DTA114EET1 Series Preferred Devices Bias Resistor Transistors PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network This new series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base−emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC−75/SOT−416 package which is designed for low power surface mount applications. Features • • • • • Simplifies Circuit Design Reduces Board Space Reduces Component Count The SC−75/SOT−416 package can be soldered using wave or reflow. The modified gull−winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die. Pb−Free Packages are Available http://onsemi.com PNP SILICON BIAS RESISTOR TRANSISTORS PIN 1 BASE (INPUT) PIN 3 COLLECTOR (OUTPUT) R1 R2 PIN 2 EMITTER (GROUND) 3 2 MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating 1 Symbol Value Unit Collector-Base Voltage VCBO 50 Vdc Collector-Emitter Voltage VCEO 50 Vdc IC 100 mAdc Symbol Value Unit 200 1.6 mW mW/°C 600 °C/W 300 2.4 mW mW/°C Collector Current SC−75 (SOT−416) CASE 463 STYLE 1 MARKING DIAGRAM THERMAL CHARACTERISTICS Rating Total Device Dissipation, FR−4 Board (Note 1) @ TA = 25°C Derate above 25°C Thermal Resistance, Junction−to−Ambient (Note 1) Total Device Dissipation, FR−4 Board (Note 2) @ TA = 25°C Derate above 25°C PD RqJA xx M G G PD Thermal Resistance, Junction−to−Ambient (Note 2) RqJA 400 °C/W Junction and Storage Temperature Range TJ, Tstg −55 to +150 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. FR−4 @ Minimum Pad. 2. FR−4 @ 1.0 × 1.0 Inch Pad. xx = Specific Device Code xx = (Refer to page 2) M = Date Code* G = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Preferred devices are recommended choices for future use and best overall value. © Semiconductor Components Industries, LLC, 2006 March, 2006 − Rev. 6 1 Publication Order Number: DTA114EET1/D DTA114EET1 Series ORDERING INFORMATION AND RESISTOR VALUES Device Marking R1 (K) R2 (K) 6A 10 10 6B 22 22 DTA114EET1 DTA114EET1G DTA124EET1 DTA124EET1G DTA144EET1 DTA144EET1G 6C 47 47 DTA114YET1 DTA114YET1G 6D 10 47 DTA114TET1 DTA114TET1G 6E ∞ 10 DTA143TET1 DTA143TET1G 6F 4.7 ∞ 6H 2.2 2.2 43 4.7 4.7 6K 4.7 47 6L 22 47 6M 2.2 47 6N 100 100 6P 47 22 DTA123EET1 DTA123EET1G DTA143EET1 DTA143EET1G DTA143ZET1 DTA143ZET1G DTA124XET1 DTA124XET1G DTA123JET1 DTA123JET1G DTA115EET1 DTA115EET1G DTA144WET1 DTA144WET1G Package Shipping † SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel SC−75 3000 Tape & Reel SC−75 (Pb−Free) 3000 Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 2 DTA114EET1 Series ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Collector−Base Cutoff Current (VCB = 50 V, IE = 0) ICBO − − 100 nAdc Collector−Emitter Cutoff Current (VCE = 50 V, IB = 0) ICEO − − 500 nAdc Emitter−Base Cutoff Current (VEB = 6.0 V, IC = 0) IEBO − − − − − − − − − − − − − − − − − − − − − − − − − − 0.5 0.2 0.1 0.2 0.9 1.9 2.3 1.5 0.18 0.13 0.2 0.05 0.13 mAdc Collector−Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO 50 − − Vdc Collector−Emitter Breakdown Voltage (Note 3) (IC = 2.0 mA, IB = 0) V(BR)CEO 50 − − Vdc Symbol Min Typ Max Unit hFE 35 60 80 80 160 160 8.0 15 80 80 80 80 80 60 100 140 140 250 250 15 27 140 130 140 150 140 − − − − − − − − − − − − − − VCE(sat) − − 0.25 Vdc − − − − − − − − − − − − − − − − − − − − − − − − − − 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Characteristic OFF CHARACTERISTICS DTA114EET1 DTA124EET1 DTA144EET1 DTA114YET1 DTA114TET1 DTA143TET1 DTA123EET1 DTA143EET1 DTA143ZET1 DTA124XET1 DTA123JET1 DTA115EET1 DTA144WET1 3. