STMICROELECTRONICS LM2902

LM2902
LOW POWER QUAD OPERATIONAL AMPLIFIER
■ WIDE GAIN BANDWIDTH: 1.3MHz
■ INPUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND
■ LARGE VOLTAGE GAIN: 100dB
■ VERY LOW SUPPLY CURRENT/AMPLI:
375µA
■ LOW INPUT BIAS CURRENT: 20nA
■ LOW INPUT OFFSET CURRENT:2nA
■ WIDE POWER SUPPLY RANGE:
N
DIP14
(Plastic Package)
SINGLE SUPPLY: +3V TO +30V
DUAL SUPPLIES: ±1.5V TO ±15V
DESCRIPTION
This circuit consists of four independent, high
gain, internally frequency compensated operational amplifiers which were designed specially for automotive and industrial control systems. It operates from a single power supply over a wide range
of voltages. Operation from split power supplies is
also possible and the low power supply current
drain is independent of the magnitude of the power supply voltage.
D
SO14
(Plastic Micropackage)
ORDER CODE
Part
Number
LM2902
Package
Temperature
Range
-40°C, +125°C
N
D
P
•
•
•
P
TSSOP14
(Thin Shrink Small Outline Package)
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available
in Tape & Reel (PT)
PIN CONNECTIONS (top view)
14 Output 4
Output 1 1
Inverting Input 1 2
-
-
13 Inverting Input 4
Non-inverting Input 1 3
+
+
12 Non-inverting Input 4
11 VCC -
VCC + 4
Non-inverting Input 2
5
+
+
10 Non-inverting Input 3
Inverting Input 2
6
-
-
9
Inverting Input 3
8
Output 3
Output 2 7
November 2001
1/11
LM2902
SCHEMATIC DIAGRAM (1/4 LM2902)
V CC
6µA
4µA
100µA
Q5
Q6
CC
Inverting
input
Q3
Q2
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q9
Q12
50mA
GND
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VCC
Supply Voltage
Vid
Differential Input Voltage
VI
Input Voltage
ptot
Output Short-circuit to Ground 1)
Power Dissipation
N Suffix
D Suffix
Iin
Input Current 2)
Value
Unit
±16 to 32
V
+32
V
-0.3 to +32
V
Infinite
500
400
mW
50
mA
Toper
Operating Free-Air Temperature Range
-40 to +125
°C
Tstg
Storage Temperature Range
-65 to +150
°C
1.
2.
2/11
Short-circuit from the output to VCC can cause excessive heating if V CC > 15V. The maximum output current is approximately 40mA independent of
the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP
transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on
the IC chip. This transistor action can cause the output voltages of the Op-Amps to go to the VCC voltage level (or to ground for a large overdrive)
for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
LM2902
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, V cc- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Vio
Input Offset Voltage 1)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
2
7
9
mV
Iio
Input Offset Current
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
2
30
40
nA
Iib
Input Bias Current 2)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
20
150
300
nA
Avd
Large Signal Voltage Gain
VCC+ = +15V,RL=2kΩ, Vo = 1.4V to 11.4V
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
50
25
100
SVR
Supply Voltage Rejection Ratio (RS ≤10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
65
65
110
Icc
Supply Current, all Amp, no load
VCC = +5V
Tamb = +25°C
VCC = +30V
Tmin ≤ Tamb ≤ Tmax.
VCC = +5V
VCC = +30V
0.7
1.5
0.8
1.5
Vicm
Input Common Mode Voltage Range (Vcc= +30V)3)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
0
0
CMR
Common-mode Rejection Ratio (RS ≤10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax.
70
60
80
Output Short-circuit Current (Vid = +1V)
VCC = +15V, Vo = +2V
20
40
Isink
Output Sink Current (Vid = -1V)
VCC = +15V, Vo = +2V
VCC = +15V, Vo = +0.2V
10
12
20
50
26
26
27
27
27
VOH
High Level Output Voltage (Vcc + 30V)
Tamb = +25°C
RL = 2kΩ
Tmin ≤ Tamb ≤ Tmax.
Tamb = +25°C
RL = 10kΩ
Tmin ≤ Tamb ≤ Tmax.
(Vcc + 5V), RL = 2kΩ
Tmin ≤ Tamb ≤ Tmax.
