ONSEMI MC74HC4538AFEL

MC74HC4538A
Dual Precision Monostable
Multivibrator (Retriggerable,
Resettable)
The MC74HC4538A is identical in pinout to the MC14538B. The
device inputs are compatible with standard CMOS outputs; with
pullup resistors, they are compatible with LSTTL outputs.
This dual monostable multivibrator may be triggered by either the
positive or the negative edge of an input pulse, and produces a
precision output pulse over a wide range of pulse widths. Because the
device has conditioned trigger inputs, there are no trigger−input rise
and fall time restrictions. The output pulse width is determined by the
external timing components, Rx and Cx. The device has a reset
function which forces the Q output low and the Q output high,
regardless of the state of the output pulse circuitry.
http://onsemi.com
MARKING
DIAGRAMS
16
PDIP−16
N SUFFIX
CASE 648
16
1
1
Features
• Unlimited Rise and Fall Times Allowed on the Trigger Inputs
• Output Pulse is Independent of the Trigger Pulse Width
• ± 10% Guaranteed Pulse Width Variation from Part to Part
•
•
•
•
•
•
•
•
(Using the Same Test Jig)
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS and TTL
Operating Voltage Range: 3.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
Chip Complexity: 145 FETs or 36 Equivalent Gates
Pb−Free Packages are Available*
MC74HC4538AN
AWLYYWWG
16
SOIC−16
D SUFFIX
CASE 751B
16
1
HC4538AG
AWLYWW
1
16
16
1
TSSOP−16
DT SUFFIX
CASE 948F
HC45
38A
ALYWG
G
1
16
16
1
SOEIAJ−16
F SUFFIX
CASE 966
74HC4538A
ALYWG
1
A
= Assembly Location
L, WL
= Wafer Lot
Y, YY
= Year
W, WW = Work Week
G
= Pb−Free Package
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2005
June, 2005 − Rev. 9
1
Publication Order Number:
MC74HC4538A/D
MC74HC4538A
GND
1
16
VCC
FUNCTION TABLE
CX1/RX1
2
15
GND
RESET 1
3
14
CX2/RX2
Reset
A1
4
13
RESET 2
B1
5
12
A2
H
H
L
H
H
X
H
L
X
Not Triggered
Not Triggered
H
H
L,H,
L
H
L,H,
Not Triggered
Not Triggered
L
X
X
X
X
L
H
Not Triggered
Q1
6
11
B2
Q1
7
10
Q2
GND
8
9
Q2
Inputs
A
Q
Q
H
Figure 1. Pin Assignment
CX1
Outputs
B
RX1
VCC
1
TRIGGER
INPUTS
A1
B1
RESET 1
2
4
6
5
7
Q1
Q1
PIN 16 = VCC
PIN 8 = GND
RX AND CX ARE EXTERNAL COMPONENTS
PIN 1 AND PIN 15 MUST BE HARD WIRED TO GND
3
CX2
RX2
VCC
15 14
TRIGGER
INPUTS
A2
B2
RESET 2
12
10
11
9
Q2
Q2
13
Figure 2. Logic Diagram
ORDERING INFORMATION
Package
Shipping †
MC74HC4538AN
PDIP−16
500 Units / Box
MC74HC4538ANG
PDIP−16
(Pb−Free)
500 Units / Box
MC74HC4538AD
SOIC−16
48 Units / Rail
MC74HC4538ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HC4538ADR2
SOIC−16
2500 Units / Reel
MC74HC4538ADR2G
SOIC−16
(Pb−Free)
2500 Units / Reel
MC74HC4538ADTR2
TSSOP−16*
2500 Units / Reel
MC74HC4538ADTR2G
TSSOP−16*
2500 Units / Reel
MC74HC4538AF
SOEIAJ−16
50 Units / Rail
MC74HC4538AFG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC74HC4538AFEL
SOEIAJ−16
2000 Units / Reel
MC74HC4538AFELG
SOEIAJ−16
(Pb−Free)
2000 Units / Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
2
MC74HC4538A
MAXIMUM RATINGS
Symbol
VCC
Parameter
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
IOK
DC Output Diode Current
(Note 1)
Value
Unit
*0.5 to )7.0
V
*0.5 v VI v VCC )0.5
V
*0.5 v VO v VCC )0.5
V
$20
$30
mA
$25
mA
A, B, Reset
CX, RX
IO
DC Output Sink Current
$25
mA
ICC
DC Supply Current per Supply Pin
$100
mA
IGND
DC Ground Current per Ground Pin
$100
mA
TSTG
Storage Temperature Range
*65 to )150
_C
260
_C
)150
_C
TL
Lead temperature, 1 mm from Case for 10 Seconds
TJ
Junction temperature under Bias
qJA
Thermal resistance
PDIP
SOIC
TSSOP
78
112
148
_C/W
PD
Power Dissipation in Still Air at 85_C
PDIP
SOIC
TSSOP
750
500
450
mW
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
ILatchup
Level 1
Oxygen Index: 30% − 35%
ESD Withstand Voltage
Latchup Performance
UL−94−VO (0.125 in)
Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4)
>2000
>100
>500
V
Above VCC and Below GND at 85_C (Note 5)
$300
mA
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. IO absolute maximum rating must be observed.
