ONSEMI DTA144EET1

DTA114EET1 Series
Preferred Devices
Bias Resistor Transistors
PNP Silicon Surface Mount Transistors
with Monolithic Bias Resistor Network
This new series of digital transistors is designed to replace a single
device and its external resistor bias network. The Bias Resistor
Transistor (BRT) contains a single transistor with a monolithic bias
network consisting of two resistors; a series base resistor and a
base−emitter resistor. The BRT eliminates these individual
components by integrating them into a single device. The use of a BRT
can reduce both system cost and board space. The device is housed in
the SC−75/SOT−416 package which is designed for low power
surface mount applications.
Features
•
•
•
•
•
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
The SC−75/SOT−416 package can be soldered using wave or reflow.
The modified gull−winged leads absorb thermal stress during
soldering eliminating the possibility of damage to the die.
Pb−Free Packages are Available
http://onsemi.com
PNP SILICON BIAS
RESISTOR TRANSISTORS
PIN 1
BASE
(INPUT)
PIN 3
COLLECTOR
(OUTPUT)
R1
R2
PIN 2
EMITTER
(GROUND)
3
2
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
1
Symbol
Value
Unit
Collector-Base Voltage
VCBO
50
Vdc
Collector-Emitter Voltage
VCEO
50
Vdc
IC
100
mAdc
Symbol
Value
Unit
200
1.6
mW
mW/°C
600
°C/W
300
2.4
mW
mW/°C
Collector Current
SC−75 (SOT−416)
CASE 463
STYLE 1
MARKING DIAGRAM
THERMAL CHARACTERISTICS
Rating
Total Device Dissipation, FR−4 Board
(Note 1) @ TA = 25°C
Derate above 25°C
Thermal Resistance, Junction−to−Ambient
(Note 1)
Total Device Dissipation, FR−4 Board
(Note 2) @ TA = 25°C
Derate above 25°C
PD
RqJA
xx M G
G
PD
Thermal Resistance, Junction−to−Ambient
(Note 2)
RqJA
400
°C/W
Junction and Storage Temperature Range
TJ, Tstg
−55 to
+150
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. FR−4 @ Minimum Pad.
2. FR−4 @ 1.0 × 1.0 Inch Pad.
xx
= Specific Device Code
xx = (Refer to page 2)
M
= Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending
upon manufacturing location.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Preferred devices are recommended choices for future use
and best overall value.
© Semiconductor Components Industries, LLC, 2006
March, 2006 − Rev. 6
1
Publication Order Number:
DTA114EET1/D
DTA114EET1 Series
ORDERING INFORMATION AND RESISTOR VALUES
Device
Marking
R1 (K)
R2 (K)
6A
10
10
6B
22
22
DTA114EET1
DTA114EET1G
DTA124EET1
DTA124EET1G
DTA144EET1
DTA144EET1G
6C
47
47
DTA114YET1
DTA114YET1G
6D
10
47
DTA114TET1
DTA114TET1G
6E
∞
10
DTA143TET1
DTA143TET1G
6F
4.7
∞
6H
2.2
2.2
43
4.7
4.7
6K
4.7
47
6L
22
47
6M
2.2
47
6N
100
100
6P
47
22
DTA123EET1
DTA123EET1G
DTA143EET1
DTA143EET1G
DTA143ZET1
DTA143ZET1G
DTA124XET1
DTA124XET1G
DTA123JET1
DTA123JET1G
DTA115EET1
DTA115EET1G
DTA144WET1
DTA144WET1G
Package
Shipping †
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
SC−75
3000 Tape & Reel
SC−75
(Pb−Free)
3000 Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
2
DTA114EET1 Series
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector−Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
nAdc
Collector−Emitter Cutoff Current (VCE = 50 V, IB = 0)
ICEO
−
−
500
nAdc
Emitter−Base Cutoff Current
(VEB = 6.0 V, IC = 0)
IEBO
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