Tamb = +25°C
IO
VOL
Low Level Output Voltage (RL = 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
SR
Slew Rate
Vcc = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF,
unity gain
V/mV
dB
1.2
3
1.2
3
VCC -1.5
VCC -2
mA
V
dB
70
mA
mA
µA
28
V
3.5
3
5
20
20
mV
V/µs
0.4
3/11
LM2902
Symbol
Parameter
GBP
Gain Bandwidth Product
Vcc = 30V,Vin = 10mV, RL = 2kΩ, CL = 100pF
THD
Total Harmonic Distortion
f = 1kHz, AV = 20dB, RL = 2kΩ, Vo = 2Vpp,
CL = 100pF, Vcc = 30V
Min.
Typ.
Max.
Unit
MHz
1.3
%
0.015
nV
-----------Hz
Equivalent Input Noise Voltage
f = 1kHz, RS = 100Ω, Vcc = 30V
40
DVio
Input Offset Voltage Drift
7
30
µV/°C
DIio
Input Offset Current Drift
10
200
pA/°C
Channel Separation 4)
1kHz ≤ f ≤ 20kHz
120
en
VO1/VO2
1.
2.
3.
4.
VO = 1.4V, RS = 0Ω, 5V < VCC+ < 30V, 0V < Vic < VCC+ - 1.5V
The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so no loading charge
change exists on the input lines
The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the
common-mode voltage range is VCC+ –1.5V, but either or both inputs can go to +32V without damage.
Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically
can be detected as this type of capacitance increases at higher frequences.
INPUT VOLTAGE RANGE
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
24
21
18
15
12
9
6
3
0
15
INPUT VOLTAGE (V)
IB (nA)
10
SUPPLY CURRENT (mA)
OUTPUT CURRENT (mA)
VCC
IO
+
50
40
30
20
10
-55 -35
15
4
70
0
10
SUPPLY CURRENT
CURRENT LIMITING (Note 1)
60
5
POWER SUPPLY VOLTAGE (±V)
90
-
Positive
0
AMBIENT TEMPERATURE (°C)
80
Négative
5
-55-35-15 5 25 45 65 85 105 125
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
-15
5
25
45
65
85 105
TEMPERATURE (°C)
4/11
dB
125
0
10
20
POSITIVE SUPPLY VOLTAGE (V)
30
LM2902
GAIN BANDWIDTH PRODUCT
VOLAGE FOLLOWER PULSE RESPONSE
4
OUTPUT
VOLTAGE (V)
1.35
1.30
1.25
1.2
1.15
1.1
1.05
1
-95
-9
RL 2 k Ω
VCC = +15V
3
2
1
0
3
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
INPUT
VOLTAGE (V)
GAIN BANDWIDTH PRODUCT (MHz)
GBP (mhz)
2
1
0
OUTPUT VOLTAGE (V)
COMMON MODE REJECTION RATIO (dB)
80
+7.5V
100kΩ
100 Ω
60
-
40
100 Ω
eI
eO
+
100kΩ
20
VCC = +5V
VCC = +15V
VCC = +30V
1
v cc
v cc /2
-
0.1
IO
Tamb = +25°C
0,001
1M
100K
140
VO
+
80
VCC = 30V &
-55°C Tamb +125°C
60
40
20
VCC = +10 to + 15V &
-55°C Tamb +125°C
OUTPUT VOLTAGE (mV)
VCC
VI
VCC/2
1
10
100
1k
10k
100k
eO
el
-
50pF
400
Input
350
Output
300
1M
Tamb = +25°C
VCC = 30 V
250
10M
0
1
2
FREQUENCY (Hz)
15
+15V
VO
VI
+7V
+
2k Ω
10
5
0
1k
10k
4
5
6
7
8
OUTPUT CHARACTERISTICS
100k