2. Tested to EIA/JESD22−A114−A.
3. Tested to EIA/JESD22−A115−A.
4. Tested to JESD22−C101−A.
5. Tested to EIA/JESD78.
6. For high frequency or heavy load considerations, see the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 7)
External Timing Resistor
Cx
External Timing Capacitor
Max
Unit
3.0*
6.0
V
0
VCC
V
–55
+125
_C
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
0
0
0
−
1000
500
400
No Limit
ns
VCC < 4.5 V
VCC ≥ 4.5 V
1.0
2.0
†
†
kW
0
†
mF
A or B (Figure 5)
Rx
Min
*The HC4538A will function at 2.0 V but for optimum pulse−width stability, VCC should be above 3.0 V.
†The maximum allowable values of Rx and Cx are a function of the leakage of capacitor Cx, the leakage of the HC4538A, and leakage due to board layout
and surface resistance. For most applications, Cx/Rx should be limited to a maximum value of 10 mF/1.0 MW. Values of Cx > 1.0 mF may cause a
problem during power down (see Power Down Considerations). Susceptibility to externally induced noise signals may occur for Rx > 1.0 MW.
7. Unused inputs may not be left open. All inputs must be tied to a high−logic voltage level or a low−logic input voltage level.
8. Information on typical parametric values can be found in the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
3
MC74HC4538A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
DC CHARACTERISTICS
Guaranteed Limits
Symbol
Parameter
VCC
V
Test Conditions
–55 to 25_C
Min
Max
Min
Max
Min
Minimum High−Level
Input Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
4.5
6.0
VIL
Maximum Low−Level
Input Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
4.5
6.0
VOH
Minimum High−Level
Output Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
4.5
6.0
3.98
5.48
3.84
5.34
3.7
5.2
VOL
Maximum Low−Level
Output Voltage
Vin = VIH or VIL
|Iout| v 20 mA
1.5
3.15
4.2
v 125_C
VIH
Vin = VIH or VIL
|Iout| v − 4.0 mA
|Iout| v − 5.2 mA
1.5
3.15
4.2
v 85_C
0.5
1.35
1.8
Max
1.5
3.15
4.2
0.5
1.35
1.8
Unit
V
0.5
1.35
1.8
V
V
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
Vin = VIH or VIL
|Iout| v 4.0 mA
|Iout| v 5.2 mA
4.5
6.0
0.26
0.26
0.33
0.33
0.4
0.4
V
Iin
Maximum Input
Leakage Current
(A, B, Reset)
Vin = VCC or GND
6.0
± 0.1
± 1.0
± 1.0
mA
Iin
Maximum Input
Leakage Current
(Rx, Cx)
Vin = VCC or GND
6.0
± 50
± 500
± 500
nA
ICC
Maximum Quiescent
Supply Current
(per package)
Standby State
Vin = VCC or GND
Q1 and Q2 = Low
Iout = 0 mA
6.0
130
220
350
mA
Maximum Supply Current
(per package)
Active State
Vin = VCC or GND
Q1 and Q2 = High
Iout = 0 mA
