IRF IRF6716MTRPBF

PD - 97274
IRF6716MPbF
IRF6716MTRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
l
l
l
l
l
l
l
l
l
l
RoHs Compliant Containing No Lead and Bromide 
VDSS
VGS
RDS(on)
RDS(on)
Low Profile (<0.6 mm)
25V max ±20V max 1.2mΩ@10V 2.0mΩ@ 4.5V
Dual Sided Cooling Compatible 
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
Ultra Low Package Inductance
39nC
12nC
5.3nC
28nC
27nC
1.9V
Optimized for High Frequency Switching 
Ideal for CPU Core DC-DC Converters
Optimized for Sync. FET socket of Sync. Buck Converter
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
100% Rg tested
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6716MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6716MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6716MPbF has been optimized for parameters that are critical in synchronous buck
including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6716MPbF offers particularly low Rds(on) and high Cdv/dt
immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (mΩ)
6
ID = 40A
5
4
3
T J = 125°C
2
T J = 25°C
1
0
2
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
25
±20
39
31
180
320
330
32
V
A
mJ
A
6.0
ID= 32A V = 20V
DS
VDS= 13V
5.0
4.0
3.0
2.0
1.0
0.0
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.65mH, RG = 25Ω, IAS = 32A.
1
02/20/07
IRF6716MPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
2.0
2.6
VGS(th)
Gate Threshold Voltage
1.4
1.9
2.4
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-6.1
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
VDS = 25V, VGS = 0V
–––
–––
150
VDS = 25V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
gfs
Qg
25
–––
–––
–––
17
–––
–––
1.2
1.6
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
220
–––
–––
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 40A c
VGS = 4.5V, ID = 32A c
VDS = VGS, ID = 100µA
VGS = -20V
S
VDS = 15V, ID = 32A
Total Gate Charge
–––
39
59
Qgs1
Pre-Vth Gate-to-Source Charge
–––
10
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
5.3
–––
Qgd
Gate-to-Drain Charge
–––
12
–––
ID = 32A
Qgodr
–––
11.7
–––
See Fig. 2
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
17.3
–––
Qoss
Output Charge
–––
27
–––
nC
RG
Gate Resistance
–––
1.0
1.6
Ω
td(on)
Turn-On Delay Time
–––
19
–––
tr
Rise Time
–––
96
–––
td(off)
Turn-Off Delay Time
–––
21
–––
tf
Fall Time
–––
11
–––
Ciss
Input Capacitance
–––
5150
–––
Coss
Output Capacitance
–––
1340
–––
Crss
Reverse Transfer Capacitance
–––
610
–––
Min.
Typ. Max. Units
–––
–––
VDS = 13V
nC
VGS = 4.5V
VDS = 16V, VGS = 0V
VDD = 13V, VGS = 4.5Vc
ns
ID = 32A
Clamped Inductive Load
VGS = 0V
pF
VDS = 13V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
(Body Diode) d
A
–––
–––
Conditions
MOSFET symbol
4.5
showing the
320
integral reverse
p-n junction diode.
TJ = 25°C, IS = 32A, VGS = 0V c
VSD
Diode Forward Voltage
–––
–––
1.0
V
trr
Reverse Recovery Time
–––
28
42
ns
TJ = 25°C, IF = 32A
Qrr
Reverse Recovery Charge
–––
28
42
nC
di/dt = 200A/µs c
Notes:
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
‚ Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6716MPbF
Absolute Maximum Ratings
c
c
f
Max.
Units
3.6
2.3
78
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
cg
dg
eg
fg
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
c
Typ.
Max.
Units
–––
12.5
20
–––
1.0
35
–––
–––
1.6
–––
°C/W
0.031
W/°C
Thermal Response ( Z thJA )
100
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
Ci= τi/Ri
Ci= τi/Ri
0.01
0.001
1E-006
0.0001
Ri (°C/W) τi (sec)
2.003
0.000686
17.536
0.78614
15.465
28
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
τ3
τA
τA
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
 Surface mounted on 1 in. square Cu board, steady state.
‚ Used double sided cooling , mounting pad.
ƒ Mounted on minimum footprint full size board with metalized
„ TC measured with thermocouple incontact with top (Drain) of part.
… Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
 Surface mounted on 1 in. square Cu (still
air).
www.irf.com
‚ Mounted to a PCB with
small clip heatsink (still air)
ƒ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6716MPbF
≤60µs PULSE WIDTH
Tj = 25°C
1000
TOP
100
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
≤60µs PULSE WIDTH
Tj = 150°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
100
10
2.5V
2.5V
1
10
0.1
1
10
100
0.1
Fig 4. Typical Output Characteristics
10
100
Fig 5. Typical Output Characteristics
1000
2.0
VDS = 15V
≤60µs PULSE WIDTH
ID = 40A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
0.1
V GS = 10V
1.5
V GS = 4.5V
1.0
0.5
1
2
3
4
6
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
5
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
TOP
Crss
4
3
2
1
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
50
100
150
200
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6716MPbF
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
100µsec
1msec
10
10msec
DC
1
T A = 25°C
T J = 150°C
VGS = 0V
Single Pulse
0.1
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.01
1.4
Fig 10. Typical Source-Drain Diode Forward Voltage
1.00
10.00
100.00
Fig 11. Maximum Safe Operating Area
40
Typical VGS(th) Gate threshold Voltage (V)
3.0
35
ID, Drain Current (A)
0.10
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
30
25
20
15
10
5
2.5
2.0
1.5
50
75
100
125
ID = 1.0mA
ID = 1.0A
1.0
0
25
ID = 100µA
ID = 250µA
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1400
ID
16A
19A
BOTTOM 32A
1200
TOP
1000
800
600
400
200
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6716MPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgs2 Qgs1
Qgd
Fig 15b. Gate Charge Waveform
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
I AS
0.01Ω
tp
A
Fig 16a. Unclamped Inductive Test Circuit
Fig 16b. Unclamped Inductive Waveforms
LD
VDS
VDS
+
90%
VDD D.U.T
VGS
Second Pulse Width < 1µs
Duty Factor < 0.1%
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6716MPbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
Re-Applied
Voltage
+
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6716MPbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.25
6.35
B
5.05
4.80
3.95
C
3.85
D
0.35
0.45
E
0.68
0.72
F
0.72
0.68
G
1.38
1.42
H
0.80
0.84
J
0.42
0.38
K
0.88 1.01
L
2.28
2.41
M
0.616 0.676
R
0.020 0.080
P
0.08
0.17
IMPERIAL
MIN
MAX
0.246 0.250
0.189 0.201
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.032 0.033
0.015 0.017
0.035 0.039
0.090 0.095
0.0235 0.0274
0.0008 0.0031
0.003 0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6716MPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6716). For 1000 parts on 7" reel,
order IRF6716TR1
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION
IMPERIAL
METRIC
MIN
MAX
MAX
MIN
12.992
177.77 N.C
N.C
0.795
19.06
N.C
N.C
0.504
13.5
0.520
12.8
0.059
1.5
N.C
N.C
3.937
58.72
N.C
N.C
N.C
N.C
0.724
13.50
0.488
11.9
0.567
12.01
0.469
11.9
0.606
12.01
(QTY 1000)
IMPERIAL
MIN
MAX
6.9
N.C
0.75
N.C
0.53
0.50
0.059
N.C
2.31
N.C
N.C
0.53
0.47
N.C
0.47
N.C
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/07
www.irf.com
9