IRF IRF6712SPBF_09

PD - 97273F
IRF6712SPbF
IRF6712STRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
l RoHS Compliant and Halogen Free 
VDSS
l Low Profile (<0.7 mm)
VGS
RDS(on)
RDS(on)
l Dual Sided Cooling Compatible 
25V max ±20V max 3.8mΩ@ 10V 6.7mΩ@ 4.5V
l Ultra Low Package Inductance
Qg
l Optimized for High Frequency Switching 
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
4.0nC
1.7nC
14nC
10nC
1.9V
tot
12nC
l Ideal for CPU Core DC-DC Converters
l Optimized for both Sync.FET and some Control FET
application
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques 
l 100% Rg tested
DirectFET™ ISOMETRIC
SQ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SX
SQ
ST
MQ
MX
MT
MP
Description
The IRF6712SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6712SPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6712SPbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (mΩ)
12
ID = 17A
10
8
T J = 125°C
6
4
TJ = 25°C
2
0
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance Vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
25
±20
17
13
68
130
13
13
V
A
mJ
A
14.0
ID= 13A
12.0
VDS= 20V
VDS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
0
5
10
15
20
25
30
35
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.14mH, RG = 25Ω, IAS = 13A.
1
04/29/09
IRF6712SPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
∆VGS(th)/∆TJ
IDSS
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Conditions
Min.
Typ. Max. Units
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
25
–––
–––
18
–––
–––
Static Drain-to-Source On-Resistance
–––
–––
3.8
6.7
4.9
8.7
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
1.4
–––
1.9
-6.1
2.4
–––
V
mV/°C
Drain-to-Source Leakage Current
–––
–––
–––
–––
1.0
150
µA
VDS = 25V, VGS = 0V
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
VDS = 25V, VGS = 0V, TJ = 125°C
VGS = 20V
Forward Transconductance
Total Gate Charge
40
–––
–––
12
–––
18
S
VGS = -20V
VDS = 13V, ID = 13A
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
2.9
1.7
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
4.0
3.5
–––
–––
Output Charge
–––
–––
5.8
10
–––
–––
Gate Resistance
Turn-On Delay Time
–––
–––
1.7
11
3.0
–––
Ω
Rise Time
Turn-Off Delay Time
–––
–––
40
14
–––
–––
ns
Fall Time
Input Capacitance
–––
–––
12
1570
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
490
210
–––
–––
Min.
Typ. Max. Units
V VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 17A
i
i
VGS = 4.5V, ID = 13A
VDS = VGS, ID = 50µA
VDS = 13V
nC
VGS = 4.5V
ID = 13A
See Fig. 15
nC
VDS = 16V, VGS = 0V
i
VDD = 13V, VGS = 4.5V
ID = 13A
RG = 1.8Ω
pF
See Fig. 17
VGS = 0V
VDS = 13V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
–––
–––
17
ISM
Pulsed Source Current
(Body Diode)
–––
–––
2.7
VSD
Diode Forward Voltage
–––
0.81
1.0
trr
Qrr
g
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
17
14
26
21
Conditions
A
MOSFET symbol
showing the
V
integral reverse
p-n junction diode.
TJ = 25°C, IS = 13A, VGS = 0V
ns
nC
TJ = 25°C, IF = 13A
di/dt = 200A/µs
i
i
Notes:
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6712SPbF
Absolute Maximum Ratings
e
e
f
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
Max.
Units
2.2
1.4
36
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
58
–––
–––
3.5
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
0.01
0.001
1E-006
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
Ri (°C/W)
R5
R5
τA
τ1
τ2
τ2
τ3
τ3
τ4
τ4
τ5
τA
τ5
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
τi (sec)
1.61955
0.000126
2.14056
0.001354
22.2887
0.375850
20.0457
7.41
11.9144
99
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
Notes:
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
Š Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6712SPbF
≤60µs PULSE WIDTH
Tj = 25°C
1000
TOP
ID, Drain-to-Source Current (A)
100
BOTTOM
10
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
TOP
100
1
0.1
≤60µs PULSE WIDTH
Tj = 150°C
ID, Drain-to-Source Current (A)
1000
2.5V
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
2.5V
0.01
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
ID = 17A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
100
2.0
VDS = 15V
≤60µs PULSE WIDTH
100
TJ = 150°C
TJ = 25°C
TJ = -40°C
10
1
0.1
V GS = 10V
1.5
V GS = 4.5V
1.0
0.5
1
2
3
4
5
25
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
T J = 25°C
C rss = C gd
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
20
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
Ciss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
10
Fig 5. Typical Output Characteristics
1000
Coss
Crss
15
10
5
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
1
V DS, Drain-to-Source Voltage (V)
0
50
100
150
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6712SPbF
1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
VGS = 0V
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100
10
T J = 150°C
T J = 25°C
T J = -40°C
1
100µsec
10
10msec
1msec
1
T A = 25°C
T J = 150°C
Single Pulse
0.1
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.10
3.5
Fig 10. Typical Source-Drain Diode Forward Voltage
3.0
Typical VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
60
50
40
30
20
10
2.5
2.0
ID = 50µA
ID = 100µA
1.5
100
125
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.0
0
75
100.00
Fig11. Maximum Safe Operating Area
70
50
10.00
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
25
1.00
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
60
ID
3.8A
5.4A
BOTTOM 13A
TOP
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6712SPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
- VDD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6712SPbF
Driver Gate Drive
D.U.T
ƒ
+
‚
-

RG
*
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
**
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET™ Board Footprint, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
D
www.irf.com
S
D
7
IRF6712SPbF
DirectFET™ Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
4.75
A
3.95
B
3.70
2.85
C
2.75
0.45
0.35
D
0.52
E
0.48
0.82
0.78
F
0.92
G
0.88
0.82
H
0.78
N/A
J
N/A
0.97
K
0.93
2.10
L
2.00
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187 0.191
0.146 0.156
0.108 0.112
0.014 0.018
0.019 0.020
0.031 0.032
0.035 0.036
0.031 0.032
N/A
N/A
0.037 0.038
0.079 0.083
0.0235 0.0274
0.0008 0.0031
0.003 0.007
DirectFET™ Part Marking
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRF6712SPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6712TRPBF). For 1000 parts on 7"
reel, order IRF6712TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION
IMPERIAL
METRIC
METRIC
MIN
MAX
MIN
MIN
CODE
MAX
MAX
12.992
A
N.C
N.C
177.77 N.C
330.0
0.795
B
N.C
19.06
20.2
N.C
N.C
0.504
C
0.520
13.5
12.8
13.2
12.8
0.059
D
N.C
1.5
1.5
N.C
N.C
3.937
E
58.72
100.0
N.C
N.C
N.C
N.C
F
N.C
N.C
18.4
0.724
13.50
0.488
G
0.567
11.9
12.4
14.4
12.01
H
0.469
0.606
11.9
11.9
15.4
12.01
(QTY 1000)
IMPERIAL
MIN
MAX
6.9
N.C
0.75
N.C
0.53
0.50
0.059
N.C
2.31
N.C
N.C
0.53
0.47
N.C
0.47
N.C
Loaded Tape Feed Direction
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MIN
MAX
MAX
0.311
7.90
0.319
8.10
0.154
0.161
3.90
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.158
4.00
0.165
4.20
0.197
5.00
0.205
5.20
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2009
www.irf.com
9