AMD AMSN2600DUT4C

Preliminary Information
AMD Athlon MP
Processor Model 10
TM
Data Sheet for
Multiprocessor Platforms
Publication # 26426 Rev. C
Issue Date: October 2003
Preliminary Information
© 2003 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is
granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited
to, the implied warranty of merchantability, fitness for a particular purpose,
or infringement of any intellectual property right.
AMD’s products are not designed, intended, authorized or warranted for use
as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any
Trademarks
AMD, the AMD Arrow logo, AMD Athlon, AMD Duron, and combinations thereof, AMD-760, 3DNow!, and
QuantiSpeed are trademarks of Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
MMX is a trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table of Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1
2
3
Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1
2.2
2.3
Signaling Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Push-Pull (PP) Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
AMD Athlon System Bus Signals . . . . . . . . . . . . . . . . . . . . . . . 6
3
Logic Symbol Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1
4.2
4.3
Power Management States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Working State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Halt State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Stop Grant States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Probe State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Connect and Disconnect Protocol . . . . . . . . . . . . . . . . . . . . . . 13
Connect Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5
CPUID Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6
Electrical and Thermal Specifications for the
AMD Athlon™ MP Processor Model 10. . . . . . . . . . . . . . . . . . 23
7
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
Contents
AMD Athlon™ MP Processor Model 10 Key
Microarchitecture Summary
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Interface Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Voltage Identification (VID[4:0]) . . . . . . . . . . . . . . . . . . . . . . 26
Frequency Identification (FID[3:0]) . . . . . . . . . . . . . . . . . . . . 27
VCCA AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . 27
Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
VCC_CORE Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SYSCLK and SYSCLK# AC and DC Characteristics . . . . . . 31
AMD Athlon System Bus AC and DC Characteristics . . . . . 33
General AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . 35
Open Drain Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Thermal Diode Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 38
Thermal Diode Electrical Characteristics. . . . . . . . . . . . . 38
Thermal Protection Characterization . . . . . . . . . . . . . . . . 38
APIC Pins AC and DC Characteristics . . . . . . . . . . . . . . . . . . 40
iii
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
8
Signal and Power-Up Requirements . . . . . . . . . . . . . . . . . . . . 41
8.1
8.2
9
9.3
Die Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
AMD Athlon MP Processor Model 10 Part Number
27488 OPGA Package Dimensions . . . . . . . . . . . . . . . . . . . . . 46
AMD Athlon MP Processor Model 10 Part Number
27493 OPGA Package Dimensions . . . . . . . . . . . . . . . . . . . . . 48
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1
10.2
10.3
iv
Power-Up Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Signal Sequence and Timing Description . . . . . . . . . . . . . 41
Clock Multiplier Selection (FID[3:0]) . . . . . . . . . . . . . . . . 44
Processor Warm Reset Requirements . . . . . . . . . . . . . . . . . . 44
Northbridge Reset Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1
9.2
10
26426C—October 2003
Pin Diagram and Pin Name Abbreviations . . . . . . . . . . . . . . 51
Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Detailed Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A20M# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
AMD Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
AMD Athlon System Bus Pins . . . . . . . . . . . . . . . . . . . . . . 70
Analog Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
APIC Pins, PICCLK, PICD[1:0]# . . . . . . . . . . . . . . . . . . . . 70
CLKFWDRST Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CLKIN, RSTCLK (SYSCLK) Pins. . . . . . . . . . . . . . . . . . . . 71
CONNECT Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
COREFB and COREFB# Pins . . . . . . . . . . . . . . . . . . . . . . . 71
CPU_PRESENCE# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DBRDY and DBREQ# Pins . . . . . . . . . . . . . . . . . . . . . . . . . 71
FERR Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
FID[3:0] Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
FLUSH# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
IGNNE# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
INIT# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
INTR Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
K7CLKOUT and K7CLKOUT# Pins . . . . . . . . . . . . . . . . . . 73
Key Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
NC Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
NMI Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PGA Orientation Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PLL Bypass and Test Pins . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PWROK Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SADDIN[1:0]# and SADDOUT[1:0]# Pins . . . . . . . . . . . . . 74
Scan Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SCHECK[7:0]# Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SMI# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Contents
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
STPCLK# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SYSCLK and SYSCLK#. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
THERMDA and THERMDC Pins . . . . . . . . . . . . . . . . . . . . 75
VCCA Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
VID[4:0] Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
VREFSYS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ZN and ZP Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Appendix A Thermal Diode Calculations . . . . . . . . . . . . . . . . . . . . . 79
Appendix B Conventions and Abbreviations . . . . . . . . . . . . . . . . . . 83
Contents
v
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
vi
26426C—October 2003
Contents
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
List of Figures
Figure 1.
Logic Symbol Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.
AMD Athlon™ MP Processor Model 10 Power
Management States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3.
AMD Athlon System Bus Disconnect Sequence in the
Stop Grant State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4.
Exiting the Stop Grant State and Bus Connect Sequence . . . . 16
Figure 5.
Northbridge Connect State Diagram . . . . . . . . . . . . . . . . . . . . . 17
Figure 6.
Processor Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7.
VCC_CORE Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 8.
SYSCLK and SYSCLK# Differential Clock Signals . . . . . . . . . 31
Figure 9.
SYSCLK Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 10. General ATE Open-Drain Test Circuit. . . . . . . . . . . . . . . . . . . . 37
Figure 11. Signal Relationship Requirements During Power-Up
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 12. AMD Athlon MP Processor Model 10 Part Number
27488 OPGA Package Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 13. AMD Athlon MP Processor Model 10 Part Number
27493 OPGA Package Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 14. AMD Athlon MP Processor Model 10 Pin Diagram
—Topside View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 15. AMD Athlon MP Processor Model 10 Pin Diagram
—Bottomside View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 16. OPN Example for the AMD Athlon MP Processor
Model 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of Figures
vii
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
viii
26426C—October 2003
List of Figures
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
List of Tables
List of Tables
Table 1.
Electrical and Thermal Specifications for the
AMD Athlon™ MP Processor Model 10 . . . . . . . . . . . . . . . . . . . 23
Table 2.
Interface Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 3.
VID[4:0] DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 4.
FID[3:0] DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 5.
VCCA AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 27
Table 6.
VCC_CORE AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . 28
Table 7.
Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 8.
SYSCLK and SYSCLK# DC Characteristics . . . . . . . . . . . . . . . 31
Table 9.
SYSCLK and SYSCLK# AC Characteristics . . . . . . . . . . . . . . . 32
Table 10.
AMD Athlon System Bus DC Characteristics . . . . . . . . . . . . . . 33
Table 11.
AMD Athlon System Bus AC Characteristics . . . . . . . . . . . . . . 34
Table 12.
General AC and DC Characteristics. . . . . . . . . . . . . . . . . . . . . . 35
Table 13.
Thermal Diode Electrical Characteristics . . . . . . . . . . . . . . . . . 38
Table 14.
Guidelines for Platform Thermal Protection of the
Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 15.
APIC Pin AC and DC Characteristics. . . . . . . . . . . . . . . . . . . . . 40
Table 16.
Mechanical Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 17.
Dimensions for the AMD Athlon MP Processor Model 10
Part Number 27488 OPGA Package . . . . . . . . . . . . . . . . . . . . . . 46
Table 18.
Dimensions for the AMD Athlon MP Processor Model 10
Part Number 27493 OPGA Package . . . . . . . . . . . . . . . . . . . . . . 48
Table 19.
Pin Name Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 20.
Cross-Reference by Pin Location . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 21.
FID[3:0] Clock Multiplier Encodings . . . . . . . . . . . . . . . . . . . . . 72
Table 22.
VID[4:0] Code to Voltage Definition . . . . . . . . . . . . . . . . . . . . . 76
Table 23.
Constants and Variables for the Ideal Diode Equation . . . . . . 79
Table 24.
Constants and Variables Used in Temperature Offset
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 25.
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 26.
Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ix
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
x
26426C—October 2003
List of Tables
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Revision History
Date
Rev
Description
Public revision C of the AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor
Platforms includes the following changes:
October 2003
C
■
■
May 2003
Revision History
B
In Chapter 6, revised Table 1, “Electrical and Thermal Specifications for the AMD Athlon™ MP
Processor Model 10,” on page 23.
In Chapter 11, revised Figure 16, “OPN Example for the AMD Athlon™ MP Processor Model 10,”
on page 77.
Initial public release of the AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor
Platforms
xi
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
xii
26426C—October 2003
Revision History
Preliminary Information
26426C—October 2003
1
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Overview
The AM D Athlon™ M P processor model 10 powers the next
generation in computing platforms, delivering compelling
performance for cutting-edge applications and an unprecedented
computing experience.
The AMD Athlon™ MP processor model 10, based on leadingedge 0.13 micron technology and increased on-chip cache,
integrates the innovative design and manufacturing expertise of
AMD to deliver improved performance, while maintaining the
s t abl e a n d c o m p a t i b l e S o cke t A i nf ra s t r u ct ure of t he
AMD Athlon MP processor. The AMD Athlon MP processor
model 10 continues to deliver breakthrough performance in the
multiprocessing server and workstation markets. This processor
is designed to meet the reliability and computation-intensive
requirements of cutting-edge software applications required by
workstations and servers.
Delivered in an OPGA package, the AMD Athlon MP processor
model 10 delivers the integer, floating-point, and 3D multimedia
performance for enterprise applications running on x86 system
platforms. The AMD Athlon MP processor model 10 offers
compelling performance for productivity software, including
workstation-class digital content creation (DCC), electronic
design automation (EDA), and computer-aided design (CAD), as
well as infrastructure and collaborative server applications. It
also offers the scalability and reliability that IT managers and
business users require for mission-critical computing.
The AMD Athlon MP processor model 10 features the seventhgeneration microarchitecture, including a high-speed execution
core that includes multiple x86 instruction decoders, a dualported, 128-Kbyte, split level-one (L1) cache, a 512-Kbyte onchip L2 cache, three independent integer pipelines, three
address calculation pipelines, and a superscalar, fully pipelined,
out-of-order, three-way floating-point engine. The integrated L2
cache supports the growing processor and system bandwidth
requirements of emerging software, graphics, I/O, and memory
technologies. The processor also features the advanced modified
owner exclusive shared invalid (MOESI) cache coherency
protocol to ensure efficient cache integrity in a multiprocessing
environment. The floating-point engine is capable of delivering
excellent performance on the numerically complex applications
typical of servers and workstations.
Chapter 1
Overview
1
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
The key features of the AMD Athlon MP processor model 10
include QuantiSpeed™ architecture, 640 Kbytes of total, highperformance, full-speed, on-chip cache, an advanced 266 frontside bus (FSB), a 2.1-Gigabyte per second system bus, 3DNow!™
P r o f e s s i o n a l t e ch n o l o gy, a n d f u l l y f e a t u re d l o g i c
implementation for the multiprocessor configuration.
The AMD Athlon system bus combines the latest technological
advances, such as point-to-point topology, source-synchronous
packet-based transfers, and low-voltage signaling. The point-topoint front-side bus architecture provides a more efficient,
higher bandwidth bus that allows each processor, in a multiprocessor configuration, to communicate to the system chipset
through two, full-speed, independent buses rather than through
a common, shared bus. Combined with the AMD-760™ MPX
chipset, the processor and the system bus interface with
double-data rate (DDR) memory subsystems, providing scalable
headroom for bandwidth-hungry applications such as large
databases, CAD/CAM modeling, and simulation engines.
The front-side bus of the AMD Athlon MP processor model 10
also provides multiple-bit error detection and single-bit error
correction with 8-bit error correction code (ECC). The frontside bus with 8-bit ECC delivers the high reliability and
consistency demanded by mission-critical applications.
The AMD Athlon MP processor model 10 is binary-compatible
with existing x86 software and backwards compatible with
applications optimized for MMX™ and 3DNow! technologies.
Using a data format and single-instruction multiple-data
(SIMD) operations based on the MMX instruction model, the
AMD Athlon MP processor model 10 can produce as many as
four, 32-bit, single-precision floating-point results per clock
cycle. The 3DNow! Professional technology implemented in the
AMD Athlon MP processor model 10 includes new integer
multimedia instructions and software-directed data movement
instructions for optimizing such applications as digital content
creation and streaming video for the internet, as well as new
instructions for digital signal processing (DSP)/communications
applications.
2
Overview
Chapter 1
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
1.1
AMD Athlon™ MP Processor Model 10 Key Microarchitecture
Summary
The following features summarize the AMD Athlon MP
processor model 10 microarchitecture:
■
■
■
■
■
■
■
Chapter 1
QuantiSpeed architecture:
• An advanced nine-issue, superpipelined, superscalar x86
processor microarchitecture designed for increased
instructions per clock cycle (IPC) and high clock
frequencies
• Fully pipelined floating-point unit that executes all x87
(floating-point), MMX and 3DNow! professional
instructions
• Hardware data pre-fetch that increases and optimizes
performance on high-end software applications that
utilize high-bandwidth system capability
• Advanced two-level translation look-aside buffer (TLB)
structures for enhanced data and instruction address
translation. The AMD Athlon MP processor with
QuantiSpeed architecture incorporates three TLB
optimizations: the L1 DTLB increases from 32 to 40
entries, the L2 ITLB and L2 DTLB both use exclusive
architecture, and the TLB entries can be speculatively
loaded.
3DNow! Professional technology with new instructions to
enable improved integer-math calculations for speech or
video encoding and improved data movement for internet
plug-ins and other streaming applications
A 266-MHz AMD Athlon system bus enabling leading-edge
system bandwidth for data movement-intensive applications
Point-to-point front-side bus architecture allowing each
processor in a multi-processor configuration to communicate
to the system chipsets through two, full speed, independent
buses
High-performance cache architecture featuring an
integrated 128-Kbyte L1 cache and a 16-way, 256-Kbyte onchip L2 cache for a total of 640 Kbytes of on-chip cache
Multiple-bit error detection and single-bit error correction
with 8-bit error correction code (ECC)
Full-featured MP Local APIC implementation
Overview
3
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
4
Overview
26426C—October 2003
Chapter 1
Preliminary Information
26426C—October 2003
2
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Interface Signals
The AMD Athlon system bus architecture is designed to deliver
superior data movement bandwidth for next-generation x86
platforms as well as the high-performance required by
enterprise-class application software. The system bus
architecture consists of three high-speed channels (a
unidirectional processor request channel, a unidirectional
probe channel, and a 72-bit bidirectional data channel,
including 8-bit error correction code [ECC] protection),
source-synchronous clocking, and a packet-based protocol. In
addition, the system bus supports several control, clock, and
legacy signals. The interface signals use an impedance
controlled push-pull, low-voltage, swing-signaling technology
contained within the Socket A socket.
For more information, see “AMD Athlon™ System Bus Signals”
on page 6, Chapter 10, “Pin Descriptions” on page 51, and the
AMD Athlon™ and AMD Duron™ System Bus Specification,
order# 21902.
2.1
Signaling Technology
The AMD Athlon system bus uses a low-voltage, swing-signaling
technology, that has been enhanced to provide larger noise
margins, reduced ringing, and variable voltage levels. The
signals are push-pull and impedance compensated. The signal
inputs use differential receivers that require a reference
voltage (VREF). The reference signal is used by the receivers to
determine if a signal is asserted or deasserted by the source.
Termination resistors are not needed because the driver is
impedance-matched to the motherboard and a high impedance
reflection is used at the receiver to bring the signal past the
input threshold.
For more information about pins and signals, see Chapter 10,
“Pin Descriptions” on page 51.
Chapter 2
Interface Signals
5
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
2.2
26426C—October 2003
Push-Pull (PP) Drivers
The AMD Athlon MP processor model 10 supports push-pull
(PP) drivers. The system logic configures the processor with the
configuration parameter called SysPushPull (1=PP). The
impedance of the PP drivers is set to match the impedance of
the motherboard by two external resistors connected to the ZN
and ZP pins.