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0% ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic ON CHARACTERISTICS (Note 4) DC Current Gain (VCE = 10 V, IC = 5.0 mA) DTA114EET1 DTA124EET1 DTA144EET1 DTA114YET1 DTA114TET1 DTA143TET1 DTA123EET1 DTA143EET1 DTA143ZET1 DTA124XET1 DTA123JET1 DTA115EET1 DTA144WET1 Collector−Emitter Saturation Voltage (IC = 10 mA, IE = 0.3 mA) (IC = 10 mA, IB = 5 mA) DTA123EET1 (IC = 10 mA, IB = 1 mA) DTA114TET1/DTA143TET1 DTA143ZET1/DTA124XET1 DTA143EET1 Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 3.5 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 5.5 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 4.0 V, RL = 1.0 kW) VOL DTA114EET1 DTA124EET1 DTA114YET1 DTA114TET1 DTA143TET1 DTA123EET1 DTA143EET1 DTA143ZET1 DTA124XET1 DTA123JET1 DTA144EET1 DTA115EET1 DTA144WET1 5. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0% http://onsemi.com 3 Vdc DTA114EET1 Series ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit VOH 4.9 − − Vdc R1 7.0 15.4 32.9 7.0 7.0 3.3 1.5 3.3 3.3 15.4 1.54 70 32.9 10 22 47 10 10 4.7 2.2 4.7 4.7 22 2.2 100 47 13 28.6 61.1 13 13 6.1 2.9 6.1 6.1 28.6 2.86 130 61.1 kW ON CHARACTERISTICS (Note 6) Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) DTA114TET1 (VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW) DTA143TET1 DTA123EET1 DTA143EET1 Input Resistor DTA114EET1 DTA124EET1 DTA144EET1 DTA114YET1 DTA114TET1 DTA143TET1 DTA123EET1 DTA143EET1 DTA143ZET1 DTA124XET1 DTA123JET1 DTA115EET1 DTA144WET1 Resistor Ratio R1/R2 DTA114EET1/DTA124EET1 DTA144EET1/DTA115EET1 DTA114YET1 DTA114TET1/DTA143TET1 DTA123EET1/DTA143EET1 DTA143ZET1 DTA124XET1 DTA123JET1 DTA144WET1 6. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0% http://onsemi.com 4 − 0.8 0.17 − 0.8 0.055 0.38 0.038 1.7 1.0 0.21 − 1.0 0.1 0.47 0.047 2.1 1.2 0.25 − 1.2 0.185 0.56 0.056 2.6 DTA114EET1 Series PD , POWER DISSIPATION (MILLIWATTS) 250 200 150 100 50 RqJA = 600°C/W 0 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) 150 r(t), NORMALIZED TRANSIENT THERMAL RESISTANCE Figure 1. Derating Curve 1.0 0.1 D = 0.5 0.2 0.1 0.05 0.02 0.01 0.01 SINGLE PULSE 0.001 0.00001 0.0001 0.001 0.01 0.1 t, TIME (s) 1.0 Figure 2. Normalized Thermal Response http://onsemi.com 5 10 100 1000 DTA114EET1 Series 1000 1 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − DTA114EET1 TA=−25°C 0.1 25°C 75°C 0.01 0 20 40 IC, COLLECTOR CURRENT (mA) TA=75°C 25°C 100 10 50 VCE = 10 V −25°C 1 10 IC, COLLECTOR CURRENT (mA) Figure 3. VCE(sat) versus IC Figure 4. