ONSEMI MUN5112T1G

MUN5111T1 Series
Bias Resistor Transistors
PNP Silicon Surface Mount Transistor
with Monolithic Bias Resistor Network
This new series of digital transistors is designed to replace a single
device and its external resistor bias network. The Bias Resistor
Transistor (BRT) contains a single transistor with a monolithic bias
network consisting of two resistors; a series base resistor and a
base−emitter resistor. The BRT eliminates these individual
components by integrating them into a single device. The use of a BRT
can reduce both system cost and board space. The device is housed in
the SC−70/SOT−323 package which is designed for low power
surface mount applications.
Features
•
•
•
•
•
•
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
The SC−70/SOT−323 package can be soldered using wave or reflow.
The modified gull−winged leads absorb thermal stress during
soldering eliminating the possibility of damage to the die.
Available in 8 mm embossed tape and reel − Use the Device Number
to order the 7 inch/3000 unit reel. Replace “T1” with “T3” in the
Device Number to order the 13 inch/10,000 unit reel.
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Symbol
Value
Unit
Collector-Base Voltage
VCBO
50
Vdc
Collector-Emitter Voltage
VCEO
50
Vdc
IC
100
mAdc
Rating
Collector Current
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation
TA = 25°C
Derate above 25°C
Symbol
Max
Unit
PD
202 (Note 1)
310 (Note 2)
1.6 (Note 1)
2.5 (Note 2)
mW
°C/W
Thermal Resistance, Junction-to-Ambient
RqJA
618 (Note 1)
403 (Note 2)
°C/W
Thermal Resistance, Junction-to-Lead
RqJL
280 (Note 1)
332 (Note 2)
°C/W
TJ, Tstg
−55 to +150
°C
Junction and Storage Temperature
Range
http://onsemi.com
PNP SILICON
BIAS RESISTOR
TRANSISTORS
PIN 1
BASE
(INPUT)
PIN 3
COLLECTOR
(OUTPUT)
R1
R2
PIN 2
EMITTER
(GROUND)
3
1
2
SC−70/SOT−323
CASE 419
STYLE 3
MARKING DIAGRAM
6x M G
G
6x = Device Code
M = Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending
upon manufacturing location.
ORDERING INFORMATION
See specific ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
1. FR−4 @ Minimum Pad
2. FR−4 @ 1.0 x 1.0 inch Pad
© Semiconductor Components Industries, LLC, 2010
October, 2010 − Rev. 10
1
Publication Order Number:
MUN5111T1/D
MUN5111T1 Series
ORDERING INFORMATION AND RESISTOR VALUES
Package
Marking
R1 (K)
R2 (K)
Shipping†
MUN5111T1G
SC−70/SOT−323
(Pb−Free)
6A
10
10
3000/Tape & Reel
MUN5112T1G
SC−70/SOT−323
(Pb−Free)
6B
22
22
3000/Tape & Reel
MUN5113T1G
SC−70/SOT−323
(Pb−Free)
6C
47
47
3000/Tape & Reel
MUN5113T3G
SC−70/SOT−323
(Pb−Free)
6C
47
47
10,000/Tape & Reel
MUN5113T1G
SC−70/SOT−323
(Pb−Free)
6C
47
47
3000/Tape & Reel
MUN5114T1G
SC−70/SOT−323
(Pb−Free)
6D
10
47
3000/Tape & Reel
MUN5115T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6E
10
∞
3000/Tape & Reel
MUN5116T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6F
4.7
∞
3000/Tape & Reel
MUN5130T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6G
1.0
1.0
3000/Tape & Reel
MUN5131T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6H
2.2
2.2
3000/Tape & Reel
MUN5132T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6J
4.7
4.7
3000/Tape & Reel
MUN5133T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6K
4.7
47
3000/Tape & Reel
MUN5134T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6L
22
47
3000/Tape & Reel
MUN5135T1G (Note 3)
SC−70/SOT−323
(Pb−Free)
6M
2.2
47
3000/Tape & Reel
MUN5136T1G
SC−70/SOT−323
(Pb−Free)
6N
100
100
3000/Tape & Reel
MUN5137T1G
SC−70/SOT−323
(Pb−Free)