See “ZN and ZP Pins” on page 76 for more information.
2.3
AMD Athlon™ System Bus Signals
The AMD Athlon system bus is a clock-forwarded, point-topoint interface with the following three point-to-point channels:
■
■
■
A 13-bit unidirectional output address/command channel
A 13-bit unidirectional input address/command channel
A 72-bit bidirectional data channel
For more information, see Chapter 7, “Electrical Data” on page
25 and the AMD Athlon™ and AMD Duron™ System Bus
Specification, order# 21902.
6
Interface Signals
Chapter 2
Preliminary Information
26426C—October 2003
3
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Logic Symbol Diagram
Figure 1 is the logic symbol diagram of the processor. This
diagram shows the logical grouping of the input and output
signals.
{
Clock
{
SADDIN[14:2]#
SADDINCLK#
Request
{
SADDOUT[14:2]#
SADDOUTCLK#
Power
Management
and Initialization
{
FID[3:0]
AMD Athlon™ MP
Processor Model 10
PROCRDY
CLKFWDRST
CONNECT
STPCLK#
RESET#
FERR
IGNNE#
INIT#
INTR
NMI
A20M#
SMI#
FLUSH#
Voltage
Control
Frequency
Control
Legacy
THERMDA
THERMDC
Thermal
Diode
PICCLK
PICD[1:0]
{
Probe/SysCMD
VID[4:0]
COREFB
COREFB#
PWROK
{
{
SDATA[63:0]#
SDATAINCLK[3:0]#
SDATAOUTCLK[3:0]#
SCHECK[7:0]#
SDATAINVALID#
SDATAOUTVALID#
SFILLVALID#
{
Data
SYSCLK#
{
SYSCLK
APIC
Figure 1. Logic Symbol Diagram
Chapter 3
Logic Symbol Diagram
7
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
8
Logic Symbol Diagram
26426C—October 2003
Chapter 3
Preliminary Information
26426C—October 2003
4
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Power Management
This chapter describes the power management control system
of the AMD Athlon™ MP processor model 10. The power
management features of the processor are compliant with the
ACPI 1.0b and ACPI 2.0 specifications.
4.1
Power Management States
The AMD Athlon MP processor model 10 supports low-power
Halt and Stop Grant states. These states are used by advanced
configuration and power interface (ACPI) enabled operating
systems for processor power management.
Figure 2 shows the power management states of the processor.
The figure includes the ACPI “Cx” naming convention for these
states.
Execute HLT
C1
Halt
C0
Working4
SMI#, INTR, NMI, INIT#, RESET#
Probe Serviced
STPCLK# deasserted
Incoming Probe
STPCLK# asserted
PC
LK
#d
ST
ea
PC
sse
LK
rte
#a
d3
sse
rte
d2
(Read PLVL2 register
or throttling)
Probe Serviced
Incoming Probe
Probe
State1
ST
ST
ST
PC
LK
#
PC
LK
#
C2
Stop Grant
Cache Snoopable
ass
e
de
ass
ert
ed
rte
d
S1
Stop Grant
Cache Not Snoopable
Sleep
Legend
Hardware transitions
Software transitions
Note:
The AMD AthlonTM System Bus is connected during the following states:
1) The Probe state
2) During transitions between the Halt state and the C2 Stop Grant state
3) During transitions between the C2 Stop Grant state and the Halt state
4) C0 Working state
Figure 2. AMD Athlon™ MP Processor Model 10 Power Management States
Chapter 4
Power Management
9
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
The following sections provide an overview of the power
m a n a g e m e n t s t a t e s . Fo r m o re d e t a i l s , re f e r t o t h e
AMD Athlon™ and AMD Duron™ System Bus Specification,
order# 21902.
Note: In all power management states that the processor is
powered, the system must not stop the system clock
(SYSCLK/SYSCLK#) to the processor.
Working State
The Working state is the state in which the processor is
executing instructions.
Halt State
When the processor executes the HLT instruction, the processor
enters the Halt state and issues a Halt special cycle to the
AMD Athlon system bus. The processor only enters the low
power state dictated by the CLK_Ctl MSR if the system
controller (Northbridge) disconnects the AMD Athlon system
bus in response to the Halt special cycle.
If STPCLK# is asserted, the processor will exit the Halt state
and enter the Stop Grant state. The processor will initiate a
system bus connect, if it is disconnected, then issue a Stop
Grant special cycle. When STPCLK# is deasserted, the
processor will exit the Stop Grant state and re-enter the Halt
state. The processor will issue a Halt special cycle when
re-entering the Halt state.
The Halt state is exited when the processor detects the
assertion of INIT#, RESET#, SMI#, or an interrupt via the INTR
or NMI pins, or via a local APIC interrupt message. When the
Halt state is exited, the processor will initiate an AMD Athlon
system bus connect if it is disconnected.
Stop Grant States
10
The processor enters the Stop Grant state upon recognition of
assertion of STPCLK# input. After entering the Stop Grant
state, the processor issues a Stop Grant special bus cycle on the
AMD Athlon system bus. The processor is not in a low-power
state at this time, because the AMD Athlon system bus is still
connected. After the Northbridge disconnects the AMD Athlon
system bus in response to the Stop Grant special bus cycle, the
processor enters a low-power state dictated by the CLK_Ctl
MSR. If the Northbridge needs to probe the processor during
the Stop Grant state while the system bus is disconnected, it
Power Management
Chapter 4
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
must first connect the system bus. Connecting the system bus
places the processor into the higher power probe state. After
the Northbridge has completed all probes of the processor, the
Northbridge must disconnect the AMD Athlon system bus
again so that the processor can return to the low-power state.
During the Stop Grant states, the processor latches INIT#,
INTR, NMI, SMI#, or a local APIC interrupt message, if they are
asserted.
The Stop Grant state is exited upon the deassertion of
STPCLK# or the assertion of RESET#. When STPCLK# is
d e a s s e r t e d , t h e p ro c e s s o r i n i t i a t e s a c o n n e c t o f t h e
AMD Athlon system bus if it is disconnected. After the
processor enters the Working state, any pending interrupts are
recognized and serviced and the processor resumes execution
at the instruction boundary where STPCLK# was initially
recognized. If RESET# is sampled asserted during the Stop
Grant state, the processor exits the Stop Grant state and the
reset process begins.
There are two mechanisms for asserting STPCLK#—hardware
and software.
The Southbridge can force STPCLK# assertion for throttling to
protect the processor from exceeding its maximum case
temperature. This is accomplished by asserting the THERM#
input to the Southbridge. Throttling asserts STPCLK# for a
percentage of a predefined throttling period: STPCLK# is
repetitively asserted and deasserted until THERM# is
deasserted.
Software can force the processor into the Stop Grant state by
accessing ACPI-defined registers typically located in the
Southbridge.
The operating system places the processor into the C2 Stop
Grant state by reading the P_LVL2 register in the Southbridge.
If an ACPI Thermal Zone is defined for the processor, the
operating system can initiate throttling with STPCLK# using
the ACPI defined P_CNT register in the Southbridge. The
Northbridge connects the AMD Athlon system bus, and the
processor enters the Probe state to service cache snoops during
Stop Grant for C2 or throttling.
Chapter 4
Power Management
11
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
In C2, probes are allowed, as shown in Figure 2 on page 9
The Stop Grant state is also entered for the S1, Powered On
Suspend, system sleep state based on a write to the SLP_TYP
and SLP_EN fields in the ACPI-defined Power Management 1
control register in the Southbridge. During the S1 sleep state,
system software ensures no bus master or probe activity occurs.
The Southbridge deasserts STPCLK# and brings the processor
out of the S1 Stop Grant state when any enabled resume event
occurs.
Probe State
12
The Probe state is entered when the Northbridge connects the
AMD Athlon system bus to probe the processor (for example, to
snoop the processor caches) when the processor is in the Halt or
Stop Grant state. When in the Probe state, the processor
responds to a probe cycle in the same manner as when it is in
the Working state. When the probe has been serviced, the
processor returns to the same state as when it entered the
Probe state (Halt or Stop Grant state). When probe activity is
completed the processor only returns to a low-power state after
the Northbridge disconnects the AMD Athlon system bus again.
Power Management
Chapter 4
Preliminary Information
26426C—October 2003
4.2
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Connect and Disconnect Protocol
Significant power savings of the processor only occur if the
processor is disconnected from the system bus by the
Northbridge while in the Halt or Stop Grant state. The
Northbridge can optionally initiate a bus disconnect upon the
receipt of a Halt or Stop Grant special cycle. The option of
disconnecting is controlled by an enable bit in the Northbridge.
If the Northbridge requires the processor to service a probe
after the system bus has been disconnected, it must first
initiate a system bus connect.
Connect Protocol
In addition to the legacy STPCLK# signal and the Halt and Stop
Grant special cycles, the AMD Athlon system bus connect
protocol includes the CONNECT, PROCRDY, and CLKFWDRST
signals and a Connect special cycle.
AMD Athlon system bus disconnects are initiated by the
Northbridge in response to the receipt of a Halt or Stop Grant.
Reconnect is initiated by the processor in response to an
interrupt for Halt or STPCLK# deassertion. Reconnect is
initiated by the Northbridge to probe the processor.
The Northbridge contains BIOS programmable registers to
enable the system bus disconnect in response to Halt and Stop
Grant special cycles. When the Northbridge receives the Halt or
Stop Grant special cycle from the processor and, if there are no
outstanding probes or data movements, the Northbridge
deasserts CONNECT a minimum of eight SYSCLK periods after
the last command sent to the processor. The processor detects
the deassertion of CONNECT on a rising edge of SYSCLK and
deasserts PROCRDY to the Northbridge. In return, the
Northbridge asserts CLKFWDRST in anticipation of
reestablishing a connection at some later point.
Note: The Northbridge must disconnect the processor from the
AMD Athlon system bus before issuing the Stop Grant
special cycle to the PCI bus or passing the Stop Grant special
cycle to the Southbridge for systems that connect to the
Southbridge with HyperTransport™ technology.
This note applies to current chipset implementation—
alternate chipset implementations that do not require this
are possible.
Chapter 4
Power Management
13
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Note: In response to Halt special cycles, the Northbridge passes the
Halt special cycle to the PCI bus or Southbridge
immediately.
The processor can receive an interrupt after it sends a Halt
special cycle, or STPCLK# deassertion after it sends a Stop
Grant special cycle to the Northbridge but before the
disconnect actually occurs. In this case, the processor sends the
Connect special cycle to the Northbridge, rather than
continuing with the disconnect sequence. In response to the
Connect special cycle, the Northbridge cancels the disconnect
request.
The system is required to assert the CONNECT signal before
returning the C-bit for the connect special cycle (assuming
CONNECT has been deasserted).
For more information, see the AMD Athlon™ and AMD Duron™
System Bus Specification, order# 21902 for the definition of the
C-bit and the Connect special cycle.
14
Power Management
Chapter 4
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Figure 3 shows STPCLK# assertion resulting in the processor in
the Stop Grant state and the AMD Athlon system bus
disconnected.
STPCLK#
AMD Athlon™
System Bus
Stop Grant
CONNECT
PROCRDY
CLKFWDRST
Stop Grant
PCI Bus
Figure 3. AMD Athlon™ System Bus Disconnect Sequence in the Stop Grant State
An example of the AMD Athlon system bus disconnect
sequence is as follows:
1. The peripheral controller (Southbridge) asserts STPCLK#
to place the processor in the Stop Grant state.
2. When the processor recognizes STPCLK# asserted, it enters
the Stop Grant state and then issues a Stop Grant special
cycle.
3. When the special cycle is received by the Northbridge, it
deasserts CONNECT, assuming no probes are pending,
initiating a bus disconnect to the processor.
4. The processor responds to the Northbridge by deasserting
PROCRDY.
5. The Northbridge asserts CLKFWDRST to complete the bus
disconnect sequence.
6. After the processor is disconnected from the bus, the
processor enters a low-power state. The Northbridge passes
the Stop Grant special cycle along to the Southbridge.
Chapter 4
Power Management
15
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Figure 4 shows the signal sequence of events that takes the
processor out of the Stop Grant state, connects the processor to
the AMD Athlon system bus, and puts the processor into the
Working state.
STPCLK#
PROCRDY
CONNECT
CLKFWDRST
Figure 4. Exiting the Stop Grant State and Bus Connect Sequence
The following sequence of events removes the processor from
the Stop Grant state and connects it to the system bus:
1. The Southbridge deasserts
processor of a wake event.
STPCLK#,
informing
the
2. When the processor recognizes STPCLK# deassertion, it
exits the low-power state and asserts PROCRDY, notifying
the Northbridge to connect to the bus.
3. The Northbridge asserts CONNECT.
4. The Northbridge deasserts CLKFWDRST, synchronizing the
forwarded clocks between the processor and the
Northbridge.
5. The processor issues a Connect special cycle on the system
bus and resumes operating system and application code
execution.
16
Power Management
Chapter 4
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Connect State
Diagram
Figure 5 below and Figure 6 on page 18 show the Northbridge
and processor connect state diagrams, respectively.
4/A
1
2/A
Disconnect
Pending
Disconnect
Requested
Connect
3
3/C
5/B
8
8
Reconnect
Pending
Disconnect
Probe
Pending 2
7/D,C
6/C
7/D
Probe
Pending 1
Condition
Action
1 A disconnect is requested and probes are still pending.
2 A disconnect is requested and no probes are pending.
A
Deassert CONNECT eight SYSCLK periods
after last SysDC sent.
3 A Connect special cycle from the processor.
B Assert CLKFWDRST.
4 No probes are pending.
C Assert CONNECT.
5 PROCRDY is deasserted.
D Deassert CLKFWDRST.
6 A probe needs service.
7 PROCRDY is asserted.
Three SYSCLK periods after CLKFWDRST is deasserted.
Although reconnected to the system interface, the
8 Northbridge must not issue any non-NOP SysDC
commands for a minimum of four SYSCLK periods after
deasserting CLKFWDRST.
Figure 5. Northbridge Connect State Diagram
Chapter 4
Power Management
17
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Connect
6/B
1
2/B
Connect
Pending 2
Disconnect
Pending
5
Connect
Pending 1
3/A
Disconnect
4/C
Condition
1
Action
CONNECT is deasserted by the Northbridge (for a
previously sent Halt or Stop Grant special cycle).
Processor receives a wake-up event and must cancel
2
the disconnect request.
3 Deassert PROCRDY and slow down internal clocks.
4
Processor wake-up event or CONNECT asserted by
Northbridge.
A CLKFWDRST is asserted by the Northbridge.
B Issue a Connect special cycle.*
C
Return internal clocks to full speed and assert
PROCRDY.
Note:
*
5 CLKFWDRST is deasserted by the Northbridge.
6
Forward clocks start three SYSCLK periods after
CLKFWDRST is deasserted.
The Connect special cycle is only issued after a
processor wake-up event (interrupt or STPCLK#
deassertion) occurs. If the AMD Athlon™ system
bus is connected so the Northbridge can probe the
processor, a Connect special cycle is not issued at
that time (it is only issued after a subsequent
processor wake-up event).
Figure 6. Processor Connect State Diagram
18
Power Management
Chapter 4
Preliminary Information
26426C—October 2003
4.3
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Clock Control
The processor implements a Clock Control (CLK_Ctl) MSR
(address C001_001Bh) that determines the internal clock
divisor when the AMD Athlon system bus is disconnected.
Refer to the AMD Athlon™ and AMD Duron™ Processors BIOS,
Software, and Debug Developers Guide, order# 21656, for more
details on the CLK_Ctl register.