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz lE = 0 V TA = 25°C 2 1 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) TA=−25°C 10 1 0.1 0.01 0.001 50 100 25°C 75°C VO = 5 V 0 Figure 5. Output Capacitance V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 4 3 1 2 6 7 3 4 5 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=−25°C 25°C 75°C 1 0 10 8 9 Figure 6. Output Current versus Input Voltage 10 0.1 100 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 7. Input Voltage versus Output Current http://onsemi.com 6 10 DTA114EET1 Series 1 1000 VCE = 10 V IC/IB = 10 hFE, DC CURRENT GAIN VCE(sat), COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − DTA123EET1 75°C 0.1 −25°C 25°C 0.01 0.001 0 5 10 15 20 25 IC, COLLECTOR CURRENT (mA) 100 75°C TA = −25°C 1 30 25°C 10 1 10 IC, COLLECTOR CURRENT (mA) Figure 8. VCE(sat) versus IC Figure 9. DC Current Gain 12 IC, COLLECTOR CURRENT (mA) 100 f = 1 MHz lE = 0 V TA = 25°C 10 8 6 4 2 0 10 75°C 25°C 1 TA = −25°C 0.1 0.01 VO = 5 V 0.001 0 5 10 15 20 25 30 35 40 45 VR, REVERSE BIAS VOLTAGE (VOLTS) 50 0 Figure 10. Output Capacitance 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (VOLTS) TA = −25°C 1 75°C 25°C VO = 0.2 V 0.1 0 9 10 Figure 11. Output Current versus Input Voltage 10 Vin, INPUT VOLTAGE (VOLTS) Cob, CAPACITANCE (pF) 100 5 10 15 20 IC, COLLECTOR CURRENT (mA) Figure 12. Input Voltage versus Output Current http://onsemi.com 7 25 DTA114EET1 Series 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS TYPICAL ELECTRICAL CHARACTERISTICS − DTA124EET1 IC/IB = 10 1 25°C TA=−25°C 75°C 0.1 0.01 0 20 IC, COLLECTOR CURRENT (mA) VCE = 10 V TA=75°C 1 10 Figure 14. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 2 1 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) TA=−25°C 10 1 0.1 0.01 0.001 50 Figure 15. Output Capacitance 100 25°C 75°C f = 1 MHz lE = 0 V TA = 25°C V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 4 0 VO = 5 V 0 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V 10 25°C 75°C 1 0 10 8 9 10 Figure 16. Output Current versus Input Voltage TA=−25°C 0.1 100 IC, COLLECTOR CURRENT (mA) Figure 13. VCE(sat) versus IC 3 25°C −25°C 100 10 50 40 1000 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 17. Input Voltage versus Output Current http://onsemi.com 8 DTA114EET1 Series 1 1000 IC/IB = 10 TA=−25°C 25°C 75°C 0.1 0.01 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − DTA144EET1 0 10 20 30 IC, COLLECTOR CURRENT (mA) TA=75°C 25°C −25°C 100 10 40 1 10 IC, COLLECTOR CURRENT (mA) Figure 18. VCE(sat) versus IC Figure 19. DC Current Gain 1 IC, COLLECTOR CURRENT (mA) 0.6 0.4 0.2 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) −25°C 1 0.1 0.01 0.001 50 VO = 5 V 1 0 2 3 4 5 6 7 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=−25°C 25°C 75°C 1 0.1 0 10 8 9 10 Figure 21. Output Current versus Input Voltage 100 10 25°C TA=75°C 10 Figure 20. Output Capacitance V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 100 f = 1 MHz lE = 0 V TA = 25°C 0.8 100 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 22. Input Voltage versus Output Current http://onsemi.com 9 DTA114EET1 Series 180 1 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − DTA114YET1 TA=−25°C 25°C 0.1 75°C 0.01 0.001 0 20 40 60 IC, COLLECTOR CURRENT (mA) 25°C 140 −25°C 120 100 80 60 40 20 0 80 TA=75°C VCE = 10 V 160 1 2 4 6 Figure 23. VCE(sat) versus IC 100 IC, COLLECTOR CURRENT (mA) 3.5 Cob , CAPACITANCE (pF) TA=75°C f = 1 MHz lE = 0 V TA = 25°C 4 3 2.5 2 1.5 1 0.5 0 2 4 6 8 10 15 20 25 30 35 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 45 25°C −25°C 10 VO = 5 V 1 50 Figure 25. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) 10 +12 V VO = 0.2 V V in , INPUT VOLTAGE (VOLTS) 8 Figure 26. Output Current versus Input Voltage 10 25°C 75°C TA=−25°C Typical Application for PNP BRTs 1 0.1 80 90 100 Figure 24. DC Current Gain 4.5 0 8 10 15 20 40 50 60 70 IC, COLLECTOR CURRENT (mA) LOAD 0 10 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 27. Input Voltage versus Output Current Figure 28. Inexpensive, Unregulated Current Source http://onsemi.com 10 DTA114EET1 Series VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1 0.1 75°C 25°C −25°C IC/IB = 10 0.01 0 1 2 3 4 5 IC, COLLECTOR CURRENT (mA) 6 7 hFE, DC CURRENT GAIN (NORMALIZED) TYPICAL ELECTRICAL CHARACTERISTICS — DTA115EET1 1000 75°C TA = −25°C 100 25°C 10 VCE = 10 V 1 1 10 IC, COLLECTOR CURRENT (mA) Figure 29. Maximum Collector Voltage versus Collector Current Figure 30. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 1.0 f = 1 MHz IE = 0 V TA = 25°C 0.8 0.6 0.4 0.2 25°C 10 20 30 40 50 VR, REVERSE BIAS VOLTAGE (VOLTS) 60 TA = −25°C 1 VO = 5 V 0 1 2 3 4 TA = −25°C 10 VO = 0.2 V 75°C 0 2 6 7 8 9 10 Figure 32. Output Current versus Input Voltage 100 1 5 Vin, INPUT VOLTAGE (VOLTS) Figure 31. Output Capacitance 25°C 75°C 10 0.1 0 Vin, INPUT VOLTAGE (VOLTS) Cob, CAPACITANCE (pF) 1.2 0 100 4 6 8 10 12 14 16 IC, COLLECTOR CURRENT (mA) 18 Figure 33. Input Voltage versus Output Current http://onsemi.com 11 20 DTA114EET1 Series hFE, DC CURRENT GAIN (NORMALIZED) TYPICAL ELECTRICAL CHARACTERISTICS — DTA144WET1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1 TA = −25°C 75°C 0.1 25°C IC/IB = 10 0.01 0 5 10 15 20 25 30 35 40 IC, COLLECTOR CURRENT (mA) 45 50 1000 75°C TA = −25°C 100 25°C VCE = 10 V 10 1 10 IC, COLLECTOR CURRENT (mA) Figure 34. Maximum Collector Voltage versus Collector Current Figure 35. DC Current Gain 100 1.2 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 V TA = 25°C 1.0 0.8 0.6 0.4 0.2 75°C 10 20 30 40 50 VR, REVERSE BIAS VOLTAGE (VOLTS) 60 TA = −25°C 10 25°C 1 0.1 0.01 0.001 0 VO = 5 V 0 1 2 3 4 VO = 0.2 V 1 TA = −25°C 75°C 25°C 0 6 7 8 9 10 11 Figure 37. Output Current versus Input Voltage 100 10 5 Vin, INPUT VOLTAGE (VOLTS) Figure 36. Output Capacitance Vin, INPUT VOLTAGE (VOLTS) Cob, CAPACITANCE (pF) 1.4 0 100 5 10 15 20 IC, COLLECTOR CURRENT (mA) 25 Figure 38. Input Voltage versus Output Current http://onsemi.com 12 DTA114EET1 Series PACKAGE DIMENSIONS SC−75/SOT−416 CASE 463−01 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. −E− 2 3 b 3 PL 0.20 (0.008) e DIM A A1 b C D E e L HE −D− 1 M D HE C 0.20 (0.008) E INCHES NOM 0.031 0.002 0.008 0.006 0.063 0.031 0.04 BSC 0.004 0.006 0.061 0.063 MIN 0.027 0.000 0.006 0.004 0.059 0.027 MAX 0.035 0.004 0.012 0.010 0.067 0.035 0.008 0.065 STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR A L MILLIMETERS MIN NOM MAX 0.70 0.80 0.90 0.00 0.05 0.10 0.15 0.20 0.30 0.10 0.15 0.25 1.55 1.60 1.65 0.70 0.80 0.90 1.00 BSC 0.10 0.15 0.20 1.50 1.60 1.70 A1 SOLDERING FOOTPRINT* 0.356 0.014 1.803 0.071 0.787 0.031 0.508 0.020 1.000 0.039 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 13 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. DTA114EET1/D