FREQUENCY (Hz)
1M
8
V CC
7
6
TO VCC+ (V)
100k Ω
OUTPUT VOLTAGE REFERENCED
20
-
3
TIME (µs)
LARGE SIGNAL FREQUENCY RESPONSE
1k Ω
100
+
450
0
1.0
10
500
10M Ω
-
100
0,1
VOLTAGE FOLLOWER PULSSE RESPONSE
(SMALL SIGNAL)
OPEN LOOP FREQUENCY RESPONSE (NOTE 3)
0.1µF
0,01
OUTPUT SINK CURRENT (mA)
FREQUENCY (Hz)
120
VO
+
0.01
10K
1K
40
+7.5V
0
100
OUTPUT SWING (Vpp)
30
OUTPUT CHARACTERISTICS
10
120
100
20
TIME (µ s)
COMMON MODE REJECTION RATIO
VOLTAGE GAIN (dB)
10
V CC /2
5
+
VO
IO
-
4
3
2
Independent of V CC
T amb = +25°C
1
0,001 0,01
0,1
1
10
100
OUTPUT SOURCE CURRENT (mA)
5/11
LM2902
TYPICAL SINGLE - SUPPLY APPLICATIONS
AC COUPLED INVERTING AMPLIFIER
INPUT CURRENT (nA)
100
75
Rf
100kΩ
50
25
Co
1/4
LM2902
Tamb= +25°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
eI ~
R2
VCC 100kΩ
Rf
R1
(as shown AV = -10)
R1
10kΩ
CI
A V= -
2VPP
0
eo
RB
6.2kΩ
R3
100kΩ
RL
10k Ω
C1
10µF
160
R L = 20k Ω
VOLTAGE GAIN (dB)
120
R L = 2kΩ
80
AC COUPLED NON-INVERTING AMPLIFIER
40
R1
100kΩ
0
10
20
30
POWER SUPPLY & COMMON MODE
REJECTION RATIO
(dB) 120
Co
1/4
LM2902
CI
POWER SUPPLY & COMMON MODE
REJECTION RATIO (dB)
A V= 1 + R2
R1
(as shown A V = 11)
C1
0.1µF
POSITIVE SUPPLY VOLTAGE (V)
115
110
105
100
95
90
85
80
75
R2
1MΩ
RL
10kΩ
RB
6.2kΩ
R3
1MΩ
eI ~
SVR
2VPP
0
eo
R4
100kΩ
VCC
C2
10µF
R5
100kΩ
CMR
70
NON-INVERTING DC GAIN
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
6/11
LARGE SIGNAL VOLTAGE GAIN
120
A V = 1 + R2
R1
(As shown A V = 101)
10k Ω
1/4
LM2902
115
eO
+5V
R2
1M Ω
O
R1
10kΩ
e
105
(V)
110
-55
LARGE SIGNAL VOLTAGE GAIN
Avd (dB)
100
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
0
e I (mV)
LM2902
DC SUMMING AMPLIFIER
e1
ACTIVER BADPASS FILTER
R1
100kΩ
100kΩ
C1
330pF
100kΩ
e2
1/4
LM2902
eO
1/4
LM2902
R5
470kΩ
R4
10MΩ
e1
1/4
LM2902
100kΩ
C2
330pF
e3
R3
10kΩ
100kΩ
R6
470kΩ
eO
100kΩ
e4
1/4
LM2902
R7
100kΩ
V CC
100kΩ
C3
10µF
R8
100kΩ
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
Fo = 1kHz
Q = 50
Av = 100 (40dB)
HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER
HIGH INPUT Z ADJUSTABLE GAIN DC
INSTRUMENTATION AMPLIFIER
R1
100k Ω
R3
100k Ω
1/4
LM2902
e1
Gain adjust
R2
2k Ω
R1
100kΩ
1/4
LM2902
eO
1/4
LM2902
R4
100kΩ
R2
100kΩ
R4
100k Ω
R3
100kΩ
1/4
LM2902
+V1
+V2
R5
100k Ω
eo = [ 1 +
Vo
R4 ] (e2 - e1)
R3
As shown eo = (e2 - e1)
R6
100k Ω
1/4
LM2902
R7
100k Ω
e2
If R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2R1 ] (e2 - e1)
R2
As shown eo = 101 (e2 - e1)
LOW DRIFT PEAK DETECTOR
USING SYMMETRICAL AMPLIFIERS TO
REDUCE INPUT CURRENT (GENERAL
CONCEPT)