Chapter 4
Power Management
19
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
20
Power Management
26426C—October 2003
Chapter 4
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
5
CPUID Support
AMD Athlon™ MP processor model 10 version and feature set
recognition can be performed through the use of the CPUID
instruction, that provides complete information about the
processor—vendor, type, name, etc., and its capabilities.
Software can make use of this information to accurately tune
the system for maximum performance and benefit to users.
For information on the use of the CPUID instruction see the
following documents:
■
■
■
Chapter 5
AMD Processor Recognition Application Note, order# 20734
AMD Athlon™ Processor Recognition Application Note
Addendum, order# 21922
AMD Athlon™ and AMD Duron™ Processors BIOS, Software,
and Debug Developers Guide, order# 21656
CPUID Support
21
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
22
CPUID Support
26426C—October 2003
Chapter 5
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
6
Electrical and Thermal Specifications for the
AMD Athlon™ MP Processor Model 10
This chapter provides the electrical and thermal specifications
for the AMD Athlon™ MP processor model 10.
Table 1 shows the electrical and thermal specifications in the
C0 Working state and the S1 Stop Grant state for the
AMD Athlon MP processor model 10.
Table 1.
Electrical and Thermal Specifications for the AMD Athlon™ MP Processor Model 10
V
Frequency in MHz CC_CORE
(Core
(Model Number)
Voltage)
2000 (2600+)
1.60 V
ICC (Processor Current)
Working State C0
Stop Grant
Maximum Typical
Maximum
37.5 A
29.5 A
8.75 A
S11, 2, 3, 4
Thermal Power5
Maximum Die
Temperature
Typical Maximum Typical
6.88 A
60.0 W
47.2 W
90°C
2133 (2800+)
Notes:
1. See Figure 2, "AMD Athlon™ MP Processor Model 10 Power Management States" on page 9.
2. The maximum Stop Grant currents are absolute worst case currents for parts that may yield from the worst case corner of the
process and are not representative of the typical Stop Grant current that is currently about one-third of the maximum specified
current.
3. These currents occur when the AMD Athlon™ system bus is disconnected and a low power ratio of 1/64 is applied to the core clock
grid of the processor as dictated by a value of 2003_D22Fh programmed into the Clock Control (CLK_Ctl) MSR. For more
information, refer to the AMD Athlon™ and AMD Duron™ Processors BIOS, Software, and Debug Developers Guide, order# 21656.
4. The Stop Grant current consumption is characterized at 50°C and not tested.
5. Thermal design power represents the maximum sustained power dissipated while executing publicly-available software or
instruction sequences under normal system operation at nominal VCC_CORE. Thermal solutions must monitor the temperature of
the processor to prevent the processor from exceeding its maximum die temperature.
Chapter 6
Electrical and Thermal Specifications for the AMD Athlon™ MP Processor Model 10
23
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
24
26426C—October 2003
Electrical and Thermal Specifications for the AMD Athlon™ MP Processor Model 10
Chapter 6
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
7
Electrical Data
This chapter describes the electrical characteristics that apply
to the AMD Athlon™ MP processor model 10.
7.1
Conventions
The conventions used in this chapter are as follows:
■
■
7.2
Current specified as being sourced by the processor is
negative.
Current specified as being sunk by the processor is positive.
Interface Signal Groupings
The electrical data in this chapter is presented separately for
each signal group.
Table 2 defines each group and the signals contained in each
group.
Table 2.
Interface Signal Groupings
Signal Group
Signals
Notes
Power
VID[4:0], VCCA, VCC_CORE, COREFB, COREFB#
See , “Voltage Identification (VID[4:0])” on
page 26, “” on page 75, “VCCA AC and DC
Characteristics” on page 27,“VCCA Pin” on
page 75, “VCC_CORE Characteristics” on page
28, and “COREFB and COREFB# Pins” on
page 71.
Frequency
FID[3:0]
See “Frequency Identification (FID[3:0])” on
page 27 and “FID[3:0] Pins” on page 71.
SYSCLK, SYSCLK# (Tied to CLKIN/CLKIN# and
RSTCLK/RSTCLK#), PLLBYPASSCLK#, PLLBYPASSCLK
See Table 8, “SYSCLK and SYSCLK# DC
Characteristics,” on page 31, Table 9, “SYSCLK
and SYSCLK# AC Characteristics,” on page 32,
“SYSCLK and SYSCLK#” on page 75, and “PLL
Bypass and Test Pins” on page 74.
System Clocks
SADDIN[14:2]#, SADDOUT[14:2]#, SADDINCLK#,
SADDOUTCLK#, SFILLVAL#, SDATAINVAL#,
AMD Athlon™
SDATAOUTVAL#, SDATA[63:0]#, SDATAINCLK[3:0]#,
System Bus
SDATAOUTCLK[3:0]#, CLKFWDRST, PROCRDY,
CONNECT
Chapter 7
Electrical Data
See “AMD Athlon™ System Bus AC and DC
Characteristics” on page 33, and
“CLKFWDRST Pin” on page 70.
25
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 2.
26426C—October 2003
Interface Signal Groupings (Continued)
Signal Group
Signals
Notes
Southbridge
RESET#, INTR, NMI, SMI#, INIT#, A20M#, FERR,
IGNNE#, STPCLK#, FLUSH#
See “General AC and DC Characteristics” on
page 35, “INTR Pin” on page 73, “NMI Pin” on
page 74, “SMI# Pin” on page 75, “INIT# Pin”
on page 73, “A20M# Pin” on page 70, “FERR
Pin” on page 71,“IGNNE# Pin” on page 73,
“SYSCLK and SYSCLK#” on page 75, and
“FLUSH# Pin” on page 73.
JTAG
TMS, TCK, TRST#, TDI, TDO
See “General AC and DC Characteristics” on
page 35.
Test
PLLBYPASS#, PLLTEST#, PLLMON1, PLLMON2,
SCANCLK1, SCANCLK2, SCANSHIFTEN,
SCANINTEVAL, ANALOG
See “General AC and DC Characteristics” on
page 35, “PLL Bypass and Test Pins” on page
74, “Scan Pins” on page 74, “Analog Pin” on
page 70.
Miscellaneous DBREQ#, DBRDY, PWROK
See “General AC and DC Characteristics” on
page 35, “DBRDY and DBREQ# Pins” on page
71, “PWROK Pin” on page 74.
APIC
PICD[1:0]#, PICCLK
See “APIC Pins AC and DC Characteristics” on
page 40, and “APIC Pins, PICCLK, PICD[1:0]#”
on page 70.
Thermal
THERMDA, THERMDC
See Table 13, “Thermal Diode Electrical
Characteristics,” on page 38, and “THERMDA
and THERMDC Pins” on page 75.
7.3
Voltage Identification (VID[4:0])
Table 3 shows the VID[4:0] DC Characteristics. For more
information on VID[4:0] DC Characteristics, see “” on page 75.
Table 3.
Parameter
VID[4:0] DC Characteristics
Description
Min
IOL
Output Current Low
6 mA
VOH
Output High Voltage
–
Max
5.25 V *
Note:
*
26
The VID pins are either open circuit or pulled to ground. It is recommended that these pins
are not pulled above 5.25 V, which is 5.0 V + 5%.
Electrical Data
Chapter 7
Preliminary Information
26426C—October 2003
7.4
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Frequency Identification (FID[3:0])
Table 4 shows the FID[3:0] DC characteristics. For more
information, see “FID[3:0] Pins” on page 71.
Table 4.
FID[3:0] DC Characteristics
Parameter
Description
Min
Max
IOL
Output Current Low
6 mA
VOH
Output High Voltage
–
2.625 V 1
| VOH – VCC_CORE | ≤ 1.60 V 2
Note:
1. The FID pins must not be pulled above 2.625 V, which is equal to 2.5 V plus a maximum of five percent.
2. Refer to “VCC_2.5V Generation Circuit” found in the section, “Motherboard Required Circuits,” of the AMD Athlon™ ProcessorBased Motherboard Design Guide, order# 24363.
7.5
VCCA AC and DC Characteristics
Table 5 shows the AC and DC characteristics for VCCA. For
more information, see “VCCA Pin” on page 75.
Table 5.
Symbol
VCCA AC and DC Characteristics
Parameter
Min
Nominal
VVCCA
VCCA Pin Voltage
2.25
2.5
IVCCA
VCCA Pin Current
0
Max
Units
Notes
2.75
V
1
| VVCCA – VCC_CORE | ≤ 1.60 V
–
2
50
mA/GHz
3
Notes:
1. Minimum and Maximum voltages are absolute. No transients below minimum nor above maximum voltages are permitted.
2. For more information, refer to the AMD Athlon™ Processor-Based Motherboard Design Guide, order# 24363.
3. Measured at 2.5 V.
7.6
Decoupling
See the AMD Athlon™ Processor-Based Motherboard Design
Guide, order# 24363, or contact your local AMD office for
information about the decoupling required on the motherboard
for use with the AMD Athlon MP processor model 10.
Chapter 7
Electrical Data
27
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
7.7
26426C—October 2003
VCC_CORE Characteristics
Table 6 shows the AC and DC characteristics for VCC_CORE. See
Figure 7 on page 29 for a graphical representation of the
VCC_CORE waveform.
Table 6.
VCC_CORE AC and DC Characteristics
Symbol
Parameter
Limit in Working State
Units
VCC_CORE_DC_MAX Maximum static voltage above VCC_CORE_NOM*
50
mV
VCC_CORE_DC_MIN Maximum static voltage below VCC_CORE_NOM*
–50
mV
VCC_CORE_AC_MAX Maximum excursion above VCC_CORE_NOM*
150
mV
VCC_CORE_AC_MIN Maximum excursion below VCC_CORE_NOM*
–100
mV
tMAX_AC
Maximum excursion time for AC transients
10
µs
tMIN_AC
Negative excursion time for AC transients
5
µs
Note:
* All voltage measurements are taken differentially at the COREFB/COREFB# pins.
28
Electrical Data
Chapter 7
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Figure 7 shows the processor core voltage (V CC_CORE )
waveform response to perturbation. The tMIN_AC (negative AC
transient excursion time) and tMAX_AC (positive AC transient
excursion time) represent the maximum allowable time below
or above the DC tolerance thresholds.
tMAX_AC
VCC_CORE_AC_MAX
VCC_CORE_DC_MAX
VCC_CORE_NOM
VCC_CORE_DC_MIN
VCC_CORE_AC_MIN
tMIN_AC
ICORE_MAX
dI /dt
ICORE_MIN
Figure 7. VCC_CORE Voltage Waveform
Chapter 7
Electrical Data
29
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
7.8
26426C—October 2003
Absolute Ratings
The AMD Athlon MP processor model 10 should not be
subjected to conditions exceeding the absolute ratings, as such
conditions can adversely affect long-term reliability or result in
functional damage.
Table 7 lists the maximum absolute ratings of operation for the
AMD Athlon MP processor model 10.
Table 7.
Absolute Ratings
Parameter
Description
Min
Max
VCC_CORE
Processor core voltage supply
–0.5 V
VCC_CORE Max + 0.5 V
VCCA
Processor PLL voltage supply
–0.5 V
VCCA Max + 0.5 V
VPIN
Voltage on any signal pin
–0.5 V
VCC_CORE Max + 0.5 V
TSTORAGE
Storage temperature of processor
–40ºC
100ºC
30
Electrical Data
Chapter 7
Preliminary Information
26426C—October 2003
7.9
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
SYSCLK and SYSCLK# AC and DC Characteristics
Table 8 shows the DC characteristics of the SYSCLK and
SYSCLK# differential clocks. The SYSCLK signal represents
CLKIN and RSTCLK tied together while the SYSCLK# signal
represents CLKIN# and RSTCLK# tied together.
Table 8.
SYSCLK and SYSCLK# DC Characteristics
Symbol
Description
Min
Max
Units
VThreshold-DC Crossing before transition is detected (DC)
400
mV
VThreshold-AC Crossing before transition is detected (AC)
450
mV
–1
mA
ILEAK_P
Leakage current through P-channel pullup to VCC_CORE
ILEAK_N
Leakage current through N-channel pulldown to VSS (Ground)
VCROSS
Differential signal crossover
CPIN
Capacitance *
4
1
mA
VCC_CORE / 2±100
mV
25 *
pF
Note:
*
The following processor inputs have twice the listed capacitance because they connect to two input pads—SYSCLK and SYSCLK#.
SYSCLK connects to CLKIN/RSTCLK. SYSCLK# connects to CLKIN#/RSTCLK#.
Figure 8 shows the DC characteristics of the SYSCLK and
SYSCLK# signals.
VCROSS
VThreshold-DC = 400mV
VThreshold-AC = 450mV
Figure 8. SYSCLK and SYSCLK# Differential Clock Signals
Chapter 7
Electrical Data
31
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 9 shows the SYSCLK/SYSCLK# differential clock AC
characteristics of the AMD Athlon MP processor model 10.
Table 9.
SYSCLK and SYSCLK# AC Characteristics
Symbol
Parameter Description
Minimum
Maximum
Units
Notes
50
133
MHz
1
30%
70%
2, 3
Clock Frequency
Duty Cycle
t1
Period
7.5
ns
t2
High Time
1.05
ns
t3
Low Time
1.05
ns
t4
Fall Time
2
ns
t5
Rise Time
2
ns
± 300
ps
Period Stability
Notes:
1. The AMD Athlon™ system bus operates at twice the front-side bus (FSB) frequency shown here.
2. Circuitry driving the AMD Athlon system bus clock inputs must exhibit a suitably low closed-loop jitter bandwidth to allow the PLL
to track the jitter. The –20dB attenuation point, as measured into a 20- or 30-pF load must be less than 500 kHz.
3. Circuitry driving the AMD Athlon system bus clock inputs may purposely alter the AMD Athlon system bus clock frequency (spread
spectrum clock generators). In no cases can the AMD Athlon system bus period violate the minimum specification above.
AMD Athlon system bus clock inputs can vary from 100% of the specified frequency to 99% of the specified frequency at a
maximum rate of 100 kHz.
Figure 9 shows a sample waveform of the SYSCLK signal.
t2
VThreshold-AC
VCROSS
t3
t4
t5
t1
Figure 9. SYSCLK Waveform
32
Electrical Data
Chapter 7
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
7.10
AMD Athlon™ System Bus AC and DC Characteristics
Table 10 shows the DC characteristics of the AMD Athlon
system bus used by the AMD Athlon MP processor model 10.
See Table 6, “VCC_CORE AC and DC Characteristics,” on page 28
for information on TDIE and VCC_CORE. For information about
SYSCLK and SYSCLK#, see “SYSCLK and SYSCLK#” on page
75 and Table 19, “Pin Name Abbreviations,” on page 54.
Table 10. AMD Athlon™ System Bus DC Characteristics
Symbol
VREF
Parameter
Condition
Min
Max
(0.5 x VCC_CORE) (0.5 x VCC_CORE)
–50
+50
DC Input Reference Voltage
IVREF_LEAK_P VREF Tristate Leakage Pullup
VIN = VREF Nominal
IVREF_LEAK_N VREF Tristate Leakage Pulldown
VIN = VREF Nominal
Units Notes
mV
µA
–100
100
µA
VIH
Input High Voltage
VREF + 200
VCC_CORE + 500
mV
VIL
Input Low Voltage
–500
VREF – 200
mV
ILEAK_P
Tristate Leakage Pullup
ILEAK_N
Tristate Leakage Pulldown
CIN
Input Pin Capacitance
RON
Output Resistance
RsetP
RsetN
VIN = VSS
(Ground)
–1
VIN = VCC_CORE
Nominal
1
mA
1
mA
4
7
pF
0.90 x RsetN,P
1.1 x RsetN,P
Ω
2
Impedance Set Point, P Channel
40
70
Ω
2
Impedance Set Point, N Channel
40
70
Ω
2
Notes:
1. VREF is nominally set to 50% of VCC_CORE with actual values that are specific to motherboard design implementation. VREF must be
created with a sufficiently accurate DC source and a sufficiently quiet AC response to adhere to the ± 50 mV specification listed
above.