6P
47
22
3000/Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
3. New devices. Updated curves to follow in subsequent data sheets.
http://onsemi.com
2
MUN5111T1 Series
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Collector−Base Cutoff Current
(VCB = 50 V, IE = 0)
ICBO
−
−
100
nAdc
Collector−Emitter Cutoff Current
(VCE = 50 V, IB = 0)
ICEO
−
−
500
nAdc
IEBO
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
0.5
0.2
0.1
0.2
0.9
1.9
4.3
2.3
1.5
0.18
0.13
0.2
0.05
0.13
mAdc
Collector−Base Breakdown Voltage
(IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector−Emitter Breakdown Voltage (Note 4)
(IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
hFE
35
60
80
80
160
160
3.0
8.0
15
80
80
80
80
80
60
100
140
140
250
250
5.0
15
27
140
130
140
150
140
−
−
−
−
−
−
−
−
−
−
−
−
−
−
VCE(sat)
−
−
0.25
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
OFF CHARACTERISTICS
Emitter−Base Cutoff Current
(VEB = 6.0 V, IC = 0)
MUN5111T1
MUN5112T1
MUN5113T1
MUN5114T1
MUN5115T1
MUN5116T1
MUN5130T1
MUN5131T1
MUN5132T1
MUN5133T1
MUN5134T1
MUN5135T1
MUN5136T1
MUN5137T1
ON CHARACTERISTICS (Note 4)
DC Current Gain
(VCE = 10 V, IC = 5.0 mA)
MUN5111T1
MUN5112T1
MUN5113T1
MUN5114T1
MUN5115T1
MUN5116T1
MUN5130T1
MUN5131T1
MUN5132T1
MUN5133T1
MUN5134T1
MUN5135T1
MUN5136T1
MUN5137T1
Collector−Emitter Saturation Voltage (IC = 10 mA, IE = 0.3 mA)
(IC = 10 mA, IB = 5 mA)
MUN5130T1/MUN5131T1
(IC = 10 mA, IB = 1 mA)
MUN5115T1/MUN5116T1/
MUN5132T1/MUN5133T1/MUN5134T1
Output Voltage (on)
(VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 3.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 5.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 4.0 V, RL = 1.0 kW)
MUN5111T1
MUN5112T1
MUN5114T1
MUN5115T1
MUN5116T1
MUN5130T1
MUN5131T1
MUN5132T1
MUN5133T1
MUN5134T1
MUN5135T1
MUN5113T1
MUN5136T1
MUN5137T1
VOL
4. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%
http://onsemi.com
3
Vdc
Vdc
MUN5111T1 Series
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 0.050 V, RL = 1.0 kW)
MUN5130T1
(VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW)
MUN5115T1
MUN5116T1
MUN5131T1
MUN5132T1
VOH
4.9
−
−
Vdc
Input Resistor
R1
7.0
15.4
32.9
7.0
7.0
3.3
0.7
1.5
3.3
3.3
15.4
1.54
70
32.9
10
22
47
10
10
4.7
1.0
2.2
4.7
4.7
22
2.2
100
47
13
28.6
61.1
13
13
6.1
1.3
2.9
6.1
6.1
28.6
2.86
130
61.1
0.8
0.17
−
0.8
0.055
0.38
0.038
1.7
1.0
0.21
−
1.0
0.1
0.47
0.047
2.1
1.2
0.25
−
1.2
0.185
0.56
0.056
2.6
MUN5111T1/MUN5112T1/MUN5113T1/MUN5136T1
MUN5114T1
MUN5115T1/MUN5116T1
MUN5130T1/MUN5131T1/MUN5132T1
MUN5133T1
MUN5134T1
MUN5135T1
MUN5137T1
R1/R2
250
PD , POWER DISSIPATION (MILLIWATTS)
Resistor Ratio
MUN5111T1
MUN5112T1
MUN5113T1
MUN5114T1
MUN5115T1
MUN5116T1
