MICROSEMI APT37F50B

APT37F50B
APT37F50S
500V, 37A, 0.15Ω Max, trr, ≤250ns
N-Channel FREDFET
TO
-2
Power MOS 8™ is a high speed, high voltage N-channel switch-mode power MOSFET.
This 'FREDFET' version has a drain-source (body) diode that has been optimized for
high reliability in ZVS phase shifted bridge and other circuits through reduced trr, soft
recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly
reduced ratio of Crss/Ciss result in excellent noise immunity and low switching loss. The
intrinsic gate resistance and capacitance of the poly-silicon gate structure help control
di/dt during switching, resulting in low EMI and reliable paralleling, even when switching
at very high frequency.
47
D3PAK
APT37F50B
APT37F50S
Single die FREDFET
D
G
S
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Low trr for high reliability
• Half bridge
• Ultra low Crss for improved noise immunity
• PFC and other boost converter
• Low gate charge
• Buck converter
• Avalanche energy rated
• Single and two switch forward
• RoHS compliant
• Flyback
Absolute Maximum Ratings Symbol
ID
Parameter
Ratings
Continuous Drain Current @ TC = 25°C
37
Continuous Drain Current @ TC = 100°C
24
115
Unit
A
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulse Avalanche Energy 2
780
mJ
IAR
Avalanche Current, Repetitive or Non-Repetitive
18
A
1
Thermal and Mechanical Characteristics
Max
Unit
Total Power Dissipation @ TC = 25°C
520
W
RθJC
Junction to Case Thermal Resistance
0.24
RθCS
Case to Sink Thermal Resistance, Flat, Greased Surface
Operating and Storage Junction Temperature Range
-55
150
TL
Soldering Temperature for 10 Seconds (1.6mm from case)
300
WT
Package Weight
TJ,TSTG
Torque
Mounting Torque ( TO-247 Package), 6-32 or M3 screw
MicrosemiWebsite-http://www.microsemi.com
0.11
°C/W
°C
0.22
oz
6.2
g
10
in·lbf
1.1
N·m
05-2009
PD
Typ
Rev C
Min
050-8125
Characteristic
Symbol
Static Characteristics
TJ = 25°C unless otherwise specified
APT37F50B_S
Symbol
Parameter
Test Conditions
Min
VBR(DSS)
Drain-Source Breakdown Voltage
VGS = 0V, ID = 250µA
500
∆VBR(DSS)/∆TJ
Drain-Source On Resistance
VGS(th)
Gate-Source Threshold Voltage
∆VGS(th)/∆TJ
VGS = VDS, ID = 1mA
Threshold Voltage Temperature Coefficient
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
Dynamic Characteristics
Forward Transconductance
VDS = 600V
TJ = 25°C
VGS = 0V
TJ = 125°C
VGS = ±30V
Min
Test Conditions
VDS = 50V, ID = 18A
Typ
Output Capacitance
27
5710
75
615
355
180
145
32
65
25
29
65
21
Min
Typ
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Coss
Max
0.15
5
Unit
V
V/°C
Ω
V
mV/°C
250
1000
±100
µA
nA
TJ = 25°C unless otherwise specified
Parameter
gfs
0.60
0.13
2.5
4
-10
VGS = 10V, ID = 18A
3
IDSS
Symbol
Reference to 25°C, ID = 250µA
Breakdown Voltage Temperature Coefficient
RDS(on)
Typ
VGS = 0V, VDS = 25V
f = 1MHz
Co(cr)
4
Effective Output Capacitance, Charge Related
Co(er)
5
Effective Output Capacitance, Energy Related
Max
Unit
S
pF
VGS = 0V, VDS = 0V to 333V
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
td(on)
Turn-On Delay Time
tr
td(off)
tf
VGS = 0 to 10V, ID = 18A,
VDS = 250V
Resistive Switching
VDD = 333V, ID = 18A
Current Rise Time
RG = 4.7Ω 6 , VGG = 15V
Turn-Off Delay Time
Current Fall Time
nC
ns
Source-Drain Diode Characteristics
Symbol
IS
ISM
VSD
Parameter
Continuous Source Current
(Body Diode)