2. Measured at VCC_CORE / 2.
Chapter 7
Electrical Data
33
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
The AC characteristics of the AMD Athlon system bus are
shown in Table 11 on page 34. The parameters are grouped
based on the source or destination of the signals involved.
Table 11. AMD Athlon™ System Bus AC Characteristics
Group
All Signals
Forward
Clocks
Sync
Symbol
Parameter
Min
Max
Units
Notes
TRISE
Output Rise Slew Rate
1
3
V/ns
1
TFALL
Output Fall Slew Rate
1
3
V/ns
1
TSKEW-SAMEEDGE
Output skew with respect to
the same clock edge
–
385
ps
2
TSKEW-DIFFEDGE
Output skew with respect to a
different clock edge
–
770
ps
2
TSU
Input Data Setup Time
300
ps
3
THD
Input Data Hold Time
300
ps
3
CIN
Capacitance on input clocks
4
25
pF
COUT
Capacitance on output clocks
4
12
pF
TVAL
RSTCLK to Output Valid
250
2000
ps
4, 5
TSU
Setup to RSTCLK
500
ps
4, 6
THD
Hold from RSTCLK
1000
ps
4, 6
Notes:
1. Rise and fall time ranges are guidelines over which the I/O has been characterized.
2. TSKEW-SAMEEDGE is the maximum skew within a clock forwarded group between any two signals or between any signal and its
forward clock, as measured at the package, with respect to the same clock edge.
TSKEW-DIFFEDGE is the maximum skew within a clock forwarded group between any two signals or between any signal and its
forward clock, as measured at the package, with respect to different clock edges.
3. Input SU and HD times are with respect to the appropriate Clock Forward Group input clock.
4. The synchronous signals include PROCRDY, CONNECT, and CLKFWDRST.
5. T VAL is RSTCLK rising edge to output valid for PROCRDY. Test Load is 25 pF.
6. TSU is setup of CONNECT/CLKFWDRST to rising edge of RSTCLK. THD is hold of CONNECT/CLKFWDRST from rising edge of
RSTCLK.
34
Electrical Data
Chapter 7
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
7.11
General AC and DC Characteristics
Table 12 shows the AMD Athlon MP processor model 10 AC and
DC characteristics of the Southbridge, JTAG, test, and
miscellaneous pins.
Table 12. General AC and DC Characteristics
Symbol
Parameter Description
Condition
Min
Max
Units
Notes
VIH
Input High Voltage
(VCC_CORE / 2) +
200 mV
VCC_CORE +
300 mV
V
1, 2
VIL
Input Low Voltage
–300
350
mV
1, 2
VOH
Output High Voltage
VCC_CORE –
400
VCC_CORE +
300
mV
VOL
Output Low Voltage
–300
400
mV
ILEAK_P
Tristate Leakage Pullup
ILEAK_N
Tristate Leakage Pulldown
IOH
Output High Current
IOL
Output Low Current
TSU
THD
VIN = VSS
(Ground)
–1
VIN = VCC_CORE
Nominal
mA
600
µA
–6
mA
3
6
mA
3
Sync Input Setup Time
2.0
ns
4, 5
Sync Input Hold Time
0.0
ps
4, 5
Notes:
1. Characterized across DC supply voltage range.
2. Values specified at nominal VCC_CORE . Scale parameters between VCC_CORE. minimum and VCC_CORE. maximum.
3. IOL and IOH are measured at VOL maximum and VOH minimum, respectively.
4. Synchronous inputs/outputs are specified with respect to RSTCLK and RSTCK# at the pins.
5. These are aggregate numbers.
6. Edge rates indicate the range over which inputs were characterized.
7. In asynchronous operation, the signal must persist for this time to enable capture.
8. This value assumes RSTCLK period is 10 ns ==> TBIT = 2*fRST.
9. The approximate value for standard case in normal mode operation.
10. This value is dependent on RSTCLK frequency, divisors, Low Power mode, and core frequency.
11. Reassertions of the signal within this time are not guaranteed to be seen by the core.
12. This value assumes that the skew between RSTCLK and K7CLKOUT is much less than one phase.
13. This value assumes RSTCLK and K7CLKOUT are running at the same frequency, though the processor is capable of other
configurations.
14. Time to valid is for any open-drain pins. See requirements 7 and 8 in the “Power-Up Timing Requirements“ chapter for more
information.
Chapter 7
Electrical Data
35
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 12. General AC and DC Characteristics (Continued)
Symbol
Parameter Description
Condition
Min
Max
Units
Notes
6.1
ns
5
TDELAY
Output Delay with respect to RSTCLK
0.0
TBIT
Input Time to Acquire
20.0
ns
7, 8
TRPT
Input Time to Reacquire
40.0
ns
9–13
TRISE
Signal Rise Time
1.0
3.0
V/ns
6
TFALL
Signal Fall Time
1.0
3.0
V/ns
6
CPIN
Pin Capacitance
4
12
pF
TVALID
Time to data valid
100
ns
14
Notes:
1. Characterized across DC supply voltage range.
2. Values specified at nominal VCC_CORE . Scale parameters between VCC_CORE. minimum and VCC_CORE. maximum.
3. IOL and IOH are measured at VOL maximum and VOH minimum, respectively.
4. Synchronous inputs/outputs are specified with respect to RSTCLK and RSTCK# at the pins.
5. These are aggregate numbers.
6. Edge rates indicate the range over which inputs were characterized.
7. In asynchronous operation, the signal must persist for this time to enable capture.
8. This value assumes RSTCLK period is 10 ns ==> TBIT = 2*fRST.
9. The approximate value for standard case in normal mode operation.
10. This value is dependent on RSTCLK frequency, divisors, Low Power mode, and core frequency.
11. Reassertions of the signal within this time are not guaranteed to be seen by the core.
12. This value assumes that the skew between RSTCLK and K7CLKOUT is much less than one phase.
13. This value assumes RSTCLK and K7CLKOUT are running at the same frequency, though the processor is capable of other
configurations.
14. Time to valid is for any open-drain pins. See requirements 7 and 8 in the “Power-Up Timing Requirements“ chapter for more
information.
36
Electrical Data
Chapter 7
Preliminary Information
26426C—October 2003
7.12
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Open Drain Test Circuit
Figure 10 is a test circuit that may be used on automated test
equipment (ATE) to test for validity on open drain pins.
Refer to Table 12, “General AC and DC Characteristics,” on
page 35 for timing requirements.
VTermination1
50 Ω ±3%
Open-Drain Pin
IOL = Output Current2
Notes:
1. VTermination = 1.2 V for VID and FID pins
VTermination = 1.0 V for APIC pins
2. IOL = –6 mA for VID and FID pins
IOL = –9 mA for APIC pins
Figure 10. General ATE Open-Drain Test Circuit
Chapter 7
Electrical Data
37
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
7.13
26426C—October 2003
Thermal Diode Characteristics
The AMD Athlon MP processor model 10 provides a diode that
can be used in conjunction with an external temperature sensor
to determine the die temperature of the processor. The diode
anode (THERMDA) and cathode (THERMDC) are available as
pins on the processor, as described in “THERMDA and
THERMDC Pins” on page 75.
For information about thermal design for the AMD Athlon MP
p r o c e s s o r m o d e l 1 0 , i n c l u d i n g l ayo u t a n d a i r f l o w
considerations, see the AMD Processor Thermal, Mechanical, and
Chassis Cooling Design Guide, order# 23794, and the cooling
guidelines on http://www.amd.com.
Thermal Diode
Electrical
Characteristics
Table 13 shows the AMD Athlon MP processor model 10
characteristics of the on-board thermal diode For information
ab o u t c a l c u l a t i o n s fo r t h e i d e a l d i o d e e q u a t i o n a n d
temperature offset correction, see Appendix A, “Thermal
Diode Calculations” on page 79.
Table 13. Thermal Diode Electrical Characteristics
Symbol
I
Parameter
Description
Sourcing current
nf, lumped Lumped ideality
factor
nf, actual
RT
Actual ideality factor
Series Resistance
Min
Nom
5
1.00000
1.00374
Max
Units
Notes
300
µA
1
1.00900
2, 3, 4
1.00261
0.93
3, 4
Ω
3, 4
Notes:
1. The sourcing current should always be used in forward bias only.
2. Characterized at 95°C with a forward bias current pair of 10 µA and 100 µA. AMD
recommends using a minimum of two sourcing currents to accurately measure the
temperature of the thermal diode.
3. Not 100% tested. Specified by design and limited characterization.
4. The lumped ideality factor adds the effect of the series resistance term to the actual ideality
factor. The series resistance term indicates the resistance from the pins of the processor to the
on-die thermal diode. The value of the lumped ideality factor depends on the sourcing current
pair used.
Thermal Protection
Characterization
38
The following section describes parameters relating to thermal
protection. The implementation of thermal control circuitry to
control processor temperature is left to the manufacturer to
determine how to implement.
Electrical Data
Chapter 7
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Thermal limits in motherboard design are necessary to protect
the processor from thermal damage. T SH UT D OWN is the
temperature for thermal protection circuitry to initiate
shutdown of the processor. T SD_DELAY is the maximum time
allowed from the detection of the over-temperature condition to
processor shutdown to prevent thermal damage to the
processor.
Systems that do not implement thermal protection circuitry or
that do not react within the time specified by T SD_DELAY can
cause thermal damage to the processor during a fan failure or if
the processor is powered up without a heat-sink. The processor
relies on thermal circuitry on the motherboard to turn off the
regulated core voltage to the processor in response to a thermal
shutdown event.
Thermal protection circuitry reference designs and thermal
solution guidelines are found in the following documents:
■
■
■
AMD Athlon™ Processor-Based Motherboard Design Guide,
order# 24363
AMD Thermal, Mechanical, and Chassis Cooling Design Guide,
order# 23794
http://www1.amd.com/products/athlon/thermals
Table 14 shows the TSHUTDOWN and TSD_DELAY specifications
for circuitry in motherboard design necessary for thermal
protection of the processor.
Table 14. Guidelines for Platform Thermal Protection of the Processor
Symbol
Parameter Description
Max
Units
Notes
TSHUTDOWN Thermal diode shutdown temperature for processor protection
125
°C
1, 2, 3
TSD_DELAY
500
ms
1, 3
Maximum allowed time from TSHUTDOWN detection to processor shutdown
Notes:
1. The thermal diode is not 100% tested, it is specified by design and limited characterization.
2. The thermal diode is capable of responding to thermal events of 40°C/s or faster.
3. The AMD Athlon™ MP processor model 10 provides a thermal diode for measuring die temperature of the processor. The
processor relies on thermal circuitry on the motherboard to turn off the regulated core voltage to the processor in response to a
thermal shutdown event. Refer to AMD Athlon™ Processor-Based Motherboard Design Guide, order# 24363, for thermal
protection circuitry designs.
Chapter 7
Electrical Data
39
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
7.14
26426C—October 2003
APIC Pins AC and DC Characteristics
Table 15 shows the AMD Athlon MP processor model 10 AC and
DC characteristics of the APIC pins.
Table 15. APIC Pin AC and DC Characteristics
Symbol Parameter Description
VIH
Input High Voltage
VIL
Input Low Voltage
VOH
Output High Voltage
VOL
Output Low Voltage
ILEAK_P
Tristate Leakage Pullup
ILEAK_N Tristate Leakage
Pulldown
Condition
Min
Max
Units
Notes
1.7
2.625
V
1, 2
| VIH – VCC_CORE | ≤ 1.60 V
V
3
700
mV
1
2.625
V
2
| VOH – VCC_CORE | ≤ 1.60 V
V
3
400
mV
VCC_CORE < VCC_CORE_MAX
–300
VCC_CORE < VCC_CORE_MAX
–300
VIN = VSS (Ground)
–1
VIN = 2.5 V
mA
1
VOL Max
mA
IOL
Output Low Current
TRISE
Signal Rise Time
1.0
3.0
V/ns
3
TFALL
Signal Fall Time
1.0
3.0
V/ns
3
TSU
Setup Time
1
ns
THD
Hold Time
1
ns
CPIN
Pin Capacitance
4
9
mA
12
pF
Notes:
1. Characterized across DC supply voltage range.
2. The 2.625-V value is equal to 2.5 V plus a maximum of five percent.
3. Refer to “VCC_2.5V Generation Circuit” found in the section, “Motherboard Required Circuits,” of the AMD Athlon™ ProcessorBased Motherboard Design Guide, order# 24363.
4. Edge rates indicate the range for characterizing the inputs.
40
Electrical Data
Chapter 7
Preliminary Information
26426C—October 2003
8
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Signal and Power-Up Requirements
The AMD Athlon™ MP processor model 10 is designed to
provide functional operation if the voltage and temperature
parameters are within the limits of normal operating ranges.
8.1
Power-Up Requirements
Signal Sequence and
Timing Description
Figure 11 shows the relationship between key signals in the
system during a power-up sequence. This figure details the
requirements of the processor.
3.3 V Supply
VCCA (2.5 V)
(for PLL)
VCC_CORE
2
1
RESET#
Warm reset
condition
6
4
NB_RESET#
5
PWROK
7
8
FID[3:0]
3
System Clock
Figure 11. Signal Relationship Requirements During Power-Up Sequence
Notes: 1. Figure 11 represents several signals generically by using names not necessarily consistent
with any pin lists or schematics.
2. Requirements 1–8 in Figure 11 are described in “Power-Up Timing Requirements” on page 42.
Chapter 8
Signal and Power-Up Requirements
41
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Power-Up Timing Requirements. The signal timing requirements are
as follows:
1. RESET# must be asserted before PWROK is asserted.
The AMD Athlon MP processor model 10 does not set the
correct clock multiplier if PWROK is asserted prior to a
RESET# assertion. It is recommended that RESET# be
asserted at least 10 nanoseconds prior to the assertion of
PWROK.
In practice, a Southbridge asserts RESET# milliseconds
before PWROK is asserted.
2. All motherboard voltage planes must be within
specification before PWROK is asserted.
PWROK is an output of the voltage regulation circuit on the
motherboard. PWROK indicates that VCC_CORE and all
other voltage planes in the system are within specification.
The motherboard is required to delay PWROK assertion for
a minimum of three milliseconds from the 3.3 V supply
being within specification. This delay ensures that the
system clock (SYSCLK/SYSCLK#) is operating within
specification when PWROK is asserted.
The processor core voltage, VCC_CORE, must be within
specification as dictated by the VID[4:0] pins driven by the
processor before PWROK is asserted. Before PWROK
assertion, the AMD Athlon MP processor is clocked by a
ring oscillator.
The processor PLL is powered by VCCA. The processor PLL
does not lock if VCCA is not high enough for the processor
logic to switch for some period before PWROK is asserted.
VCCA must be within specification at least five
microseconds before PWROK is asserted.
In practice VCCA, VCC_CORE, and all other voltage planes
must be within specification for several milliseconds before
PWROK is asserted.
After PWROK is asserted, the processor PLL locks to its
operational frequency.
3. The system clock (SYSCLK/SYSCLK#) must be running
before PWROK is asserted.
When PWROK is asserted, the processor switches from
driving the internal processor clock grid from the ring
oscillator to driving from the PLL. The reference system
42
Signal and Power-Up Requirements
Chapter 8
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
clock must be valid at this time. The system clocks are
designed to be running after 3.3 V has been within
specification for three milliseconds.