MUN5130T1
MUN5131T1
MUN5132T1
MUN5133T1
MUN5134T1
MUN5135T1
MUN5136T1
MUN5137T1
200
150
100
50
0
-50
RqJA = 833°C/W
0
50
100
TA, AMBIENT TEMPERATURE (°C)
Figure 1. Derating Curve
http://onsemi.com
4
150
kW
MUN5111T1 Series
1000
1
IC/IB = 10
h FE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − MUN5111T1
TA=-25°C
0.1
25°C
75°C
0.01
0
VCE = 10 V
TA=75°C
25°C
100
10
20
40
IC, COLLECTOR CURRENT (mA)
50
-25°C
1
10
IC, COLLECTOR CURRENT (mA)
Figure 2. VCE(sat) versus IC
Figure 3. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
2
1
0
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
25°C
75°C
f = 1 MHz
lE = 0 V
TA = 25°C
TA=-25°C
10
1
0.1
0.01
0.001
50
Figure 4. Output Capacitance
VO = 5 V
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (VOLTS)
VO = 0.2 V
TA=-25°C
10
25°C
75°C
1
0.1
0
10
8
9
Figure 5. Output Current versus Input Voltage
100
V in , INPUT VOLTAGE (VOLTS)
Cob , CAPACITANCE (pF)
4
3
100
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 6. Input Voltage versus Output Current
http://onsemi.com
5
10
MUN5111T1 Series
1000
10
h FE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − MUN5112T1
IC/IB = 10
1
25°C
TA=-25°C
75°C
0.1
0.01
VCE = 10 V
TA=75°C
25°C
-25°C
100
10
0
20
IC, COLLECTOR CURRENT (mA)
1
50
40
10
Figure 7. VCE(sat) versus IC
Figure 8. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
3
2
1
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
25°C
75°C
f = 1 MHz
lE = 0 V
TA = 25°C
TA=-25°C
10
1
0.1
0.01
0.001
50
Figure 9. Output Capacitance
VO = 5 V
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (VOLTS)
VO = 0.2 V
TA=-25°C
10
25°C
75°C
1
0.1
0
10
8
9
10
Figure 10. Output Current versus Input Voltage
100
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
4
0
100
IC, COLLECTOR CURRENT (mA)
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 11. Input Voltage versus Output Current
http://onsemi.com
6
MUN5111T1 Series
1
1000
IC/IB = 10
TA=-25°C
h FE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − MUN5113T1
25°C
75°C
0.1
0.01
0
10
20
30
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
-25°C
100
10
40
1
10
IC, COLLECTOR CURRENT (mA)
Figure 12. VCE(sat) versus IC
Figure 13. DC Current Gain
1
100
0.6
0.4
0.2
0
0
-25°C
1
0.1
0.01
Figure 14. Output Capacitance
VO = 5 V
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (VOLTS)
VO = 0.2 V
TA=-25°C
25°C
75°C
1
0.1
0
10
8
9
10
Figure 15. Output Current versus Input Voltage
100
10
25°C
TA=75°C
10
0.001
50
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
lE = 0 V
TA = 25°C
0.8
100
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 16. Input Voltage versus Output Current
http://onsemi.com
7
MUN5111T1 Series
180
1
IC/IB = 10