Pins 2 and 14 = 0.5 VCC
ICC
25_C
6.0
http://onsemi.com
4
400
–45_C to
85_C
600
–55_C to
125_C
800
mA
MC74HC4538A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limits
Symbol
VCC
V
Parameter
–55 to 25_C
Min
Max
v 85_C
Min
Max
v 125_C
Min
Max
Unit
tPLH
Maximum Propagation Delay
Input A or B to Q
(Figures 6 and 8)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tPHL
Maximum Propagation Delay
Input A or B to NQ
(Figures 6 and 8)
2.0
4.5
6.0
195
39
33
245
49
42
295
59
50
ns
tPHL
Maximum Propagation Delay
Reset to Q
(Figures 7 and 8)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tPLH
Maximum Propagation Delay
Reset to NQ
(Figures 7 and 8)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 7 and 8)
2.0
4.5
6.0
75
15
13
95
19
16
110
22
19
ns
−
10
25
10
25
10
25
pF
Cin
Maximum Input Capacitance
(A. B, Reset)
(Cx, Rx)
9. For propagation delays with loads other than 50 pF, and information on typical parametric values, see the ON Semiconductor High−Speed
CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
150
Power Dissipation Capacitance (per Multivibrator)*
pF
*Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see the ON Semiconductor
High−Speed CMOS Data Book (DL129/D).
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
TIMING CHARACTERISTICS (Input tr = tf = 6.0 ns)
Guaranteed Limits
Symbol
VCC
V
Parameter
–55 to 25_C
Min
Max
v 85_C
Min
Max
v 125_C
Min
Max
Unit
trec
Minimum Recovery Time, Inactive to A or B
(Figure 7)
2.0
4.5
6.0
0
0
0
0
0
0
0
0
0
ns
tw
Minimum Pulse Width, Input A or B
(Figure 6)
2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
tw
Minimum Pulse Width, Reset
(Figure 7)
2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
Maximum Input Rise and Fall Times, Reset
(Figure 7)
2.0
4.5
6.0
A or B
(Figure 7)
2.0
4.5
6.0
tr, tf
http://onsemi.com
5
1000
500
400
1000
500
400
No Limit
1000
500
400
ns
MC74HC4538A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
OUTPUT PULSE WIDTH CHARACTERISTICS (CL = 50 pF)t
Conditions
Symbol
Parameter
Guaranteed Limits
Timing Components
VCC
V
Rx = 10 kW, Cx = 0.1 mF
5.0
v 85_C
–55 to 25_C
v 125_C
Min
Max
Min
Max
Min
Max
Unit
0.63
0.77
0.6
0.8
0.59
0.81
ms
τ
Output Pulse Width*
(Figures 6 and 8)
−
Pulse Width Match Between
Circuits in the same Package
−
−
± 5.0
%
−
Pulse Width Match Variation
(Part to Part)
−
−
± 10
%
0.8
10 s
TA = 25°C
1s
OUTPUT PULSE WIDTH (τ)
k, OUTPUT PULSE WIDTH CONSTANT
(TYPICAL)
*For output pulse widths greater than 100 ms, typically τ = kRxCx, where the value of k may be found in Figure 3.