4. PWROK assertion to deassertion of RESET#
The duration of RESET# assertion during cold boots is
intended to satisfy the time it takes for the PLL to lock with
a less than 1 ns phase error. The processor PLL begins to
run after PWROK is asserted and the internal clock grid is
switched from the ring oscillator to the PLL. The PLL lock
time may take from hundreds of nanoseconds to tens of
microseconds. It is recommended that the minimum time
between PWROK assertion to the deassertion of RESET# be
at least 1.0 milliseconds. Southbridges enforce a delay of
1.5 to 2.0 milliseconds between PWRGD (Southbridge
version of PWROK) assertion and NB_RESET# deassertion.
5. PWROK must be monotonic and meet the timing
requirements as defined in Table 12, “General AC and DC
Characteristics,” on page 35. The processor should not
switch between the ring oscillator and the PLL after the
initial assertion of PWROK.
6. NB_RESET# must be asserted (causing CONNECT to also
assert) before RESET# is deasserted. In practice all
Southbridges enforce this requirement.
If NB_RESET# does not assert until after RESET# has
deasserted, the processor misinterprets the CONNECT
assertion (due to NB_RESET# being asserted) as the
beginning of the SIP transfer. There must be sufficient
overlap in the resets to ensure that CONNECT is sampled
asserted by the processor before RESET# is deasserted.
7. The FID[3:0] signals are valid within 100 ns after PWROK is
asserted. The chipset must not sample the FID[3:0] signals
until they become valid. Refer to the AMD Athlon™
Processor-Based Motherboard Design Guide, order# 24363, for
the specific implementation and additional circuitry
required.
8. The FID[3:0] signals become valid within 100 ns after
RESET# is asserted. Refer to the AMD Athlon™ ProcessorBased Motherboard Design Guide, order# 24363, for the
specific implementation and additional circuitry required.
Chapter 8
Signal and Power-Up Requirements
43
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Clock Multiplier
Selection (FID[3:0])
26426C—October 2003
The chipset samples the FID[3:0] signals in a chipset-specific
manner from the processor and uses this information to
determine the correct serial initialization packet (SIP). The
chipset then sends the SIP information to the processor for
configuration of the AMD Athlon system bus for the clock
multiplier that determines the processor frequency indicated
by the FID[3:0] code. The SIP is sent to the processor using the
SIP protocol. This protocol uses the PROCRDY, CONNECT, and
CLKFWDRST signals, that are synchronous to SYSCLK.
For more information about FID[3:0], see “FID[3:0] Pins” on
page 71.
Serial Initialization Packet (SIP) Protocol. Refer to AMD Athlon™ and
AMD Duron™ System Bus Specification, order# 21902 for details
of the SIP protocol.
8.2
Processor Warm Reset Requirements
Northbridge Reset
Pins
44
RESET# cannot be asserted to the processor without also being
asserted to the Northbridge. RESET# to the Northbridge is the
same as PCI RESET#. The minimum assertion for PCI RESET#
is one millisecond. Southbridges enforce a minimum assertion
of RESET# for the processor, Northbridge, and PCI of 1.5 to 2.0
milliseconds.
Signal and Power-Up Requirements
Chapter 8
Preliminary Information
26426C—October 2003
9
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Mechanical Data
The AMD Athlon™ MP processor model 10 connects to the
motherboard through a Pin Grid Array (PGA) socket named
Socket A. This processor utilizes the Organic Pin Grid Array
(OPGA) package type described in this chapter. For more
information, see the AMD Athlon™ Processor-Based Motherboard
Design Guide, order# 24363.
9.1
Die Loading
The processor die on the OPGA package is exposed at the top of
the package. This feature facilitates heat transfer from the die
to an approved heat sink. Any heat sink design should avoid
loads on corners and edges of die. The OPGA package has
compliant pads that serve to bring surfaces in planar contact.
Tool-assisted zero insertion force sockets should be designed so
that no load is placed on the ceramic substrate of the package.
Table 16 shows the mechanical loading specifications for the
processor die. It is critical that the mechanical loading of the
heat sink does not exceed the limits shown in Table 16.
Table 16. Mechanical Loading
Location
Dynamic (MAX)
Static (MAX)
Units
Note
Die Surface
100
30
lbf
1
Die Edge
10
10
lbf
2
Notes:
1. Load specified for coplanar contact to die surface.
2. Load defined for a surface at no more than a two-degree angle of inclination to die surface.
Chapter 9
Mechanical Data
45
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
9.2
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Part Number 27488
OPGA Package Dimensions
Table 17 shows the part number 27488 OPGA package
dimensions in millimeters assigned to the letters and symbols
used in the 27488 package diagram, Figure 12 on page 47.
Table 17. Dimensions for the AMD Athlon™ MP Processor Model 10 Part
Number 27488 OPGA Package
Letter or
Symbol
D/E
Minimum
Maximum
Dimension1 Dimension1
49.27
49.78
Letter or
Symbol
Minimum
Maximum
Dimension1 Dimension1
E9
1.66
1.96
–
4.50
D1/E1
45.72 BSC
G/H
D2
7.42 REF
A
1.942 REF
D3
3.30
3.60
A1
1.00
1.20
D4
10.78
11.33
A2
0.80
0.88
D5
10.78
11.33
A3
0.116
–
D6
8.13
8.68
A4
–
1.90
D7
12.33
12.88
φP
–
6.60
D8
3.05
3.35
φb
0.43
0.50
D9
12.71
13.26
φb1
E2
13.61 REF
1.40 REF
S
1.435
2.375
3.05
3.31
E3
2.35
2.65
L
E4
7.87
8.42
M
37
E5
7.87
8.42
N
453
E6
11.41
11.96
e
1.27 BSC
E7
11.41
11.96
e1
2.54 BSC
E8
13.28
13.83
Mass2
11.0 g REF
Note:
1. Dimensions are given in millimeters.
2. The mass consists of the completed package, including processor, surface mounted parts and
pins.
46
Mechanical Data
Chapter 9
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Figure 12. AMD Athlon™ MP Processor Model 10 Part Number 27488 OPGA Package Diagram
Chapter 9
Mechanical Data
47
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
9.3
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Part Number 27493
OPGA Package Dimensions
Table 18 shows the part number 27493 OPGA package
dimensions in millimeters assigned to the letters and symbols
shown in the 27493 package diagram, Figure 13 on page 49.
Table 18. Dimensions for the AMD Athlon™ MP Processor Model 10 Part
Number 27493 OPGA Package
Letter or
Symbol
D/E
Minimum
Maximum
Dimension1 Dimension1
49.27
49.78
Letter or
Symbol
G/H
Minimum
Maximum
Dimension1 Dimension1
–
4.50
D1/E1
45.72 BSC
A
1.917 REF
D2
7.42 REF
A1
0.977
1.177
D3
3.30
3.60
A2
0.80
0.88
D4
10.78
11.33
A3
0.116
–
D5
10.78
11.33
A4
–
1.90
D6
8.13
8.68
φP
–
6.60
D7
12.33
12.88
φb
0.43
0.50
D8
3.05
3.35
φb1
D9
12.71
13.26
S
1.435
2.375
L
3.05
3.31
E2
13.61 REF
1.40 REF
E3
2.35
2.65
M
37
E4
7.87
8.42
N
453
E5
7.87
8.42
e
1.27 BSC
E6
11.41
11.96
e1
2.54 BSC
E8
13.28
13.83
Mass2
11.0 g REF
E9
1.66
1.96
Note:
1. Dimensions are given in millimeters.
2. The mass consists of the completed package, including processor, surface mounted parts and
pins.
48
Mechanical Data
Chapter 9
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Figure 13. AMD Athlon™ MP Processor Model 10 Part Number 27493 OPGA Package Diagram
Chapter 9
Mechanical Data
49
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
50
Mechanical Data
26426C—October 2003
Chapter 9
Preliminary Information
26426C—October 2003
10
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Pin Descriptions
This chapter includes pin diagrams of the organic pin grid array
(OPGA) for the AMD Athlon™ MP processor model 10, a listing
of pin name abbreviations, a cross-referenced listing of pin
locations to signal names, and detailed pin descriptions.
10.1
Pin Diagram and Pin Name Abbreviations
Figure 14 on page 52 shows the staggered Pin Grid Array (PGA)
for the AMD Athlon MP processor model 10. Because some of
the pin names are too long to fit in the grid, they are
abbreviated. Figure 15 on page 53 shows the bottomside view of
the array. Table 19 on page 54 lists all the pins in alphabetical
order by pin name, along with the abbreviation where
necessary.
Chapter 10
Pin Descriptions
51
52
Pin Descriptions
Z
X
V
T
R
P
AN
AM
AL
1
INTR
IGNNE#
FERR
A20M#
STPC#
DBRDY
FID[2]
FID[0]
TDI
SCNCK1
TCK
PICCLK
VID[0]
SAO#0
SAO#10
SAO#11
SAO#7
1
2
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
2
3
3
NMI
FLUSH#
INIT#
RESET#
PWROK
PLTST#
DBREQ#
FID[3]
FID[1]
TRST#
SCNINV
TMS
PICD#0
VID[1]
SAO#1
SAO#14
SAOC#
SAO#9
SAO#12
4
VSS
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VCC
4
5
5
SMI#
VCC
VCC
NC
ZP
ZN
NC
NC
VREF_S
TDO
SCNCK2
SCNSN
PICD#1
VID[2]
NC
SAO#13
SAO#4
SAO#8
SAO#5
6
VSS
CPR#
AMD
NC
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
NC
VSS
VSS
VSS
6
7
7
NC
NC
NC
KEY
NC
NC
KEY
KEY
NC
THDC
THDA
KEY
KEY
VID[3]
VID[4]
KEY
SAO#6
SAO#2
SAO#3
9
9
NC
NC
NC
KEY
KEY
SD#52
SD#54
SD#55
10
VCC
VCC
VCC
NC
NC
VSS
VSS
VSS
10
11
11
NC
NC
NC
COREFB
NC
SD#50
SDOC#3
SD#61
12
VSS
VSS
VSS
VSS
VCC
VCC
VCC
VCC
12
13
13
PLMN1
PLMN2
ANLOG
COREFB#
NC
SD#49
SCK#6
SD#53
15
KEY
SDIC#3
SD#51
SD#63
VCC
VCC
VCC
VCC
16
17
KEY
SD#48
SD#60
SD#62
VSS
VSS
VSS
VSS
18
19
NC
SD#58
SD#59
SCK#7
VCC
VCC
VCC
VCC
20
21
NC
SD#36
SD#56
SD#57
VSS
VSS
VSS
VSS
22
23
KEY
SD#46
SD#37
SD#39
VCC
VCC
VCC
VCC
24
14
VCC
VCC
VCC
VCC
15
PLBYC
PLBYC#
NC
KEY
16
VSS
VSS
VSS
VSS
17
CLKIN
CLKIN#
NC
KEY
18
VCC
VCC
VCC
VCC
19
RCLK
RCLK#
NC
NC
20
VSS
VSS
VSS
VSS
21
K7CO#
K7CO
CLKFR
NC
22
VCC
VCC
VCC
VCC
23
PRCRDY
CNNCT
VCCA
NC
24
VSS
VSS
VSS
VSS
AMD Athlon™ MP Processor
Model 10
Topside View
VSS
VSS
VSS
VSS
14
25
25
NC
NC
PLBYP#
NC
KEY
SCK#4
SD#47
SD#35
26
VCC
VCC
VCC
VCC
VSS
VSS
VSS
VSS
26
27
27
NC
NC
NC
KEY
NC
SDIC#2
SD#38
SD#34
28
VSS
VSS
VSS
NC
NC
VCC
VCC
VCC
28
29
29
SAI#12
SAI#1
SAI#0
KEY
NC
SD#33
SD#45
SD#44
30
VCC
VCC
NC
NC
NC
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
NC
NC
NC
VSS
VSS
30
Figure 14. AMD Athlon™ MP Processor Model 10 Pin Diagram—Topside View
8
NC
NC
NC
NC
NC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
NC
NC
NC
VCC
VCC
8
31
31
SAI#14
SDOV#
SFILLV#
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SD#32
SD#43
SCK#5
32
VSS
VSS
VSS
NC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
NC
VCC
VCC
VCC
32
33
33
SDINV#
SAI#8
SAIC#
SAI#2
SAI#5
SD#10
SD#8
SCK#1
SDIC#0
SD#5
SD#7
SD#24
SD#25
SD#26
SD#19
SD#20
SCK#3
SD#42
SDOC#2
34
VCC
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VSS
34
35
35
SAI#13
SAI#4
SAI#6
SAI#11
SDOC#0
SD#14
SD#0
SD#3
SD#2
SD#4
SD#15
SD#17
SD#27
SCK#2
SDIC#1
SD#23
SD#31
SD#41
SD#40
36
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
36
37
37
SAI#9
SAI#10
SAI#3
SAI#7
SD#9
SD#11
SD#13
SD#12
SD#1
SCK#0
SD#6
SD#16
SD#18
SD#28
SD#29
SD#21
SD#22
SDOC#1
SD#30
Z
X
V
T
R
P
AN
AM
AL
AK
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
K
H
F
D
B
M
W
U
S
Q
N
L
J
G
E
C
A
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
AK
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
K
H
F
D
B
M
W
U
S
Q
N
L
J
G
E
C
A