h FE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − MUN5114T1
TA=-25°C
25°C
0.1
75°C
0.01
0.001
0
20
40
60
IC, COLLECTOR CURRENT (mA)
25°C
140
-25°C
120
100
80
60
40
20
0
80
TA=75°C
VCE = 10 V
160
1
2
4
6
Figure 17. VCE(sat) versus IC
100
3.5
IC, COLLECTOR CURRENT (mA)
Cob , CAPACITANCE (pF)
TA=75°C
f = 1 MHz
lE = 0 V
TA = 25°C
4
3
2.5
2
1.5
1
0.5
0
2
4
6 8 10 15 20 25 30 35
VR, REVERSE BIAS VOLTAGE (VOLTS)
40
45
25°C
-25°C
10
VO = 5 V
1
50
Figure 19. Output Capacitance
0
2
4
6
Vin, INPUT VOLTAGE (VOLTS)
8
10
Figure 20. Output Current versus Input Voltage
10
+12 V
VO = 0.2 V
V in , INPUT VOLTAGE (VOLTS)
80 90 100
Figure 18. DC Current Gain
4.5
0
8 10 15 20 40 50 60 70
IC, COLLECTOR CURRENT (mA)
25°C
TA=-25°C
75°C
Typical Application
for PNP BRTs
1
LOAD
0.1
0
10
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 21. Input Voltage versus Output Current
Figure 22. Inexpensive, Unregulated Current Source
http://onsemi.com
8
MUN5111T1 Series
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5132T1
1000
75°C
0.1
hFE, DC CURRENT GAIN
VCE(sat), MAXIMUM COLLECTOR
VOLTAGE (VOLTS)
1
25°C
−25°C
0.01
0
5
10
15
20
25
IC, COLLECTOR CURRENT (mA)
30
75°C
100
25°C
10
1
35
−25°C
0
20
Figure 23. Maximum Collector Voltage versus
Collector Current
100
IC, COLLECTOR CURRENT (mA)
9
8
7
6
5
4
3
2
0
10
20
30
40
50
VR, REVERSE BIAS VOLTAGE (VOLTS)
75°C
−25°C
10
25°C
1
0.1
0.01
60
0
1
2
3
4
−25°C
75°C
25°C
0.1
0
5
10
6
7
8
9
10
Figure 26. Output Current versus Input Voltage
10
1
5
Vin, INPUT VOLTAGE (VOLTS)
Figure 25. Output Capacitance
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
120
Figure 24. DC Current Gain
10
1
0
40
60
80
100
IC, COLLECTOR CURRENT (mA)
15
20 25 30
35 40
IC, OUTPUT CURRENT (mA)
45
Figure 27. Input Voltage versus Output Current
http://onsemi.com
9
50
MUN5111T1 Series
1
1000
VCE = 10 V
IC/IB = 10
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5133T1
75°C
0.1
−25°C
25°C
0.01
0.001
30
20
40
10
IC, COLLECTOR CURRENT (mA)
0
75°C
100
1
10
IC, COLLECTOR CURRENT (mA)
Figure 28. VCE(sat) versus IC
IC, COLLECTOR CURRENT (mA)
100
f = 1 MHz
lE = 0 V
TA = 25°C
7
6
5
4
3
2
1
0
5
10 15 20 25 30 35 40 45
VR, REVERSE BIAS VOLTAGE (VOLTS)
75°C
10
25°C
1
0.1
TA = −25°C
0.01
0.001
50
Figure 30. Output Capacitance
VO = 5 V
0
1
2
3
4
5
6
7
8
Vin, INPUT VOLTAGE (VOLTS)
TA = −25°C
1
75°C
25°C
VO = 0.2 V
0.1
0
9
10
Figure 31. Output Current versus Input Voltage
10
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
100
Figure 29. DC Current Gain
8
0
25°C
10
1
50
TA = −25°C
10
20
30
40
IC, COLLECTOR CURRENT (mA)
Figure 32. Input Voltage versus Output Current
http://onsemi.com
10
50
MUN5111T1 Series
VCE(sat), MAXIMUM COLLECTOR
VOLTAGE (VOLTS)
1
0.1
0.01