0.7
0.6
0.5
0.4
0.3
1
2
3
4
5
6
VCC = 5 V, TA = 25°C
100 ms
10 ms
1 ms
100 ms
1 MW
10 ms
100 kW
1 ms
10 kW
1 kW
100 ns
0.00001 0.0001 0.001
7
VCC, POWER SUPPLY VOLTAGE (VOLTS)
0.01
OUTPUT PULSE WIDTH (τ)
(NORMALIZED TO 5 V NUMBER)
Rx = 100 kW
Cx = 1000 pF
TA = 25°C
0.9
0.8
Rx = 1 MW
Cx = 0.1 mF
0.6
0.5
1
10
100
Figure 4. Output Pulse Width versus Timing Capacitance
1.1
0.7
1
CAPACITANCE (mF)
Figure 3. Typical Output Pulse Width Constant,
k, versus Supply Voltage
(For output pulse widths > 100 ms: τ = kRxCx)
1
0.1
2
3
4
5
6
VCC, POWER SUPPLY VOLTAGE (VOLTS)
7
Figure 5. Normalized Output Pulse Width versus Power Supply Voltage
http://onsemi.com
6
MC74HC4538A
OUTPUT PULSE WIDTH (τ)
(NORMALIZED TO 25_C NUMBER)
1.1
1.05
1
VCC = 6 V
Rx = 10 kW
Cx = 0.1 mF
0.95
0.9
0.85
VCC = 3 V
0.8
−75 −50
−25
0
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Normalized Output Pulse Width versus Power Supply Voltage
OUTPUT PULSE WIDTH (τ)
(NORMALIZED TO 25_C NUMBER)
1.03
1.02
Rx = 10 kW
Cx = 0.1 mF
1.01
1
0.99
VCC = 5.5 V
VCC = 5 V
0.98
VCC = 4.5 V
0.97
−75 −50
−25
0
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (°C)
Figure 7. Normalized Output Pulse Width versus Power Supply Voltage
tw(H)
VCC
50%
A
GND
tw(L)
B
VCC
50%
GND
τ
tPLH
tPLH
τ
50%
Q
τ
tPHL
tPHL
Q
50%
Figure 8. Switching Waveform
http://onsemi.com
7
τ
MC74HC4538A
tr
tf
VCC
90%
10%
A
GND
trr
VCC
50%
GND
B
tf
tf
RESET
GND
trec
τ + trr
tPHL
90%
50%
50%
10%
Q
tTHL
Q
10%
tw(L)
tTLH
VCC
90%
50%
tPLH
90%
10%
50%
Figure 9. Switching Waveform
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
Figure 10. Test Circuit
http://onsemi.com
8
(RETRIGGERED PULSE)
MC74HC4538A
PIN DESCRIPTIONS
INPUTS
capacitors (see the Block Diagram). Polystyrene capacitors
are recommended for optimum pulse width control.
Electrolytic capacitors are not recommended due to high
leakages associated with these type capacitors.
A1, A2 (Pins 4, 12)
Positive−edge trigger inputs. A rising−edge signal on
either of these pins triggers the corresponding multivibrator
when there is a high level on the B1 or B2 input.
GND (Pins 1 and 15)
External ground. The external timing capacitors discharge
to ground through these pins.
B1, B2 (Pins 5, 11)
Negative−edge trigger inputs. A falling−edge signal on
either of these pins triggers the corresponding multivibrator
when there is a low level on the A1 or A2 input.
OUTPUTS
Q1, Q2 (Pins 6, 10)
Reset 1, Reset 2 (Pins 3, 13)
Noninverted monostable outputs. These pins (normally
low) pulse high when the multivibrator is triggered at either
the A or the B input. The width of the pulse is determined by
the external timing components, RX and CX.
Reset inputs (active low). When a low level is applied to
one of these pins, the Q output of the corresponding
multivibrator is reset to a low level and the Q output is set to
a high level.
Q1, Q2 (Pins 7, 9)
CX1/RX1 and CX2/RX2 (Pins 2 and 14)
Inverted monostable outputs. These pins (normally high)
pulse low when the multivibrator is triggered at either the A
or the B input. These outputs are the inverse of Q1 and Q2.
External timing components. These pins are tied to the
common points of the external timing resistors and
RxCx
UPPER
REFERENCE
CIRCUIT
−
+ Vre,
UPPER
VCC
VCC
OUTPUT
LATCH
LOWER
REFERENCE
CIRCUIT
M1
2 kW
−
+
M2
Q
Vre,
LOWER
M3
Q
TRIGGER
CONTROL CIRCUIT
A
C
CB
B
Q
TRIGGER CONTROL
RESET CIRCUIT
R
RESET
POWER
ON
RESET
RESET LATCH
Figure 11. Logic Detail (1/2 the Device)
http://onsemi.com
9
MC74HC4538A
CIRCUIT OPERATION
TRIGGER OPERATION
Figure 12 shows the HC4538A configured in the
retriggerable mode. Briefly, the device operates as follows
(refer to Figure 10): In the quiescent state, the external
timing capacitor, Cx, is charged to V CC. When a trigger
occurs, the Q output goes high and Cx discharges quickly to
the lower reference voltage (Vref Lower [ 1/3 V CC). Cx
then charges, through Rx, back up to the upper reference
voltage (Vref Upper [ 2/3 V CC), at which point the
one−shot has timed out and the Q output goes low.