Preliminary Information
26426C—October 2003
Chapter 10
Chapter 10
10
8
6
4
2
12
Pin Descriptions
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
C
C
A
SD#41
SD#42
SD#43
SD#45
SD#38
SD#47
SD#37
SD#56
SD#59
SD#60
SD#51
SCK#6
SDOC#3
SD#54
SAO#2
SAO#8
SAO#9
SAO#7
SDOC#1
B
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
B
SD#30
SD#40
SDOC#2
SCK#5
SD#44
SD#34
SD#35
SD#39
SD#57
SCK#7
SD#62
SD#63
SD#53
SD#61
SD#55
SAO#3
SAO#5
SAO#12
A
D
VSS
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VCC
D
E
E
SD#22
SD#31
SCK#3
SD#32
SD#33
SDIC#2
SCK#4
SD#46
SD#36
SD#58
SD#48
SDIC#3
SD#49
SD#50
SD#52
SAO#6
SAO#4
SAOC#
SAO#11
F
VCC
VCC
VCC
NC
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
NC
VSS
VSS
VSS
F
G
G
H
VSS
VSS
NC
NC
NC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
NC
NC
NC
VCC
VCC
H
J
J
SD#29
SDIC#1
SD#19
NC
VID[4]
NC
SAO#1
SAO#0
K
VCC
VCC
VCC
NC
NC
VSS
VSS
VSS
K
L
L
SD#28
SCK#2
SD#26
NC
VID[3]
VID[2]
VID[1]
VID[0]
M
VSS
VSS
VSS
VSS
VCC
VCC
VCC
VCC
M
N
N
SD#18
SD#27
SD#25
NC
KEY
PICD#1
PICD#0
PICCLK
VCC
VCC
VCC
VCC
P
Q
KEY
SCNSN
TMS
TCK
VCC
VCC
VCC
VCC
R
S
THDA
SCNCK2
SCNINV
SCNCK1
VSS
VSS
VSS
VSS
T
U
THDC
TDO
TRST#
TDI
VCC
VCC
VCC
VCC
V
W
NC
VREF_S
FID[1]
FID[0]
VSS
VSS
VSS
VSS
X
Y
KEY
NC
FID[3]
FID[2]
VCC
VCC
VCC
VCC
Z
Q
SD#16
SD#17
SD#24
NC
R
VSS
VSS
VSS
VSS
S
SD#6
SD#15
SD#7
NC
T
VCC
VCC
VCC
VCC
U
SCK#0
SD#4
SD#5
NC
V
VSS
VSS
VSS
VSS
W
SD#1
SD#2
SDIC#0
NC
X
VCC
VCC
VCC
VCC
Y
SD#12
SD#3
SCK#1
NC
Z
VSS
VSS
VSS
VSS
AMD Athlon™ MP Processor
Model 10
Bottomside View
VSS
VSS
VSS
VSS
P
AA
AA
SD#13
SD#0
SD#8
NC
KEY
NC
DBREQ#
DBRDY
AB
VCC
VCC
VCC
VCC
VSS
VSS
VSS
VSS
AB
AC
AC
SD#11
SD#14
SD#10
NC
NC
ZN
PLTST#
STPC#
AD
VSS
VSS
VSS
NC
NC
VCC
VCC
VCC
AD
AE
AE
SD#9
SDOC#0
SAI#5
NC
NC
ZP
PWROK
A20M#
AF
VCC
VCC
NC
NC
NC
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
NC
NC
NC
VSS
VSS
AF
AG
AG
SAI#7
SAI#11
SAI#2
NC
KEY
KEY
NC
NC
NC
NC
KEY
KEY
COREFB#
COREFB
KEY
KEY
NC
RESET#
FERR
Figure 15. AMD Athlon™ MP Processor Model 10 Pin Diagram—Bottomside View
SD#21
SD#23
SD#20
NC
NC
NC
KEY
KEY
NC
NC
KEY
KEY
NC
NC
KEY
KEY
SAO#13
SAO#14
SAO#10
AH
VSS
VSS
VSS
NC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
NC
AMD
VCC
VCC
AH
AJ
AJ
SAI#3
SAI#6
SAIC#
SFILLV#
SAI#0
NC
PLBYP#
VCCA
CLKFR
NC
NC
NC
ANLOG
NC
NC
NC
VCC
INIT#
IGNNE#
AK
VCC
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
NC
CPR#
VSS
VSS
AK
AL
AL
SAI#10
SAI#4
SAI#8
SDOV#
SAI#1
NC
NC
CNNCT
K7CO
RCLK#
CLKIN#
PLBYC#
PLMN2
NC
NC
NC
VCC
FLUSH#
INTR
AM
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VSS
VCC
NC
VSS
VSS
VCC
AM
AN
SAI#9
SAI#13
SDINV#
SAI#14
SAI#12
NC
NC
PRCRDY
K7CO#
RCLK
CLKIN
PLBYC
PLMN1
NC
NC
NC
SMI#
NMI
AN
8
6
4
2
10
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
9
7
5
3
1
26426C—October 2003
11
9
7
5
3
1
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
53
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 19. Pin Name Abbreviations (Continued)
Table 19. Pin Name Abbreviations
KEY
Pin
AG9
AH6
KEY
AG15
ANALOG
AJ13
KEY
AG17
CLKFWDRST
AJ21
KEY
AG27
CLKIN
AN17
KEY
AG29
CLKIN#
AL17
NC
F8
CONNECT
AL23
NC
F30
COREFB
AG11
NC
G11
COREFB#
AG13
NC
G13
CPU_PRESENCE#
AK6
NC
G19
DBRDY
AA1
NC
G21
DBREQ#
AA3
NC
G27
FERR
AG1
NC
G29
FID[0]
W1
NC
G31
FID[1]
W3
NC
H6
FID[2]
Y1
NC
H8
FID[3]
Y3
NC
H10
FLUSH#
AL3
NC
H28
IGNNE#
AJ1
NC
H30
INIT#
AJ3
NC
H32
INTR
AL1
NC
J5
K7CO
K7CLKOUT
AL21
NC
J31
K7CO#
K7CLKOUT#
AN21
NC
K8
KEY
G7
NC
K30
KEY
G9
NC
L31
KEY
G15
NC
N31
KEY
G17
NC
Q31
KEY
G23
NC
S31
KEY
G25
NC
U31
KEY
N7
NC
W7
KEY
Q7
NC
W31
KEY
Y7
NC
Y5
KEY
AA7
NC
Y31
KEY
AG7
NC
AA5
Abbreviation
Full Name
A20M#
Pin
AE1
AMD
ANLOG
CLKFR
CNNCT
CPR#
54
Abbreviation
Pin Descriptions
Full Name
Chapter 10
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
Chapter 10
NC
Full Name
Pin
AA31
NC
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
NC
Pin
AM8
AC7
NC
AN7
NC
AC31
NC
AN9
NC
AD8
NC
AN11
NC
AD30
NC
AN25
NC
AE7
NC
AN27
NC
AE31
NMI
AN3
NC
AF6
PICCLK
N1
NC
AF8
PICD#0
PICD[0]#
N3
NC
AF10
PICD#1
PICD[1]#
N5
NC
AF28
PLBYP#
PLLBYPASS#
AJ25
NC
AF30
PLBYC
PLLBYPASSCLK
AN15
NC
AF32
PLBYC#
PLLBYPASSCLK#
AL15
NC
AG5
PLMN1
PLLMON1
AN13
NC
AG19
PLMN2
PLLMON2
AL13
NC
AG21
PLTST#
PLLTEST#
AC3
NC
AG23
PRCRDY
PROCREADY
AN23
NC
AG25
PWROK
AE3
NC
AG31
RESET#
AG3
NC
AH8
RCLK
RSTCLK
AN19
NC
AH30
RCLK#
RSTCLK#
AL19
NC
AJ7
SAI#0
SADDIN[0]#
AJ29
NC
AJ9
SAI#1
SADDIN[1]#
AL29
NC
AJ11
SAI#2
SADDIN[2]#
AG33
NC
AJ15
SAI#3
SADDIN[3]#
AJ37
NC
AJ17
SAI#4
SADDIN[4]#
AL35
NC
AJ19
SAI#5
SADDIN[5]#
AE33
NC
AJ27
SAI#6
SADDIN[6]#
AJ35
NC
AK8
SAI#7
SADDIN[7]#
AG37
NC
AL7
SAI#8
SADDIN[8]#
AL33
NC
AL9
SAI#9
SADDIN[9]#
AN37
NC
AL11
SAI#10
SADDIN[10]#
AL37
NC
AL25
SAI#11
SADDIN[11]#
AG35
NC
AL27
SAI#12
SADDIN[12]#
AN29
Pin Descriptions
Full Name
55
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 19. Pin Name Abbreviations (Continued)
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
SAI#13
Full Name
SADDIN[13]#
Pin
AN35
Abbreviation
SD#3
Full Name
SDATA[3]#
Pin
Y35
SAI#14
SADDIN[14]#
AN31
SD#4
SDATA[4]#
U35
SAIC#
SADDINCLK#
AJ33
SD#5
SDATA[5]#
U33
SAO#0
SADDOUT[0]#
J1
SD#6
SDATA[6]#
S37
SAO#1
SADDOUT[1]#
J3
SD#7
SDATA[7]#
S33
SAO#2
SADDOUT[2]#
C7
SD#8
SDATA[8]#
AA33
SAO#3
SADDOUT[3]#
A7
SD#9
SDATA[9]#
AE37
SAO#4
SADDOUT[4]#
E5
SD#10
SDATA[10]#
AC33
SAO#5
SADDOUT[5]#
A5
SD#11
SDATA[11]#
AC37
SAO#6
SADDOUT[6]#
E7
SD#12
SDATA[12]#
Y37
SAO#7
SADDOUT[7]#
C1
SD#13
SDATA[13]#
AA37
SAO#8
SADDOUT[8]#
C5
SD#14
SDATA[14]#
AC35
SAO#9
SADDOUT[9]#
C3
SD#15
SDATA[15]#
S35
SAO#10
SADDOUT[10]#
G1
SD#16
SDATA[16]#
Q37
SAO#11
SADDOUT[11]#
E1
SD#17
SDATA[17]#
Q35
SAO#12
SADDOUT[12]#
A3
SD#18
SDATA[18]#
N37
SAO#13
SADDOUT[13]#
G5
SD#19
SDATA[19]#
J33
SAO#14
SADDOUT[14]#
G3
SD#20
SDATA[20]#
G33
SAOC#
SADDOUTCLK#
E3
SD#21
SDATA[21]#
G37
SCNCK1
SCANCLK1
S1
SD#22
SDATA[22]#
E37
SCNCK2
SCANCLK2
S5
SD#23
SDATA[23]#
G35
SCNINV
SCANINTEVAL
S3
SD#24
SDATA[24]#
Q33
SCNSN
SCANSHIFTEN
Q5
SD#25
SDATA[25]#
N33
SCK#0
SCHECK[0]#
U37
SD#26
SDATA[26]#
L33
SCK#1
SCHECK[1]#
Y33
SD#27
SDATA[27]#
N35
SCK#2
SCHECK[2]#
L35
SD#28
SDATA[28]#
L37
SCK#3
SCHECK[3]#
E33
SD#29
SDATA[29]#
J37
SCK#4
SCHECK[4]#
E25
SD#30
SDATA[30]#
A37
SCK#5
SCHECK[5]#
A31
SD#31
SDATA[31]#
E35
SCK#6
SCHECK[6]#
C13
SD#32
SDATA[32]#
E31
SCK#7
SCHECK[7]#
A19
SD#33
SDATA[33]#
E29
SD#0
SDATA[0]#
AA35
SD#34
SDATA[34]#
A27
SD#1
SDATA[1]#
W37
SD#35
SDATA[35]#
A25
SD#2
SDATA[2]#
W35
SD#36
SDATA[36]#
E21
56
Pin Descriptions
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 19. Pin Name Abbreviations (Continued)
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
SD#37
Full Name
SDATA[37]#
Pin
C23
Abbreviation
SDOC#2
Full Name
SDATAOUTCLK[2]#
Pin
A33
SD#38
SDATA[38]#
C27
SDOC#3
SDATAOUTCLK[3]#
C11
SD#39
SDATA[39]#
A23
SDOV#
SDATAOUTVALID#
AL31
SD#40
SDATA[40]#
A35
SFILLV#
SFILLVALID#
AJ31
SD#41
SDATA[41]#
C35
SMI#
AN5
SD#42
SDATA[42]#
C33
STPCLK#
AC1
SD#43
SDATA[43]#
C31
TCK
Q1
SD#44
SDATA[44]#
A29
TDI
U1
SD#45
SDATA[45]#
C29
TDO
U5
SD#46
SDATA[46]#
E23
THDA
THERMDA
S7
SD#47
SDATA[47]#
C25
THDC
THERMDC
U7
SD#48
SDATA[48]#
E17
TMS
Q3
SD#49
SDATA[49]#
E13
TRST#
U3
SD#50
SDATA[50]#
E11
VCC
VCC_CORE
B4
SD#51
SDATA[51]#
C15
VCC
VCC_CORE
B8
SD#52
SDATA[52]#
E9
VCC
VCC_CORE
B12
SD#53
SDATA[53]#
A13
VCC
VCC_CORE
B16
SD#54
SDATA[54]#
C9
VCC
VCC_CORE
B20
SD#55
SDATA[55]#
A9
VCC
VCC_CORE
B24
SD#56
SDATA[56]#
C21
VCC
VCC_CORE
B28
SD#57
SDATA[57]#
A21
VCC
VCC_CORE
B32
SD#58
SDATA[58]#
E19
VCC
VCC_CORE
B36
SD#59
SDATA[59]#
C19
VCC
VCC_CORE
D2
SD#60
SDATA[60]#
C17
VCC
VCC_CORE
D4
SD#61
SDATA[61]#
A11
VCC
VCC_CORE
D8
SD#62
SDATA[62]#
A17
VCC
VCC_CORE
D12
SD#63
SDATA[63]#
A15
VCC
VCC_CORE
D16
SDIC#0
SDATAINCLK[0]#
W33
VCC
VCC_CORE
D20
SDIC#1
SDATAINCLK[1]#
J35
VCC
VCC_CORE
D24
SDIC#2
SDATAINCLK[2]#
E27
VCC
VCC_CORE
D28
SDIC#3
SDATAINCLK[3]#
E15
VCC
VCC_CORE
D32
SDINV#
SDATAINVALID#
AN33
VCC
VCC_CORE
F12
SDOC#0
SDATAOUTCLK[0]#
AE35
VCC
VCC_CORE
F16
SDOC#1
SDATAOUTCLK[1]#
C37
VCC
VCC_CORE
F20
Chapter 10
STPC#
Pin Descriptions
57
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
VCC
Full Name
VCC_CORE
Pin
F24
VCC
VCC_CORE
VCC
26426C—October 2003
Table 19. Pin Name Abbreviations (Continued)
VCC
Full Name
VCC_CORE
Pin
X30
F28
VCC
VCC_CORE
X32
VCC_CORE
F32
VCC
VCC_CORE
X34
VCC
VCC_CORE
F34
VCC
VCC_CORE
X36
VCC
VCC_CORE
F36
VCC
VCC_CORE
Z2
VCC
VCC_CORE
H2
VCC
VCC_CORE
Z4
VCC
VCC_CORE
H4
VCC
VCC_CORE
Z6
VCC
VCC_CORE
H12
VCC
VCC_CORE
Z8
VCC
VCC_CORE
H16
VCC
VCC_CORE
AB30
VCC
VCC_CORE
H20
VCC
VCC_CORE
AB32
VCC
VCC_CORE
H24
VCC
VCC_CORE
AB34
VCC
VCC_CORE
K32
VCC
VCC_CORE
AB36
VCC
VCC_CORE
K34
VCC
VCC_CORE
AD2
VCC
VCC_CORE
K36
VCC
VCC_CORE
AD4
VCC
VCC_CORE
M2
VCC
VCC_CORE
AD6
VCC
VCC_CORE
M4
VCC
VCC_CORE
AF14
VCC
VCC_CORE
M6
VCC
VCC_CORE
AF18
VCC
VCC_CORE
M8
VCC
VCC_CORE
AF22
VCC
VCC_CORE
P30
VCC
VCC_CORE
AF26
VCC
VCC_CORE
P32
VCC
VCC_CORE
AF34
VCC
VCC_CORE
P34
VCC
VCC_CORE
AF36
VCC
VCC_CORE
P36
VCC
VCC_CORE
AH2
VCC
VCC_CORE
R2
VCC
VCC_CORE
AH4
VCC
VCC_CORE
R4
VCC
VCC_CORE
AH10
VCC
VCC_CORE
R6
VCC
VCC_CORE
AH14
VCC
VCC_CORE
R8
VCC
VCC_CORE
AH18
VCC
VCC_CORE
T30
VCC
VCC_CORE
AH22
VCC
VCC_CORE
T32
VCC
VCC_CORE
AH26
VCC
VCC_CORE
T34
VCC
VCC_CORE
AK10
VCC
VCC_CORE
T36
VCC
VCC_CORE
AK14
VCC
VCC_CORE
V2
VCC
VCC_CORE
AK18
VCC
VCC_CORE
V4
VCC
VCC_CORE
AK22
VCC
VCC_CORE
V6
VCC
VCC_CORE
AK26
VCC
VCC_CORE
V8
VCC
VCC_CORE
AK30
58
Abbreviation
Pin Descriptions
Chapter 10
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
VCC
Full Name
VCC_CORE
Pin
AK34
VCC
VCC_CORE
VCC
Table 19. Pin Name Abbreviations (Continued)
VSS
Pin
D22
AK36
VSS
D26
VCC_CORE
AJ5
VSS
D30
VCC
VCC_CORE
AL5
VSS
D34
VCC
VCC_CORE
AM2
VSS
D36
VCC
VCC_CORE
AM10
VSS
F2
VCC
VCC_CORE
AM14
VSS
F4
VCC
VCC_CORE
AM18
VSS
F6
VCC
VCC_CORE
AM22
VSS
F10
VCC
VCC_CORE
AM26
VSS
F14
VCC
VCC_CORE
AM22
VSS
F18
VCC
VCC_CORE
AM26
VSS
F22
VCC
VCC_CORE
AM30
VSS
F26
VCC
VCC_CORE
VSS
H14
VCCA
AM34
AJ23
VSS
H18
VID[0]
L1
VSS
H22
VID[1]
L3
VSS
H26
VID[2]
L5
VSS
H34
VID[3]
L7
VSS
H36
VID[4]
J7
VSS
K2
VREF_SYS
W5
VSS
K4
VSS
B2
VSS
K6
VSS
B6
VSS
M30
VSS
B10
VSS
M32
VSS
B14
VSS
M34
VSS
B18
VSS
M36
VSS
B22
VSS
P2
VSS
B26
VSS
P4
VSS
B30
VSS
P6
VSS
B34
VSS
P8
VSS
D6
VSS
R30
VSS
D10
VSS
R32
VSS
D14
VSS
R34
VSS
D18
VSS
R36
VREF_S
Chapter 10
Abbreviation
Pin Descriptions
Full Name
59
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 19. Pin Name Abbreviations (Continued)
Abbreviation
60
Full Name
Pin
26426C—October 2003
Table 19. Pin Name Abbreviations (Continued)
VSS
T2
Abbreviation
VSS
Pin
AH36
VSS
T4
VSS
AK2
VSS
T6
VSS
AK4
VSS
T8
VSS
AK12
VSS
V30
VSS
AK16
VSS
V32
VSS
AK20
VSS
V34
VSS
AK24
VSS
V36
VSS
AK28
VSS
X2
VSS
AK32
VSS
X4
VSS
AM4
VSS
X6
VSS
AM6
VSS
X8
VSS
AM12
VSS
Z30
VSS
AM16
VSS
Z32
VSS
AM20
VSS
Z34
VSS
AM24
VSS
Z36
VSS
AM28
VSS
AB2
VSS
AM32
VSS
AB8
VSS
AM36
VSS
AB4
ZN
AC5
VSS
AB6
ZP
AE5
VSS
AD32
VSS
AD34
VSS
AD36
VSS
AF2
VSS
AF4
VSS
AF12
VSS
AF16
VSS
AH12
VSS
AH16
VSS
AH20
VSS
AH24
VSS
AH28
VSS
AH32
VSS
AH34
Pin Descriptions
Full Name
Chapter 10
Preliminary Information
26426C—October 2003
10.2
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Pin List
Table 20 on page 62 cross-references Socket A pin location to
signal name.