0.5
0.2
0.1
0.2
0.9
1.9
2.3
1.5
0.18
0.13
0.2
0.05
0.13
mAdc
Collector−Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector−Emitter Breakdown Voltage (Note 3)
(IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
Symbol
Min
Typ
Max
Unit
hFE
35
60
80
80
160
160
8.0
15
80
80
80
80
80
60
100
140
140
250
250
15
27
140
130
140
150
140
−
−
−
−
−
−
−
−
−
−
−
−
−
−
VCE(sat)
−
−
0.25
Vdc
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Characteristic
OFF CHARACTERISTICS
DTA114EET1
DTA124EET1
DTA144EET1
DTA114YET1
DTA114TET1
DTA143TET1
DTA123EET1
DTA143EET1
DTA143ZET1
DTA124XET1
DTA123JET1
DTA115EET1
DTA144WET1
3. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
ON CHARACTERISTICS (Note 4)
DC Current Gain
(VCE = 10 V, IC = 5.0 mA)
DTA114EET1
DTA124EET1
DTA144EET1
DTA114YET1
DTA114TET1
DTA143TET1
DTA123EET1
DTA143EET1
DTA143ZET1
DTA124XET1
DTA123JET1
DTA115EET1
DTA144WET1
Collector−Emitter Saturation Voltage (IC = 10 mA, IE = 0.3 mA)
(IC = 10 mA, IB = 5 mA)
DTA123EET1
(IC = 10 mA, IB = 1 mA)
DTA114TET1/DTA143TET1
DTA143ZET1/DTA124XET1
DTA143EET1
Output Voltage (on)
(VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 3.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 5.5 V, RL = 1.0 kW)
(VCC = 5.0 V, VB = 4.0 V, RL = 1.0 kW)
VOL
DTA114EET1
DTA124EET1
DTA114YET1
DTA114TET1
DTA143TET1
DTA123EET1
DTA143EET1
DTA143ZET1
DTA124XET1
DTA123JET1
DTA144EET1
DTA115EET1
DTA144WET1
5. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%
http://onsemi.com
3
Vdc
DTA114EET1 Series
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
VOH
4.9
−
−
Vdc
R1
7.0
15.4
32.9
7.0
7.0
3.3
1.5
3.3
3.3
15.4
1.54
70
32.9
10
22
47
10
10
4.7
2.2
4.7
4.7
22
2.2
100
47
13
28.6
61.1
13
13
6.1
2.9
6.1
6.1
28.6
2.86
130
61.1
kW
ON CHARACTERISTICS (Note 6)
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
DTA114TET1
(VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW)
DTA143TET1
DTA123EET1
DTA143EET1
Input Resistor
DTA114EET1
DTA124EET1
DTA144EET1
DTA114YET1
DTA114TET1
DTA143TET1
DTA123EET1
DTA143EET1
DTA143ZET1
DTA124XET1
DTA123JET1
DTA115EET1
DTA144WET1
Resistor Ratio
R1/R2
DTA114EET1/DTA124EET1
DTA144EET1/DTA115EET1
DTA114YET1
DTA114TET1/DTA143TET1
DTA123EET1/DTA143EET1
DTA143ZET1
DTA124XET1
DTA123JET1
DTA144WET1
6. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%
http://onsemi.com
4
−
0.8
0.17
−
0.8
0.055
0.38
0.038
1.7
1.0
0.21
−
1.0
0.1
0.47
0.047
2.1
1.2
0.25
−
1.2
0.185
0.56
0.056
2.6
DTA114EET1 Series
PD , POWER DISSIPATION (MILLIWATTS)
250
200
150
100
50
RqJA = 600°C/W
0
−50
0
50
100
TA, AMBIENT TEMPERATURE (°C)
150
r(t), NORMALIZED TRANSIENT THERMAL RESISTANCE
Figure 1. Derating Curve
1.0
0.1
D = 0.5
0.2
0.1
0.05
0.02
0.01
0.01
SINGLE PULSE
0.001
0.00001
0.0001
0.001
0.01
0.1
t, TIME (s)
1.0
Figure 2. Normalized Thermal Response
http://onsemi.com
5
10
100
1000
DTA114EET1 Series
1000
1
IC/IB = 10
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − DTA114EET1
TA=−25°C
0.1
25°C
75°C
0.01
0
20
40
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
100
10
50
VCE = 10 V
−25°C
1
10
IC, COLLECTOR CURRENT (mA)
Figure 3. VCE(sat) versus IC
Figure 4. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
lE = 0 V
TA = 25°C
2
1
0
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
TA=−25°C
10
1
0.1
0.01
0.001
50
100
