( (e2 + e1) ----------R2 1/2 LM158 3MW Input current compensation IB As shown eo = 101 (e2 + e1) 1.5MW HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER LOW DRIFT PEAK DETECTOR R1 100k W e1 R2 2k W R3 100k W 1/2 LM158 R4 100k W 1/2 LM158 Gain adjust IB eO C eI 1/2 LM158 IB 1/2 LM158 R5 100k W R6 100k W R7 100k W 1m F ZI 2N 929 0.001m F IB 2IB R 1MW 3R 3MW IB As shown eo = 101 (e2 + e1) ACTIVE BAND-PASS FILTER R1 100kW C1 330pF R2 100kW +V1 1/2 LM158 R5 470kW R4 10MW 1/2 LM158 C2 R3 100kW 330 pF R6 470kW Vo 1/2 LM158 R7 100kW VCC R8 100kW 8/12 C3 10m F eo Zo 2I B e2 if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2 R 1 ] ( (e2 + e1) ----------R2 1/2 LM158 1/2 LM158 Input current compensation LM158,A-LM258,A-LM358,A PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP Millimeters Inches Dim. Min. A a1 B b b1 D E e e3 e4 F i L Z Typ. Max. Min. 3.32 0.51 1.15 0.356 0.204 0.020 0.045 0.014 0.008 0.065 0.022 0.012 0.430 0.384 0.313 2.54 7.62 7.62 3.18 Max. 0.131 1.65 0.55 0.304 10.92 9.75 7.95 Typ. 0.100 0.300 0.300 6.6 5.08 3.81 1.52 0.125 0260 0.200 0.150 0.060 9/12 LM158,A-LM258,A-LM358,A PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE ( miniSO ) k 0,25 mm .010 inch GAGE PLANE C SEATING PLANE E1 L1 L c A E A2 A1 4 8 1 e C ccc b D 5 PIN 1 IDENTIFICATION Dim. A A1 A2 b c D E E1 e L L1 k ccc 10/12 Millimeters Min. Typ. 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d 0.400 0d Inches Max. Min. Typ. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.700 0.016 6d 0.100 0d 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004 LM158,A-LM258,A-LM358,A PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) s b1 b a1 A a2 C c1 a3 L E e3 D M 5 1 4 F 8 Millimeters Inches Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S Typ. Max. 0.65 0.35 0.19 0.25 1.75 0.25 1.65 0.85 0.48 0.25 0.5 4.8 5.8 5.0 6.2 0.1 Min. Typ. Max. 0.026 0.014 0.007 0.010 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 45° (typ.) 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 8° (max.) 11/12 LM158,A-LM258,A-LM358,A PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) k c 0.25mm .010 inch GAGE PLANE L1 L L L1 C SEATING PLANE E1 A E A2 A1 5 4 4 5 D b e 8 1 8 1 PIN 1 IDENTIFICATION Millimeters Inches Dim. Min. A A1 A2 b c D E E1 e k l L L1 0.05 0.80 0.19 0.09 2.90 4.30 0° 0.50 0.45 Typ. 1.00 3.00 6.40 4.40 0.65 0.60 0.600 1.000 Max. Min. 1.20 0.15 1.05 0.30 0.20 3.10 0.01 0.031 0.007 0.003 0.114 4.50 0.169 8° 0.75 0.75 0° 0.09 0.018 Typ. 0.039 0.118 0.252 0.173 0.025 0.0236 0.024 0.039 Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177 8° 0.030 0.030 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com 12/12