The following, more detailed description of the circuit
operation refers to both the logic detail (Figure 9) and the
timing diagram (Figure 10).
The HC4538A is triggered by either a rising−edge signal
at input A (#7) or a falling−edge signal at input B (#8), with
the unused trigger input and the Reset input held at the
voltage levels shown in the Function Table. Either trigger
signal will cause the output of the trigger−control circuit to
go high (#9).
The trigger−control circuit going high simultaneously
initiates two events. First, the output latch goes low, thus
taking the Q output of the HC4538A to a high state (#10).
Second, transistor M3 is turned on, which allows the
external timing capacitor, Cx, to rapidly discharge toward
ground (#11). (Note that the voltage across Cx appears at the
input of both the upper and lower reference circuit
comparator).
When Cx discharges to the reference voltage of the lower
reference circuit (#12), the outputs of both reference circuits
will be high (#13). The trigger−control reset circuit goes high,
resetting the trigger−control circuit flip−flop to a low state
(#14). This turns transistor M3 off again, allowing Cx to begin
to charge back up toward VCC, with a time constant t = RxCx
(#15). Once the voltage across Cx charges to above the lower
reference voltage, the lower reference circuit will go low
allowing the monostable multivibrator to be retriggered.
QUIESCENT STATE
In the quiescent state, before an input trigger appears, the
output latch is high and the reset latch is high (#1 in
Figure 10). Thus the Q output (pin 6 or 10) of the monostable
multivibrator is low (#2, Figure 10).
The output of the trigger−control circuit is low (#3), and
transistors M1, M2, and M3 are turned off. The external
timing capacitor, Cx, is charged to VCC (#4), and both the
upper and lower reference circuit has a low output (#5).
In addition, the output of the trigger−control reset circuit
is low.
QUIESCENT
STATE
TRIGGER CYCLE
(A INPUT)
TRIGGER CYCLE
(B INPUT)
RESET
RETRIGGER
trr
7
TRIGGER INPUT A
(PIN 4 OR 12)
TRIGGER INPUT B
(PIN 5 OR 11)
8
24
9
TRIGGER-CONTROL
CIRCUIT OUTPUT
3
14
11
4
RX/CX INPUT
(PIN 2 OR 14)
15
21
17
23
12
Vref LOWER
UPPER REFERENCE
CIRCUIT
5
LOWER REFERENCE
CIRCUIT
6
Vref UPPER
13
25
18
13
16
RESET INPUT
(PIN 3 OR 13)
20
1
RESET LATCH
22
10
Q OUTPUT
(PIN 6 OR 10)
2
19
τ
τ
Figure 12. Timing Diagram
http://onsemi.com
10
τ + trr
MC74HC4538A
When Cx charges up to the reference voltage of the upper
reference circuit (#17), the output of the upper reference
circuit goes low (#18). This causes the output latch to toggle,
taking the Q output of the HC4538A to a low state (#19), and
completing the time−out cycle.
occurs, the output of the reset latch goes low (#22), turning
on transistor M1. Thus Cx is allowed to quickly charge up to
VCC (#23) to await the next trigger signal.
On power up of the HC4538A the power−on reset circuit
will be high causing a reset condition. This will prevent the
trigger−control circuit from accepting a trigger input during
this state. The HC4538A’s Q outputs are low and the Q not
outputs are high.
POWER−DOWN CONSIDERATIONS
Large values of Cx may cause problems when powering
down the HC4538A because of the amount of energy stored
in the capacitor. When a system containing this device is
powered down, the capacitor may discharge from VCC
through the input protection diodes at pin 2 or pin 14.
Current through the protection diodes must be limited to 30
mA; therefore, the turn−off time of the VCC power supply
must not be faster than t = VCCCx /(30 mA). For example,
if VCC = 5.0 V and Cx = 15 mF, the VCC supply must turn off
no faster than t = (5.0 V)(15 mF)/30 mA = 2.5 ms. This is
usually not a problem because power supplies are heavily
filtered and cannot discharge at this rate.