(Body Diode) 1
Qrr
Reverse Recovery Charge
Irrm
Reverse Recovery Current
Peak Recovery dv/dt
S
TJ = 25°C
TJ = 125°C
ISD = 18A 3
TJ = 25°C
diSD/dt = 100A/µs
TJ = 125°C
VDD = 100V
TJ = 25°C
37
115
0.88
2.18
8.4
11.8
1.0
250
450
TJ = 125°C
ISD ≤ 18A, di/dt ≤1000A/µs, VDD =
20
Unit
A
Max
G
ISD = 18A, TJ = 25°C, VGS = 0V
Diode Forward Voltage
Reverse Recovery Time
D
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
Pulsed Source Current
trr
dv/dt
Test Conditions
333V, TJ = 125°C
V
ns
µC
A
V/ns
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
050-8125
Rev C
05-2009
2 Starting at TJ = 25°C, L = 4.81mH, RG = 25Ω, IAS = 18A.
3 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
4 Co(cr) is defined as a fixed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is defined as a fixed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of VDS less than V(BR)DSS, use this equation: Co(er) = -1.33E-7/VDS^2 + 3.06E-8/VDS + 8.83E-11.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
140
V
GS
APT37F50B_S
70
= 10V
T = 125°C
J
TJ = -55°C
120
= 7 &,10V
V
GS
60
100
80
TJ = 25°C
60
40
TJ = 150°C
20
6V
30
5.5V
20
5V
10
TJ = 125°C
0
0
5
10
15
20
25
VDS(ON), DRAIN-TO-SOURCE VOLTAGE (V)
0
2.5
Figure 2, Output Characteristics
120
NORMALIZED TO
VGS = 10V @ 18A
ID, DRAIN CURRENT (A)
1.5
1.0
0.5
250µSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
80
TJ = -55°C
60
TJ = 25°C
40
TJ = 125°C
20
0
0
-55 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 3, RDS(ON) vs Junction Temperature
0
1
2
3
4
5
6
7
8
VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 4, Transfer Characteristics
10,000
45
40
Ciss
TJ = -55°C
35
TJ = 25°C
30
C, CAPACITANCE (pF)
TJ = 125°C
25
20
15
10
1000
Coss
100
Crss
5
VGS, GATE-TO-SOURCE VOLTAGE (V) 16
5
10 15
20 25
30
ID, DRAIN CURRENT (A)
Figure 5, Gain vs Drain Current
10
35
100
200
300
400
500
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 6, Capacitance vs Drain-to-Source Voltage
12
VDS = 120V
10
VDS = 300V
8
6
VDS = 480V
4
2
0
0
120
ID = 18A
14
0
0
50
100
150
200
250
Qg, TOTAL GATE CHARGE (nC)
Figure 7, Gate Charge vs Gate-to-Source Voltage
ISD, REVERSE DRAIN CURRENT (A) 0
100
80
60
TJ = 25°C
40
TJ = 150°C
20
0
0
0.3
0.6
0.9
1.2
1.5
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
05-2009
gfs, TRANSCONDUCTANCE
VDS> ID(ON) x RDS(ON) MAX.
100
2.0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Rev C
40
Figure 1, Output Characteristics RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
50
050-8125
0
ID, DRIAN CURRENT (A)
ID, DRAIN CURRENT (A)
6.5V
APT37F50B_S
200
200
100
100
10
13µs
1ms
10ms
1
Rds(on)
10
13µs
100µs
1ms
10ms
TJ = 150°C
TC = 25°C
1
0.1
100ms
DC line
Scaling for Different Case & Junction
Temperatures:
ID = ID(T = 25°C)*(TJ - TC)/125
DC line
10
100
800
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area
0.1
100ms
TJ = 125°C
TC = 75°C
100µs
Rds(on)
1
IDM
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
IDM
C
1
10
100
800
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10, Maximum Forward Safe Operating Area
0.25
0.20
0.7
0.15
0.5
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
D = 0.9
0.3
t2
t1 = Pulse Duration
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
0
t1
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
1.0
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Drain
(HeatSink)
e3 100% Sn Plated
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Drain
13.79 (.543)
13.99(.551)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
05-2009
Rev C
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
050-8125
13.41 (.528)
13.51(.532)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Gate
Drain
Source
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Source
Drain
Gate
Dimensions in Millimeters (Inches)
Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
3.81 (.150)
4.06 (.160)
(Base of Lead)
HeatSink(Drain)
and Leads
are Plated