PD -97131A IRF6724MPbF IRF6724MTRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) RoHs Compliant and Halogen Free VDSS VGS RDS(on) RDS(on) l Low Profile (<0.7 mm) 30V max ±20V max 1.9mΩ@ 10V 2.7mΩ@ 4.5V l Dual Sided Cooling Compatible l Ultra Low Package Inductance Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) l Optimized for High Frequency Switching 33nC 10nC 3.9nC 34nC 20nC 1.8V l Ideal for CPU Core DC-DC Converters l Optimized for Sync. FET socket of Sync. Buck Converter l Low Conduction and Switching Losses l Compatible with existing Surface Mount Techniques l 100% Rg tested l MX DirectFET ISOMETRIC Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MT MX MP Description The IRF6724MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6724MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6724MPbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6724MPbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) 8 ID = 27A 6 4 TJ = 125°C 2 TJ = 25°C 0 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage 10.0 Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f Max. Units 30 ±20 27 21 150 212 12 21 V A mJ A 12 ID= 21A 10 VDS = 24V VDS= 15V 8 6 4 2 0 0 20 40 60 80 100 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.051mH, RG = 25Ω, IAS = 21A. 1 04/30/09 IRF6724MPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 22 RDS(on) Static Drain-to-Source On-Resistance ––– 1.90 ––– 2.70 VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA 2.50 mΩ VGS = 10V, ID = 27A VGS = 4.5V, ID = 21A 3.50 ––– ––– i i VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -6.1 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 ––– ––– 100 IGSS gfs Qg Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 130 ––– ––– VDS = VGS, ID = 100µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID =21A Total Gate Charge ––– 33 54 Qgs1 Pre-Vth Gate-to-Source Charge ––– 8.5 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 3.9 ––– Qgd Gate-to-Drain Charge ––– 10 ––– ID = 21A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 11 ––– See Fig. 15 Qsw ––– 14 ––– Qoss Output Charge ––– 20 ––– nC Ω VDS = 15V nC VGS = 4.5V VDS = 16V, VGS = 0V RG Gate Resistance ––– 1.2 2.2 td(on) Turn-On Delay Time ––– 11 ––– tr Rise Time ––– 19 ––– ID = 21A RG= 1.8Ω i VDD = 15V, VGS = 4.5V td(off) Turn-Off Delay Time ––– 23 ––– tf Fall Time ––– 16 ––– Ciss Input Capacitance ––– 4404 ––– Coss Output Capacitance ––– 885 ––– Crss Reverse Transfer Capacitance ––– 424 ––– Min. Typ. Max. Units ––– ––– ns VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ISM Pulsed Source Current g MOSFET symbol 150 (Body Diode) A ––– ––– Conditions showing the 212 integral reverse VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V trr Reverse Recovery Time ––– 20 30 ns TJ = 25°C, IF =21A Qrr Reverse Recovery Charge ––– 34 51 nC di/dt = 300A/µs (Body Diode) i i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6724MPbF Absolute Maximum Ratings e e f Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e 0.022 W/°C 100 Thermal Response ( ZthJA ) D = 0.50 10 0.20 0.10 0.05 1 R1 R1 0.02 τJ 0.01 τJ τ1 R2 R2 R3 R3 R4 R4 τa τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.1 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τι (sec) 0.99292 0.000074 2.171681 0.007859 24.14602 0.959 17.69469 32.6 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling, mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6724MPbF 1000 1000 100 BOTTOM 10 2.5V 1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 2.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C Tj = 150°C 0.1 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 2.0 VGS = 4.5V Typical RDS(on) (Normalized) ID, Drain-to-Source Current(Α) ID = 27A 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VGS = 10V 1.5 1.0 VDS = 10V ≤60µs PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 0.5 4.0 -60 -40 -20 0 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 6 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Typical RDS (on) (mΩ) C, Capacitance(pF) Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 5 Coss = Cds + Cgd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Crss 4 3 2 TJ = 25°C 1 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6724MPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 TJ = 150°C TJ = 25°C 100.0 TJ = -40°C 10.0 1.0 VGS = 0V 0.4 0.6 0.8 1.0 100 10 100µsec 10msec 1 TA = 25°C Tj = 150°C Single Pulse 0.1 1.2 1.0 10.0 100.0 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area 2.5 Typical VGS(th) Gate threshold Voltage (V) 150 ID, Drain Current (A) 1msec 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 50 2.0 ID = 100µA 1.5 1.0 0.5 0 25 50 75 100 125 -75 150 -50 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) TC , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) -25 50 I D 7.2A 8.4A BOTTOM 21A TOP 40 30 20 10 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6724MPbF Id Vds Vgs L VCC DUT 0 1K Vgs(th) Qgs1 Qgs2 Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + - VDD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6724MPbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt RG • • • • di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6724MPbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMEN SION S ME TRIC CO DE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 M AX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 IMPE RIAL M IN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET Part Marking GATE MARKING LOGO 6724 PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF6724MPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6724MTRPbF) IRF6714MTRPBF). For 1000 parts on 7" reel, order IRF6724MTR1PbF IRF6714MTR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MIN MAX MAX 12.992 177.77 N.C N.C 0.795 19.06 N.C N.C 0.504 13.5 0.520 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MAX MIN 6.9 N.C 0.75 N.C 0.50 0.53 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION 6724 NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 0.319 8.10 7.90 0.154 0.161 3.90 4.10 0.484 0.469 12.30 11.90 0.215 0.219 5.55 5.45 0.209 0.201 5.30 5.10 0.256 0.264 6.70 6.50 0.059 N.C 1.50 N.C 0.059 0.063 1.60 1.50 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2009 www.irf.com 9