The “L” (Level) column shows the electrical specification for
this pin. “P” indicates a push-pull mode driven by a single
source. “O” indicates open-drain mode that allows devices to
share the pin.
Note: The AMD Athlon MP processor supports push-pull drivers.
For more information, see “Push-Pull (PP) Drivers” on page
6.
The “P” (Port) column indicates if this signal is an input (I),
output (O), or bidirectional (B) signal. The “R” (Reference)
column indicates if this signal should be referenced to VSS (G)
or VCC_CORE (P) planes for the purpose of signal routing with
respect to the current return paths.
Chapter 10
Pin Descriptions
61
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 20. Cross-Reference by Pin Location
Pin
Name
26426C—October 2003
Table 20. Cross-Reference by Pin Location
Description
L
P
R
page 74
-
-
-
B24
Pin
Name
Description
L
P
R
VCC_CORE
-
-
-
A1
No Pin
A3
SADDOUT[12]#
P
O
G
B26
VSS
-
-
-
A5
SADDOUT[5]#
P
O
G
B28
VCC_CORE
-
-
-
A7
SADDOUT[3]#
P
O
G
B30
VSS
-
-
-
A9
SDATA[55]#
P
B
P
B32
VCC_CORE
-
-
-
A11
SDATA[61]#
P
B
P
B34
VSS
-
-
-
A13
SDATA[53]#
P
B
G
B36
VCC_CORE
-
-
-
A15
SDATA[63]#
P
B
G
C1
SADDOUT[7]#
P
O
G
A17
SDATA[62]#
P
B
G
C3
SADDOUT[9]#
P
O
G
A19
SCHECK[7]#
P
B
G
C5
SADDOUT[8]#
P
O
G
A21
SDATA[57]#
P
B
G
C7
SADDOUT[2]#
P
O
G
A23
SDATA[39]#
P
B
G
C9
SDATA[54]#
P
B
P
A25
SDATA[35]#
P
B
P
C11
SDATAOUTCLK[3]#
P
O
G
A27
SDATA[34]#
P
B
P
C13
SCHECK[6]#
P
B
G
A29
SDATA[44]#
P
B
G
C15
SDATA[51]#
P
B
P
A31
SCHECK[5]#
P
B
G
C17
SDATA[60]#
P
B
G
A33
SDATAOUTCLK[2]#
P
O
P
C19
SDATA[59]#
P
B
G
A35
SDATA[40]#
P
B
G
C21
SDATA[56]#
P
B
G
A37
SDATA[30]#
P
B
P
C23
SDATA[37]#
P
B
P
B2
VSS
-
-
-
C25
SDATA[47]#
P
B
G
B4
VCC_CORE
-
-
-
C27
SDATA[38]#
P
B
G
B6
VSS
-
-
-
C29
SDATA[45]#
P
B
G
B8
VCC_CORE
-
-
-
C31
SDATA[43]#
P
B
G
B10
VSS
-
-
-
C33
SDATA[42]#
P
B
G
B12
VCC_CORE
-
-
-
C35
SDATA[41]#
P
B
G
B14
VSS
-
-
-
C37
SDATAOUTCLK[1]#
P
O
G
B16
VCC_CORE
-
-
-
D2
VCC_CORE
-
-
-
B18
VSS
-
-
-
D4
VCC_CORE
-
-
-
B20
VCC_CORE
-
-
-
D6
VSS
-
-
-
B22
VSS
-
-
-
D8
VCC_CORE
-
-
-
62
page 74
page 74
Pin Descriptions
page 74
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 20. Cross-Reference by Pin Location (continued)Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
page 74
P
B
P
D10
VSS
-
-
-
E33
SCHECK[3]#
D12
VCC_CORE
-
-
-
E35
SDATA[31]#
P
B
P
D14
VSS
-
-
-
E37
SDATA[22]#
P
B
G
D16
VCC_CORE
-
-
-
F2
VSS
-
-
-
D18
VSS
-
-
-
F4
VSS
-
-
-
D20
VCC_CORE
-
-
-
F6
VSS
-
-
-
D22
VSS
-
-
-
F8
NC Pin
-
-
-
D24
VCC_CORE
-
-
-
F10
VSS
-
-
-
D26
VSS
-
-
-
F12
VCC_CORE
-
-
-
D28
VCC_CORE
-
-
-
F14
VSS
-
-
-
D30
VSS
-
-
-
F16
VCC_CORE
-
-
-
D32
VCC_CORE
-
-
-
F18
VSS
-
-
-
D34
VSS
-
-
-
F20
VCC_CORE
-
-
-
D36
VSS
-
-
-
F22
VSS
-
-
-
E1
SADDOUT[11]#
P
O
P
F24
VCC_CORE
-
-
-
E3
SADDOUTCLK#
P
O
G
F26
VSS
-
-
-
E5
SADDOUT[4]#
P
O
P
F28
VCC_CORE
-
-
-
E7
SADDOUT[6]#
P
O
G
F30
NC Pin
-
-
-
E9
SDATA[52]#
P
B
P
F32
VCC_CORE
-
-
-
E11
SDATA[50]#
P
B
P
F34
VCC_CORE
-
-
-
E13
SDATA[49]#
P
B
G
F36
VCC_CORE
-
-
-
E15
SDATAINCLK[3]#
P
I
G
G1
SADDOUT[10]#
P
O
P
E17
SDATA[48]#
P
B
P
G3
SADDOUT[14]#
P
O
G
E19
SDATA[58]#
P
B
G
G5
SADDOUT[13]#
P
O
G
E21
SDATA[36]#
P
B
P
G7
Key Pin
page 73
-
-
-
E23
SDATA[46]#
P
B
P
G9
Key Pin
page 73
-
-
-
E25
SCHECK[4]#
P
B
P
G11
NC Pin
page 74
-
-
-
E27
SDATAINCLK[2]#
P
I
G
G13
NC Pin
page 74
-
-
-
E29
SDATA[33]#
P
B
P
G15
Key Pin
page 73
-
-
-
E31
SDATA[32]#
P
B
P
G17
Key Pin
page 73
-
-
-
Chapter 10
page 74
Pin Descriptions
page 74
page 74
63
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 20. Cross-Reference by Pin Location (continued)Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
G19
NC Pin
page 74
-
-
-
J5
NC Pin
page 74
-
-
-
G21
NC Pin
page 74
-
-
-
J7
VID[4]
page 75
O
O
-
G23
Key Pin
page 73
-
-
-
J31
NC Pin
page 74
-
-
-
G25
Key Pin
page 73
-
-
-
J33
SDATA[19]#
P
B
G
G27
NC Pin
page 74
-
-
-
J35
SDATAINCLK[1]#
P
I
P
G29
NC Pin
page 74
-
-
-
J37
SDATA[29]#
P
B
P
G31
NC Pin
page 74
-
-
-
K2
VSS
-
-
-
G33
SDATA[20]#
P
B
G
K4
VSS
-
-
-
G35
SDATA[23]#
P
B
G
K6
VSS
-
-
-
G37
SDATA[21]#
P
B
G
K8
NC Pin
page 74
-
-
-
H2
VCC_CORE
-
-
-
K30
NC Pin
page 74
-
-
-
H4
VCC_CORE
-
-
-
K32
VCC_CORE
-
-
-
H6
NC Pin
page 74
-
-
-
K34
VCC_CORE
-
-
-
H8
NC Pin
page 74
-
-
-
K36
VCC_CORE
-
-
-
H10
NC Pin
page 74
-
-
-
L1
VID[0]
page 75
O
O
-
H12
VCC_CORE
-
-
-
L3
VID[1]
page 75
O
O
-
H14
VSS
-
-
-
L5
VID[2]
page 75
O
O
-
H16
VCC_CORE
-
-
-
L7
VID[3]
page 75
O
O
-
H18
VSS
-
-
-
L31
NC Pin
page 74
-
-
-
H20
VCC_CORE
-
-
-
L33
SDATA[26]#
P
B
P
H22
VSS
-
-
-
L35
SCHECK[2]#
P
B
G
H24
VCC_CORE
-
-
-
L37
SDATA[28]#
P
B
P
H26
VSS
-
-
-
M2
VCC_CORE
-
-
-
H28
NC Pin
page 74
-
-
-
M4
VCC_CORE
-
-
-
H30
NC Pin
page 74
-
-
-
M6
VCC_CORE
-
-
-
H32
NC Pin
page 74
-
-
-
M8
VCC_CORE
-
-
-
H34
VSS
-
-
-
M30
VSS
-
-
-
H36
VSS
-
-
-
M32
VSS
-
-
-
J1
SADDOUT[0]#
page 74
P
O
-
M34
VSS
-
-
-
J3
SADDOUT[1]#
page 74
P
O
-
M36
VSS
-
-
-
64
Pin Descriptions
page 74
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 20. Cross-Reference by Pin Location (continued)Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
N1
PICCLK
page 70
O
I
-
R34
VSS
-
-
-
N3
PICD#[0]
page 70
O
B
-
R36
VSS
-
-
-
N5
PICD#[1]
page 70
O
B
-
S1
SCANCLK1
page 74
P
I
-
N7
Key Pin
page 73
-
-
-
S3
SCANINTEVAL
page 74
P
I
-
N31
NC Pin
page 74
-
-
-
S5
SCANCLK2
page 74
P
I
-
N33
SDATA[25]#
P
B
P
S7
THERMDA
page 75
-
-
-
N35
SDATA[27]#
P
B
P
S31
NC Pin
page 74
-
-
-
N37
SDATA[18]#
P
B
G
S33
SDATA[7]#
P
B
G
P2
VSS
-
-
-
S35
SDATA[15]#
P
B
P
P4
VSS
-
-
-
S37
SDATA[6]#
P
B
G
P6
VSS
-
-
-
T2
VSS
-
-
-
P8
VSS
-
-
-
T4
VSS
-
-
-
P30
VCC_CORE
-
-
-
T6
VSS
-
-
-
P32
VCC_CORE
-
-
-
T8
VSS
-
-
-
P34
VCC_CORE
-
-
-
T30
VCC_CORE
-
-
-
P36
VCC_CORE
-
-
-
T32
VCC_CORE
-
-
-
Q1
TCK
page 73
P
I
-
T34
VCC_CORE
-
-
-
Q3
TMS
page 73
P
I
-
T36
VCC_CORE
-
-
-
Q5
SCANSHIFTEN
page 74
P
I
-
U1
TDI
page 73
P
I
-
Q7
Key Pin
page 73
-
-
-
U3
TRST#
page 73
P
I
-
Q31
NC Pin
page 74
-
-
-
U5
TDO
page 73
P
O
-
Q33
SDATA[24]#
P
B
P
U7
THERMDC
page 75
-
-
-
Q35
SDATA[17]#
P
B
G
U31
NC Pin
page 74
-
-
-
Q37
SDATA[16]#
P
B
G
U33
SDATA[5]#
P
B
G
R2
VCC_CORE
-
-
-
U35
SDATA[4]#
P
B
G
R4
VCC_CORE
-
-
-
U37
SCHECK[0]#
P
B
G
R6
VCC_CORE
-
-
-
V2
VCC_CORE
-
-
-
R8
VCC_CORE
-
-
-
V4
VCC_CORE
-
-
-
R30
VSS
-
-
-
V6
VCC_CORE
-
-
-
R32
VSS
-
-
-
V8
VCC_CORE
-
-
-
Chapter 10
Pin Descriptions
page 74
65
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 20. Cross-Reference by Pin Location (continued)Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
V30
VSS
-
-
-
Z6
VCC_CORE
-
-
-
V32
VSS
-
-
-
Z8
VCC_CORE
-
-
-
V34
VSS
-
-
-
Z30
VSS
-
-
-
V36
VSS
-
-
-
Z32
VSS
-
-
-
W1
FID[0]
page 72
O
O
-
Z34
VSS
-
-
-
W3
FID[1]
page 72
O
O
-
Z36
VSS
-
-
-
W5
VREFSYS
page 76
P
-
-
AA1
DBRDY
page 71
P
O
-
W7
NC Pin
page 74
-
-
-
AA3
DBREQ#
page 71
P
I
-
W31
NC Pin
page 74
-
-
-
AA5
NC
-
-
-
W33
SDATAINCLK[0]#
P
I
G
AA7
Key Pin
page 73
-
-
-
W35
SDATA[2]#
P
B
G
AA31
NC Pin
page 74
-
-
-
W37
SDATA[1]#
P
B
P
AA33
SDATA[8]#
P
B
P
X2
VSS
-
-
-
AA35
SDATA[0]#
P
B
G
X4
VSS
-
-
-
AA37
SDATA[13]#
P
B
G
X6
VSS
-
-
-
AB2
VSS
-
-
-
X8
VSS
-
-
-
AB4
VSS
-
-
-
X30
VCC_CORE
-
-
-
AB6
VSS
-
-
-
X32
VCC_CORE
-
-
-
AB8
VSS
-
-
-
X34
VCC_CORE
-
-
-
AB30
VCC_CORE
-
-
-
X36
VCC_CORE
-
-
-
AB32
VCC_CORE
-
-
-
Y1
FID[2]
page 72
O
O
-
AB34
VCC_CORE
-
-
-
Y3
FID[3]
page 72
O
O
-
AB36
VCC_CORE
-
-
-
Y5
NC Pin
page 74
-
-
-
AC1
STPCLK#
page 75
P
I
-
Y7
Key Pin
page 73
-
-
-
AC3
PLLTEST#
page 74
P
I
-
Y31
NC Pin
page 74
-
-
-
AC5
ZN
page 76
P
-
-
Y33
SCHECK[1]#
page 74
P
B
P
AC7
NC
-
-
-
Y35
SDATA[3]#
P
B
G
AC31
NC Pin
-
-
-
Y37
SDATA[12]#
P
B
P
AC33
SDATA[10]#
P
B
P
Z2
VCC_CORE
-
-
-
AC35
SDATA[14]#
P
B
G
Z4
VCC_CORE
-
-
-
AC37
SDATA[11]#
P
B
G
66
Pin Descriptions
page 74
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 20. Cross-Reference by Pin Location (continued)
Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
AD2
VCC_CORE
-
-
-
AF30
NC Pin
page 74
-
-
-
AD4
VCC_CORE
-
-
-
AF32
NC Pin
page 74
-
-
-
AD6
VCC_CORE
-
-
-
AF34
VCC_CORE
-
-
-
AD8
NC Pin
page 74
-
-
-
AF36
VCC_CORE
-
-
-
AD30
NC Pin
page 74
-
-
-
AG1
FERR
P
O
-
AD32
VSS
-
-
-
AG3
RESET#
-
I
-
AD34
VSS
-
-
-
AG5
NC Pin
page 74
-
-
-
AD36
VSS
-
-
-
AG7
Key Pin
page 73
-
-
-
AE1
A20M#
P
I
-
AG9
Key Pin
page 73
-
-
-
AE3
PWROK
P
I
-
AG11
COREFB
page 71
-
-
-
AE5
ZP
P
-
-
AG13
COREFB#
page 71
-
-
-
AE7
NC
-
-
-
AG15
Key Pin
page 73
-
-
-
AE31
NC Pin
-
-
-
AG17
Key Pin
page 73
-
-
-
AE33
SADDIN[5]#
P
I
G
AG19
NC Pin
page 74
-
-
-
AE35
SDATAOUTCLK[0]#
P
O
P
AG21
NC Pin
page 74
-
-
-
AE37
SDATA[9]#
P
B
G
AG23
NC Pin
page 74
-
-
-
AF2
VSS
-
-
-
AG25
NC Pin
page 74
-
-
-
AF4
VSS
-
-
-
AG27
Key Pin
page 73
-
-
-
AF6
NC Pin
page 74
-
-
-
AG29
Key Pin
page 73
-
-
-
AF8
NC Pin
page 74
-
-
-
AG31
NC Pin
page 74
-
-
-
AF10
NC Pin
page 74
-
-
-
AG33
SADDIN[2]#
P
I
G
AF12
VSS
-
-
-
AG35
SADDIN[11]#
P
I
G
AF14
VCC_CORE
-
-
-
AG37
SADDIN[7]#
P
I
P
AF16
VSS
-
-
-
AH2
VCC_CORE
-
-
-
AF18
VCC_CORE
-
-
-
AH4
VCC_CORE
-
-
-
AF20
VSS
-
-
-
AH6
AMD Pin
page 70
-
-
-
AF22
VCC_CORE
-
-
-
AH8
NC Pin
page 74
-
-
-
AF24
VSS
-
-
-
AH10
VCC_CORE
-
-
-
AF26
VCC_CORE
-
-
-
AH12
VSS
-
-
-
AF28
NC Pin
-
-
-
AH14
VCC_CORE
-
-
-
Chapter 10
page 76
page 74
page 74
Pin Descriptions
page 71
67
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 20. Cross-Reference by Pin Location (continued)
Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