75°C
25°C
−25°C
IC/IB = 10
0
1
2
3
4
5
IC, COLLECTOR CURRENT (mA)
6
7
hFE, DC CURRENT GAIN (NORMALIZED)
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5136T1
1000
75°C
TA = −25°C
100
10
VCE = 10 V
1
1
10
IC, COLLECTOR CURRENT (mA)
Figure 33. Maximum Collector Voltage versus
Collector Current
100
IC, COLLECTOR CURRENT (mA)
1.0
f = 1 MHz
IE = 0 V
TA = 25°C
0.8
0.6
0.4
0.2
0
10
20
30
40
50
VR, REVERSE BIAS VOLTAGE (VOLTS)
25°C
TA = −25°C
1
VO = 5 V
0
1
2
3
4
TA = −25°C
VO = 0.2 V
75°C
0
2
6
7
8
9
10
Figure 36. Output Current versus Input Voltage
10
1
5
Vin, INPUT VOLTAGE (VOLTS)
100
25°C
75°C
10
0.1
60
Figure 35. Output Capacitance
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
100
Figure 34. DC Current Gain
1.2
0
25°C
4
6
8
10 12
14
16
IC, COLLECTOR CURRENT (mA)
18
Figure 37. Input Voltage versus Output Current
http://onsemi.com
11
20
MUN5111T1 Series
VCE(sat), MAXIMUM COLLECTOR
VOLTAGE (VOLTS)
1
TA = −25°C
75°C
0.1
25°C
0.01
IC/IB = 10
0
5
10 15
20 25 30 35 40
IC, COLLECTOR CURRENT (mA)
45
50
hFE, DC CURRENT GAIN (NORMALIZED)
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5137T1
1000
75°C
TA = −25°C
100
25°C
VCE = 10 V
10
1
10
IC, COLLECTOR CURRENT (mA)
Figure 38. Maximum Collector Voltage versus
Collector Current
Figure 39. DC Current Gain
100
1.0
IC, COLLECTOR CURRENT (mA)
1.2
0.8
0.6
0.4
0.2
0
0
10
20
30
40
50
VR, REVERSE BIAS VOLTAGE (VOLTS)
75°C
TA = −25°C
10
25°C
1
0.1
0.01
0.001
60
VO = 5 V
0
1
2
3
4
VO = 0.2 V
1
TA = −25°C
75°C
25°C
0
6
7
8
9
10
11
Figure 41. Output Current versus Input Voltage
100
10
5
Vin, INPUT VOLTAGE (VOLTS)
Figure 40. Output Capacitance
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
1.4
f = 1 MHz
IE = 0 V
TA = 25°C
100
5
10
15
20
IC, COLLECTOR CURRENT (mA)
25
Figure 42. Input Voltage versus Output Current
http://onsemi.com
12
MUN5111T1 Series
PACKAGE DIMENSIONS
SC−70/SOT−323
CASE 419−04
ISSUE N
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
e1
DIM
A
A1
A2
b
c
D
E
e
e1
L
HE
3
E
HE
1
2
b
e
A
0.05 (0.002)
c
A2
MIN
0.80
0.00
0.30
0.10
1.80
1.15
1.20
0.20
2.00
MILLIMETERS
NOM
MAX
0.90
1.00
0.05
0.10
0.70 REF
0.35
0.40
0.18
0.25
2.10
2.20
1.24
1.35
1.30
1.40
0.65 BSC
0.38
0.56
2.10
2.40
MIN
0.032
0.000
0.012
0.004
0.071
0.045
0.047
0.008
0.079
INCHES
NOM
0.035
0.002
0.028 REF
0.014
0.007
0.083
0.049
0.051
0.026 BSC
0.015
0.083
MAX
0.040
0.004
0.016
0.010
0.087
0.053
0.055
0.022
0.095
STYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
L
A1
SOLDERING FOOTPRINT*
0.65
0.025
0.65
0.025
1.9
0.075
0.9
0.035
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent
rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an
Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MUN5111T1/D