PD - 97274 IRF6716MPbF IRF6716MTRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) l l l l l l l l l l RoHs Compliant Containing No Lead and Bromide VDSS VGS RDS(on) RDS(on) Low Profile (<0.6 mm) 25V max ±20V max 1.2mΩ@10V 2.0mΩ@ 4.5V Dual Sided Cooling Compatible Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Ultra Low Package Inductance 39nC 12nC 5.3nC 28nC 27nC 1.9V Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for Sync. FET socket of Sync. Buck Converter Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques 100% Rg tested DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6716MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6716MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6716MPbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6716MPbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical RDS(on) (mΩ) 6 ID = 40A 5 4 3 T J = 125°C 2 T J = 25°C 1 0 2 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f VGS, Gate-to-Source Voltage (V) VDS Max. Units 25 ±20 39 31 180 320 330 32 V A mJ A 6.0 ID= 32A V = 20V DS VDS= 13V 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.65mH, RG = 25Ω, IAS = 32A. 1 02/20/07 IRF6716MPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– 2.0 2.6 VGS(th) Gate Threshold Voltage 1.4 1.9 2.4 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -6.1 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 25V, VGS = 0V ––– ––– 150 VDS = 25V, VGS = 0V, TJ = 125°C nA VGS = 20V IGSS gfs Qg 25 ––– ––– ––– 17 ––– ––– 1.2 1.6 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 220 ––– ––– V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 40A c VGS = 4.5V, ID = 32A c VDS = VGS, ID = 100µA VGS = -20V S VDS = 15V, ID = 32A Total Gate Charge ––– 39 59 Qgs1 Pre-Vth Gate-to-Source Charge ––– 10 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 5.3 ––– Qgd Gate-to-Drain Charge ––– 12 ––– ID = 32A Qgodr ––– 11.7 ––– See Fig. 2 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 17.3 ––– Qoss Output Charge ––– 27 ––– nC RG Gate Resistance ––– 1.0 1.6 Ω td(on) Turn-On Delay Time ––– 19 ––– tr Rise Time ––– 96 ––– td(off) Turn-Off Delay Time ––– 21 ––– tf Fall Time ––– 11 ––– Ciss Input Capacitance ––– 5150 ––– Coss Output Capacitance ––– 1340 ––– Crss Reverse Transfer Capacitance ––– 610 ––– Min. Typ. Max. Units ––– ––– VDS = 13V nC VGS = 4.5V VDS = 16V, VGS = 0V VDD = 13V, VGS = 4.5Vc ns ID = 32A Clamped Inductive Load VGS = 0V pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) d A ––– ––– Conditions MOSFET symbol 4.5 showing the 320 integral reverse p-n junction diode. TJ = 25°C, IS = 32A, VGS = 0V c VSD Diode Forward Voltage ––– ––– 1.0 V trr Reverse Recovery Time ––– 28 42 ns TJ = 25°C, IF = 32A Qrr Reverse Recovery Charge ––– 28 42 nC di/dt = 200A/µs c Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6716MPbF Absolute Maximum Ratings c c f Max. Units 3.6 2.3 78 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter cg dg eg fg RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor c Typ. Max. Units ––– 12.5 20 ––– 1.0 35 ––– ––– 1.6 ––– °C/W 0.031 W/°C Thermal Response ( Z thJA ) 100 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 Ci= τi/Ri Ci= τi/Ri 0.01 0.001 1E-006 0.0001 Ri (°C/W) τi (sec) 2.003 0.000686 17.536 0.78614 15.465 28 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 τ3 τA τA 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6716MPbF ≤60µs PULSE WIDTH Tj = 25°C 1000 TOP 100 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V ≤60µs PULSE WIDTH Tj = 150°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 1000 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 10 2.5V 2.5V 1 10 0.1 1 10 100 0.1 Fig 4. Typical Output Characteristics 10 100 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 15V ≤60µs PULSE WIDTH ID = 40A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 100 T J = 150°C T J = 25°C T J = -40°C 10 1 0.1 V GS = 10V 1.5 V GS = 4.5V 1.0 0.5 1 2 3 4 6 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 5 Typical RDS(on) ( mΩ) C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) TOP Crss 4 3 2 1 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 50 100 150 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6716MPbF 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150°C T J = 25°C T J = -40°C 10 1 100µsec 1msec 10 10msec DC 1 T A = 25°C T J = 150°C VGS = 0V Single Pulse 0.1 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.01 1.4 Fig 10. Typical Source-Drain Diode Forward Voltage 1.00 10.00 100.00 Fig 11. Maximum Safe Operating Area 40 Typical VGS(th) Gate threshold Voltage (V) 3.0 35 ID, Drain Current (A) 0.10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 30 25 20 15 10 5 2.5 2.0 1.5 50 75 100 125 ID = 1.0mA ID = 1.0A 1.0 0 25 ID = 100µA ID = 250µA -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 1400 ID 16A 19A BOTTOM 32A 1200 TOP 1000 800 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6716MPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgs2 Qgs1 Qgd Fig 15b. Gate Charge Waveform V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V I AS 0.01Ω tp A Fig 16a. Unclamped Inductive Test Circuit Fig 16b. Unclamped Inductive Waveforms LD VDS VDS + 90% VDD D.U.T VGS Second Pulse Width < 1µs Duty Factor < 0.1% 10% VGS td(on) Fig 17a. Switching Time Test Circuit 6 tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6716MPbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6716MPbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.25 6.35 B 5.05 4.80 3.95 C 3.85 D 0.35 0.45 E 0.68 0.72 F 0.72 0.68 G 1.38 1.42 H 0.80 0.84 J 0.42 0.38 K 0.88 1.01 L 2.28 2.41 M 0.616 0.676 R 0.020 0.080 P 0.08 0.17 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.054 0.056 0.032 0.033 0.015 0.017 0.035 0.039 0.090 0.095 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6716MPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6716). For 1000 parts on 7" reel, order IRF6716TR1 STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MAX MAX MIN 12.992 177.77 N.C N.C 0.795 19.06 N.C N.C 0.504 13.5 0.520 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MIN MAX 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/07 www.irf.com 9