1/4
IB
I
1/4
I B LM2902
1/4
LM2902
eI
C
*
1µF
ZI
2I B
R
1MΩ
IB
IB
3R
3MΩ
eo
I B LM2902
2N 929
0.001µ F
0.001µF
IB
* Polycarbonate or polyethylene
eI
Zo
2I B
2N 929
eo
I
IB
IB
3MΩ
1/4
LM2902
Input current
compensation
IB
1/4
LM2902
Aux. amplifier for input
current compensation
1.5MΩ
7/11
LM2902
MACROMODELS
VIN 17 5 0.000000e+00
** Standard Linear Ics Macromodels, 1993.
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
** CONNECTIONS :
FCP 4 5 VOFP 3.400000E+01
* 1 INVERTING INPUT
FCN 5 4 VOFN 3.400000E+01
* 2 NON-INVERTING INPUT
FIBP 2 5 VOFN 2.000000E-03
* 3 OUTPUT
FIBN 5 1 VOFP 2.000000E-03
* 4 POSITIVE POWER SUPPLY
* AMPLIFYING STAGE
* 5 NEGATIVE POWER SUPPLY
FIP 5 19 VOFP 3.600000E+02
.SUBCKT LM2902 1 3 2 4 5 (analog)
FIN 5 19 VOFN 3.600000E+02
********************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15
CJO=10F
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
* INPUT STAGE
DOPM 19 22 MDTH 400E-12
CIP 2 5 1.000000E-12
DONM 21 19 MDTH 400E-12
CIN 1 5 1.000000E-12
HOPM 22 28 VOUT 7.500000E+03
EIP 10 5 2 5 1
VIPM 28 4 1.500000E+02
EIN 16 5 1 5 1
HONM 21 27 VOUT 7.500000E+03
RIP 10 11 2.600000E+01
VINM 5 27 1.500000E+02
RIN 15 16 2.600000E+01
EOUT 26 23 19 5 1
RIS 11 15 2.003862E+02
VOUT 23 5 0
DIP 11 12 MDTH 400E-12
ROUT 26 3 20
DIN 15 14 MDTH 400E-12
COUT 3 5 1.000000E-12
VOFP 12 13 DC 0
DOP 19 25 MDTH 400E-12
VOFN 13 14 DC 0
VOP 4 25 2.242230E+00
IPOL 13 5 1.000000E-05
DON 24 19 MDTH 400E-12
CPS 11 15 3.783376E-09
VON 24 5 7.922301E-01
DINN 17 13 MDTH 400E-12
.ENDS
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, V CC- = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 2kΩ
100
V/mV
ICC
No load, per operator
350
µA
Vicm
VOH
RL = 2kΩ (VCC+ = 15V)
VOL
RL = 2kΩ
-15 to +13.5
V
+13.5
V
5
mV
VO = +2V, VCC = +15V
+40
mA
GBP
RL = 2kΩ, CL = 100pF
1.3
MHz
SR
RL = 2kΩ, CL = 100pF
0.4
V/µs
Ios
8/11
Value
LM2902
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP
Millimeters
Inches
Dimensions
Min.
a1
B
b
b1
D
E
e
e3
F
i
L
Z
Typ.
0.51
1.39
Max.
Min.
1.65
0.020
0.055
0.5
0.25
Typ.
0.065
0.020
0.010
20
0.787
8.5
2.54
15.24
0.335
0.100
0.600
7.1
5.1
0.280
0.201
3.3
1.27
Max.
0.130
2.54
0.050
0.100
9/11
LM2902
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
G
c1
b1
e
a1
b
A
a2
C
L
s
e3
E
D
M
8
1
7
F
14
Millimeters
Inches
Dimensions
Min.
A
a1
a2
b
b1
C
c1
D (1)
E
e
e3
F (1)
G
L
M
S
Typ.
Max.
Min.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45° (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.344
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
8° (max.)
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
10/11
LM2902
PACKAGE MECHANICAL DATA
14 PINS -THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
k
c
C
SEATING
PLANE
E1
L1
L
0,25 mm
.010 inch
GAGE PLANE
E
A
A2
7
aaa
C
D
8
e
b
A1
14
1
PIN 1 IDENTIFICATION
Millimeters
Inches
Dimensions
Min.
A
A1
A2
b
c
D
E
E1
e
k
L
L1
aaa
0.05
0.80
0.19
0.09
4.90
4.30
0°
0.450
Typ.
1.00
5.00
6.40
4.40
0.65
0.600
1.00
Max.
Min.
1.20
0.15
1.05
0.30
0.20
5.10
0.01
0.031
0.007
0.003
0.192
4.50
0.169
8°
0.750
0°
0.018
0.100
Typ.
0.039
0.196
0.252
0.173
0.025
0.024
0.039
Max.
0.05
0.006
0.041
0.15
0.012
0.20
0.177
8°
0.030
0.004
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com
11/11