25°C
75°C
VO = 5 V
0
Figure 5. Output Capacitance
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
4
3
1
2
6
7
3
4
5
Vin, INPUT VOLTAGE (VOLTS)
VO = 0.2 V
TA=−25°C
25°C
75°C
1
0
10
8
9
Figure 6. Output Current versus Input Voltage
10
0.1
100
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 7. Input Voltage versus Output Current
http://onsemi.com
6
10
DTA114EET1 Series
1
1000
VCE = 10 V
IC/IB = 10
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − DTA123EET1
75°C
0.1
−25°C
25°C
0.01
0.001
0
5
10
15
20
25
IC, COLLECTOR CURRENT (mA)
100
75°C
TA = −25°C
1
30
25°C
10
1
10
IC, COLLECTOR CURRENT (mA)
Figure 8. VCE(sat) versus IC
Figure 9. DC Current Gain
12
IC, COLLECTOR CURRENT (mA)
100
f = 1 MHz
lE = 0 V
TA = 25°C
10
8
6
4
2
0
10 75°C
25°C
1
TA = −25°C
0.1
0.01
VO = 5 V
0.001
0
5
10 15 20 25 30 35 40 45
VR, REVERSE BIAS VOLTAGE (VOLTS)
50
0
Figure 10. Output Capacitance
1
2
3
4
5
6
7
8
Vin, INPUT VOLTAGE (VOLTS)
TA = −25°C
1
75°C
25°C
VO = 0.2 V
0.1
0
9
10
Figure 11. Output Current versus Input Voltage
10
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
100
5
10
15
20
IC, COLLECTOR CURRENT (mA)
Figure 12. Input Voltage versus Output Current
http://onsemi.com
7
25
DTA114EET1 Series
10
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS
TYPICAL ELECTRICAL CHARACTERISTICS − DTA124EET1
IC/IB = 10
1
25°C
TA=−25°C
75°C
0.1
0.01
0
20
IC, COLLECTOR CURRENT (mA)
VCE = 10 V
TA=75°C
1
10
Figure 14. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
2
1
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
TA=−25°C
10
1
0.1
0.01
0.001
50
Figure 15. Output Capacitance
100
25°C
75°C
f = 1 MHz
lE = 0 V
TA = 25°C
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
4
0
VO = 5 V
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (VOLTS)
VO = 0.2 V
10
25°C
75°C
1
0
10
8
9
10
Figure 16. Output Current versus Input Voltage
TA=−25°C
0.1
100
IC, COLLECTOR CURRENT (mA)
Figure 13. VCE(sat) versus IC
3
25°C
−25°C
100
10
50
40
1000
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 17. Input Voltage versus Output Current
http://onsemi.com
8
DTA114EET1 Series
1
1000
IC/IB = 10
TA=−25°C
25°C
75°C
0.1
0.01
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − DTA144EET1
0
10
20
30
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
−25°C
100
10
40
1
10
IC, COLLECTOR CURRENT (mA)
Figure 18. VCE(sat) versus IC
Figure 19. DC Current Gain
1
IC, COLLECTOR CURRENT (mA)
0.6
0.4
0.2
0
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
−25°C
1
0.1
0.01
0.001
50
VO = 5 V
1
0
2
3
4
5
6
7
Vin, INPUT VOLTAGE (VOLTS)
VO = 0.2 V
TA=−25°C
25°C
75°C
1
0.1
0
10
8
9
10
Figure 21. Output Current versus Input Voltage
100
10
25°C
TA=75°C
10
Figure 20. Output Capacitance
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
100
f = 1 MHz
lE = 0 V
TA = 25°C
0.8
100
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 22. Input Voltage versus Output Current
http://onsemi.com
9
DTA114EET1 Series
180
1
IC/IB = 10
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − DTA114YET1
TA=−25°C
25°C
0.1
75°C
0.01
0.001
0
20
40
60
IC, COLLECTOR CURRENT (mA)
25°C
140
−25°C
120
100
80
60
40
20
0
80
TA=75°C
VCE = 10 V
160
1
2
4
6
Figure 23. VCE(sat) versus IC
100
IC, COLLECTOR CURRENT (mA)
3.5
Cob , CAPACITANCE (pF)
TA=75°C
f = 1 MHz
lE = 0 V
TA = 25°C
4
3