When a more rapid decrease of VCC to zero volts occurs,
the HC4538A may sustain damage. To avoid this possibility,
use an external damping diode, Dx, connected as shown in
Figure 11. Best results can be achieved if diode Dx is chosen
to be a germanium or Schottky type diode able to withstand
large current surges.
RETRIGGER OPERATION
When used in the retriggerable mode (Figure 12), the
HC4538A may be retriggered during timing out of the
output pulse at any time after the trigger−control circuit
flip−flop has been reset (#24), and the voltage across Cx is
above the lower reference voltage. As long as the Cx voltage
is below the lower reference voltage, the reset of the
flip−flop is high, disabling any trigger pulse. This prevents
M3 from turning on during this period resulting in an output
pulse width that is predictable.
The amount of undershoot voltage on RxCx during the
trigger mode is a function of loop delay, M3 conductivity,
and V DD. Minimum retrigger time, trr (Figure 7), is a
function of 1) time to discharge R x Cx from V DD to lower
reference voltage (T discharge); 2) loop delay (T delay); 3)
time to charge Rx Cx from the undershoot voltage back to the
lower reference voltage (Tcharge).
Figure 13 shows the device configured in the
non−retriggerable mode.
For additional information, please see Application Note
(AN1558/D) titled Characterization of Retrigger Time in
the HC4538A Dual Precision Monostable Multivibrator.
RESET AND POWER ON RESET OPERATION
A low voltage applied to the Reset pin always forces the
Q output of the HC4538A to a low state.
The timing diagram illustrates the case in which reset
occurs (#20) while Cx is charging up toward the reference
voltage of the upper reference circuit (#21). When a reset
DX
CX
VCC
RX
Q
A
B
Q
RESET
Figure 13. Discharge Protection During Power Down
http://onsemi.com
11
MC74HC4538A
TYPICAL APPLICATIONS
CX
RISING−EDGE
TRIGGER
RX
CX
RX
RISING−EDGE
TRIGGER
VCC
Q
A
B
VCC
Q
A
Q
B
Q
B = VCC
RESET = VCC
RESET = VCC
CX
RX
CX
FALLING−EDGE
TRIGGER
VCC
A = GND
VCC
Q
Q
B
RX
A
B
Q
Q
FALLING−EDGE
TRIGGER
RESET = VCC
RESET = VCC
Figure 14. Retriggerable Monostable Circuitry
Figure 15. Non−retriggerable Monostable Circuitry
GND
N/C
A = GND
VCC
RXCX
Q
N/C
B
Q
RESET
N/C
Figure 16. Connection of Unused Section
ONE−SHOT SELECTION GUIDE
100 ns
MC14528B
MC14536B
MC14538B
MC14541B
HC4538A*
1 ms
10 ms 100 ms 1 ms 10 ms 100 ms 1 s
10 s
23 HR
5 MIN
*Limited operating voltage (2 −6 V)
TOTAL OUTPUT PULSE WIDTH RANGE
RECOMMENDED PULSE WIDTH RANGE
http://onsemi.com
12
MC74HC4538A
PACKAGE DIMENSIONS
PDIP−16
N SUFFIX
CASE 648−08
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
−A−
16
9
1
8
B
F
C
L
DIM
A
B
C
D
F
G
H
J
K
L
M
S
S
−T−
SEATING
PLANE
K
H
D
M
J
G
16 PL
0.25 (0.010)
T A
M
M
INCHES
MIN
MAX
0.740 0.770
0.250 0.270
0.145 0.175
0.015 0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008 0.015
0.110 0.130
0.295 0.305
0_
10 _
0.020 0.040
MILLIMETERS
MIN
MAX
18.80 19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
http://onsemi.com
13
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC74HC4538A
PACKAGE DIMENSIONS
TSSOP−16
DT SUFFIX
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
14
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74HC4538A
PACKAGE DIMENSIONS
SOEIAJ−16
F SUFFIX
CASE 966−01
ISSUE O
16
LE
9
Q1
M_
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
0.10 (0.004)
http://onsemi.com
15
MILLIMETERS
MIN
MAX
−−−
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
−−−
0.78
INCHES
MIN
MAX
−−− 0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
−−− 0.031
MC74HC4538A
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
16
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MC74HC4538A/D