2.5
2
1.5
1
0.5
0
2
4
6 8 10 15 20 25 30 35 40
VR, REVERSE BIAS VOLTAGE (VOLTS)
45
25°C
−25°C
10
VO = 5 V
1
50
Figure 25. Output Capacitance
0
2
4
6
Vin, INPUT VOLTAGE (VOLTS)
10
+12 V
VO = 0.2 V
V in , INPUT VOLTAGE (VOLTS)
8
Figure 26. Output Current versus Input Voltage
10
25°C
75°C
TA=−25°C
Typical Application
for PNP BRTs
1
0.1
80 90 100
Figure 24. DC Current Gain
4.5
0
8 10 15 20 40 50 60 70
IC, COLLECTOR CURRENT (mA)
LOAD
0
10
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 27. Input Voltage versus Output Current
Figure 28. Inexpensive, Unregulated Current Source
http://onsemi.com
10
DTA114EET1 Series
VCE(sat), MAXIMUM COLLECTOR
VOLTAGE (VOLTS)
1
0.1
75°C
25°C
−25°C
IC/IB = 10
0.01
0
1
2
3
4
5
IC, COLLECTOR CURRENT (mA)
6
7
hFE, DC CURRENT GAIN (NORMALIZED)
TYPICAL ELECTRICAL CHARACTERISTICS — DTA115EET1
1000
75°C
TA = −25°C
100
25°C
10
VCE = 10 V
1
1
10
IC, COLLECTOR CURRENT (mA)
Figure 29. Maximum Collector Voltage versus
Collector Current
Figure 30. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
1.0
f = 1 MHz
IE = 0 V
TA = 25°C
0.8
0.6
0.4
0.2
25°C
10
20
30
40
50
VR, REVERSE BIAS VOLTAGE (VOLTS)
60
TA = −25°C
1
VO = 5 V
0
1
2
3
4
TA = −25°C
10
VO = 0.2 V
75°C
0
2
6
7
8
9
10
Figure 32. Output Current versus Input Voltage
100
1
5
Vin, INPUT VOLTAGE (VOLTS)
Figure 31. Output Capacitance
25°C
75°C
10
0.1
0
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
1.2
0
100
4
6
8
10 12
14
16
IC, COLLECTOR CURRENT (mA)
18
Figure 33. Input Voltage versus Output Current
http://onsemi.com
11
20
DTA114EET1 Series
hFE, DC CURRENT GAIN (NORMALIZED)
TYPICAL ELECTRICAL CHARACTERISTICS — DTA144WET1
VCE(sat), MAXIMUM COLLECTOR
VOLTAGE (VOLTS)
1
TA = −25°C
75°C
0.1
25°C
IC/IB = 10
0.01
0
5
10 15
20 25 30 35 40
IC, COLLECTOR CURRENT (mA)
45
50
1000
75°C
TA = −25°C
100
25°C
VCE = 10 V
10
1
10
IC, COLLECTOR CURRENT (mA)
Figure 34. Maximum Collector Voltage versus
Collector Current
Figure 35. DC Current Gain
100
1.2
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
IE = 0 V
TA = 25°C
1.0
0.8
0.6
0.4
0.2
75°C
10
20
30
40
50
VR, REVERSE BIAS VOLTAGE (VOLTS)
60
TA = −25°C
10
25°C
1
0.1
0.01
0.001
0
VO = 5 V
0
1
2
3
4
VO = 0.2 V
1
TA = −25°C
75°C
25°C
0
6
7
8
9
10
11
Figure 37. Output Current versus Input Voltage
100
10
5
Vin, INPUT VOLTAGE (VOLTS)
Figure 36. Output Capacitance
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
1.4
0
100
5
10
15
20
IC, COLLECTOR CURRENT (mA)
25
Figure 38. Input Voltage versus Output Current
http://onsemi.com
12
DTA114EET1 Series
PACKAGE DIMENSIONS
SC−75/SOT−416
CASE 463−01
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
−E−
2
3
b 3 PL
0.20 (0.008)
e
DIM
A
A1
b
C
D
E
e
L
HE
−D−
1
M
D
HE
C
0.20 (0.008) E
INCHES
NOM
0.031
0.002
0.008
0.006
0.063
0.031
0.04 BSC
0.004 0.006
0.061 0.063
MIN
0.027
0.000
0.006
0.004
0.059
0.027
MAX
0.035
0.004
0.012
0.010
0.067
0.035
0.008
0.065
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
A
L
MILLIMETERS
MIN
NOM MAX
0.70
0.80
0.90
0.00
0.05
0.10
0.15
0.20
0.30
0.10
0.15
0.25
1.55
1.60
1.65
0.70
0.80
0.90
1.00 BSC
0.10
0.15
0.20
1.50
1.60
1.70
A1
SOLDERING FOOTPRINT*
0.356
0.014
1.803
0.071
0.787
0.031
0.508
0.020
1.000
0.039
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
13
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
DTA114EET1/D