AH16
VSS
-
-
-
AK2
VSS
-
-
-
AH18
VCC_CORE
-
-
-
AK4
VSS
-
-
-
AH20
VSS
-
-
-
AK6
CPU_PRESENCE#
page 71
-
-
-
AH22
VCC_CORE
-
-
-
AK8
NC Pin
page 74
-
-
-
AH24
VSS
-
-
-
AK10
VCC_CORE
-
-
-
AH26
VCC_CORE
-
-
-
AK12
VSS
-
-
-
AH28
VSS
-
-
-
AK14
VCC_CORE
-
-
-
AH30
NC Pin
-
-
-
AK16
VSS
-
-
-
AH32
VSS
-
-
-
AK18
VCC_CORE
-
-
-
AH34
VSS
-
-
-
AK20
VSS
-
-
-
AH36
VSS
-
-
-
AK22
VCC_CORE
-
-
-
AJ1
IGNNE#
page 73
P
I
-
AK24
VSS
-
-
-
AJ3
INIT#
page 73
P
I
-
AK26
VCC_CORE
-
-
-
AJ5
VCC_CORE
-
-
-
AK28
VSS
-
-
-
AJ7
NC Pin
page 74
-
-
-
AK30
VCC_CORE
-
-
-
AJ9
NC Pin
page 74
-
-
-
AK32
VSS
-
-
-
AJ11
NC Pin
page 74
-
-
-
AK34
VCC_CORE
-
-
-
AJ13
Analog
page 70
-
-
-
AK36
VCC_CORE
-
-
-
AJ15
NC Pin
page 74
-
-
-
AL1
INTR
page 73
P
I
-
AJ17
NC Pin
page 74
-
-
-
AL3
FLUSH#
page 73
P
I
-
AJ19
NC Pin
page 74
-
-
-
AL5
VCC_CORE
-
-
-
AJ21
CLKFWDRST
page 70
P
I
P
AL7
NC Pin
page 74
-
-
-
AJ23
VCCA
page 75
-
-
-
AL9
NC Pin
page 74
-
-
-
AJ25
PLLBYPASS#
page 74
P
I
-
AL11
NC Pin
page 74
-
-
-
AJ27
NC Pin
page 74
-
-
-
AL13
PLLMON2
page 74
O
O
-
AJ29
SADDIN[0]#
page 74
P
I
-
AL15
PLLBYPASSCLK#
page 74
P
I
-
AJ31
SFILLVALID#
P
I
G
AL17
CLKIN#
page 71
P
I
P
AJ33
SADDINCLK#
P
I
G
AL19
RSTCLK#
page 71
P
I
P
AJ35
SADDIN[6]#
P
I
P
AL21
K7CLKOUT
page 73
P
O
-
AJ37
SADDIN[3]#
P
I
G
AL23
CONNECT
page 71
P
I
P
68
page 74
Pin Descriptions
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 20. Cross-Reference by Pin Location (continued)
Table 20. Cross-Reference by Pin Location
Pin
Name
Description
L
P
R
Pin
Name
Description
L
P
R
AL25
NC Pin
page 74
-
-
-
AN11
NC Pin
page 74
-
-
-
AL27
NC Pin
page 74
-
-
-
AN13
PLLMON1
page 74
O
B
-
AL29
SADDIN[1]#
page 74
P
I
-
AN15
PLLBYPASSCLK
page 74
P
I
-
AL31
SDATAOUTVALID#
P
O
P
AN17
CLKIN
page 71
P
I
P
AL33
SADDIN[8]#
P
I
P
AN19
RSTCLK
page 71
P
I
P
AL35
SADDIN[4]#
P
I
G
AN21
K7CLKOUT#
page 73
P
O
-
AL37
SADDIN[10]#
P
I
G
AN23
PROCRDY
P
O
P
AM2
VCC_CORE
-
-
-
AN25
NC Pin
page 74
-
-
-
AM4
VSS
-
-
-
AN27
NC Pin
page 74
-
-
-
AM6
VSS
-
-
-
AN29
SADDIN[12]#
P
I
G
AM8
NC Pin
-
-
-
AN31
SADDIN[14]#
P
I
G
AM10
VCC_CORE
-
-
-
AN33
SDATAINVALID#
P
I
P
AM12
VSS
-
-
-
AN35
SADDIN[13]#
P
I
G
AM14
VCC_CORE
-
-
-
AN37
SADDIN[9]#
P
I
G
AM16
VSS
-
-
-
AM18
VCC_CORE
-
-
-
AM20
VSS
-
-
-
AM22
VCC_CORE
-
-
-
AM24
VSS
-
-
-
AM26
VCC_CORE
-
-
-
AM28
VSS
-
-
-
AM30
VCC_CORE
-
-
-
AM32
VSS
-
-
-
AM34
VCC_CORE
-
-
-
AM36
VSS
-
-
-
AN1
No Pin
-
-
-
AN3
NMI
P
I
-
AN5
SMI#
P
I
-
AN7
NC Pin
page 74
-
-
-
AN9
NC Pin
page 74
-
-
-
Chapter 10
page 74
page 74
Pin Descriptions
69
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
10.3
26426C—October 2003
Detailed Pin Descriptions
The information in this section pertains to Table 20 on page 62.
A20M# Pin
A20M# is an input from the system used to simulate address
wrap-around in the 20-bit 8086.
AMD Pin
AMD Socket A processors do not implement a pin at location
AH6. All Socket A designs must have a top plate or cover that
blocks this pin location. When the cover plate blocks this
location, a non-AMD part (e.g., PGA370) does not fit into the
socket. However, socket manufacturers are allowed to have a
contact loaded in the AH6 position. Therefore, motherboard
socket design should account for the possibility that a contact
could be loaded in this position.
AMD Athlon™
System Bus Pins
See the AMD Athlon™ and AMD Duron™ System Bus
Specification, order# 21902 for information about the system
bus pins — PROCRDY, PWROK, RESET#, SADDIN[14:2]#,
SADDINCLK#, SADDOUT[14:2]#, SADDOUTCLK#,
S C H E C K [ 7 : 0 ] # , S DATA [ 6 3 : 0 ] # , S DATA I N C L K [ 3 : 0 ] # ,
SDATAINVALID#, SDATAOUTCLK[3:0]#, SDATAOUTVALID#,
SFILLVALID#.
Analog Pin
Treat this pin as a NC.
APIC Pins, PICCLK,
PICD[1:0]#
The Advanced Programmable Interrupt Controller (APIC) is a
feature that provides a flexible and expandable means of
delivering interrupts in a system using an AMD processor. The
pins, PICD[1:0], are the bidirectional message-passing signals
used for the APIC and are driven to the Southbridge, a
dedicated I/O APIC, or another multiprocessing-enabled
AMD Athlon MP processor model 10. The pin, PICCLK, must be
driven with a valid clock input.
Refer to “VCC_2.5V Generation Circuit” found in the section,
“Motherboard Required Circuits,” of the AMD Athlon™
Processor Motherboard Design Guide, order# 24363 for the
required supporting circuitry.
For more information, see Table 15, “APIC Pin AC and DC
Characteristics,” on page 40.
CLKFWDRST Pin
70
CLKFWDRST resets clock-forward circuitry for both the system
and processor.
Pin Descriptions
Chapter 10
Preliminary Information
26426C—October 2003
CLKIN, RSTCLK
(SYSCLK) Pins
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Connect CLKIN with RSTCLK and name it SYSCLK. Connect
CLKIN# with RSTCLK# and name it SYSCLK#. Length match
the clocks from the clock generator to the Northbridge and
processor.
See “SYSCLK and SYSCLK#” on page 75 for more information.
CONNECT Pin
CONNECT is an input from the system used for power
management and clock-forward initialization at reset.
COREFB and
COREFB# Pins
COREFB and COREFB# are outputs to the system that provide
processor core voltage feedback to the system.
CPU_PRESENCE# Pin
CPU_PRESENCE# is connected to VSS on the processor
package. If pulled-up on the motherboard, CPU_PRESENCE#
may be used to detect the presence or absence of a processor in
the Socket A-style socket.
DBRDY and DBREQ#
Pins
DBRDY and DBREQ# are routed to the debug connector.
DBREQ# is tied to VCC_CORE with a pullup resistor.
FERR Pin
FERR is an output to the system that is asserted for any
unmasked numerical exception independent of the NE bit in
CR0. FERR is a push-pull active High signal that must be
inverted and level shifted to an active Low signal. For more
information about FERR and FERR#, see the “Required
Circuits” chapter of the AMD Athlon™ Processor-Based
Motherboard Design Guide, order# 24363.
FID[3:0] Pins
FID[3] (Y3), FID[2] (Y1), FID[1] (W3), and FID[0] (W1) are the
4-bit processor clock-to-SYSCLK ratio.
Table 21 on page 72 describes the encodings of the clock
multipliers on FID[3:0].
Chapter 10
Pin Descriptions
71
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 21. FID[3:0] Clock Multiplier Encodings
FID[3:0]2
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Processor Clock to SYSCLK Frequency Ratio
11
11.5
12
≥ 12.51
5
5.5
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
Notes:
1. All ratios greater than or equal to 12.5x have the same FID[3:0] code of 0011b, which causes
the SIP configuration for all ratios of 12.5x or greater to be the same.
2. BIOS initializes the CLK_Ctl MSR during the POST routine. This CLK_Ctl setting is used with all
FID combinations and selects a Halt disconnect divisor and a Stop Grant disconnect divisor.
For more information, refer to the AMD Athlon™ and AMD Duron™ Processors BIOS,
Software, and Debug Developers Guide, order# 21656.
The FID[3:0] signals are open-drain processor outputs that are
pulled High on the motherboard and sampled by the chipset to
determine the SIP (serial initialization packet) that is sent to
the processor. The FID[3:0] signals are valid after PWROK is
asserted. The FID[3:0]signals must not be sampled until they
become valid. See the AMD Athlon™ and AMD Duron™ System
Bus Specification, order# 21902 for more information about
Serialization Initialization Packets and SIP protocol.
The processor FID[3:0] outputs are open-drain and 2.5-V
tolerant. To prevent damage to the processor, do not pull these
signals High above 2.5 V. Do not expose these pins to a
differential voltage greater than 1.60 V, relative to the
processor core voltage.
72
Pin Descriptions
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Refer to “VCC_2.5V Generation Circuit” found in the section,
“Motherboard Required Circuits,” of the AMD Athlon™
Processor Motherboard Design Guide, order# 24363 for the
required supporting circuitry.
See “Frequency Identification (FID[3:0])” on page 27 for the
DC characteristics for FID[3:0].
FLUSH# Pin
FLUSH# must be tied to VCC_CORE with a pullup resistor. If a
debug connector is implemented, FLUSH# is routed to the
debug connector.
IGNNE# Pin
IGNNE# is an input from the system that tells the processor to
ignore numeric errors.
INIT# Pin
INIT# is an input from the system that resets the integer
registers without affecting the floating-point registers or the
internal caches. Execution starts at 0_FFFF_FFF0h.
INTR Pin
INTR is an input from the system that causes the processor to
start an interrupt acknowledge transaction that fetches the
8-bit interrupt vector and starts execution at that location.
JTAG Pins
TCK, TMS, TDI, TRST#, and TDO are the JTAG interface.
Connect these pins directly to the motherboard debug
connector. Pull TDI, TCK, TMS, and TRST# up to VCC_CORE with
pullup resistors.
K7CLKOUT and
K7CLKOUT# Pins
K7CLKOUT and K7CLKOUT# are each run for two to three
inches and then terminated with a resistor pair: 100 ohms to
V CC_CORE and 100 ohms to VSS. The effective termination
resistance and voltage are 50 ohms and VCC_CORE /2.
Key Pins
These 16 locations are for processor type keying for forwards
and backwards compatibility (G7, G9, G15, G17, G23, G25, N7,
Q7, Y7, AA7, AG7, AG9, AG15, AG17, AG27, and AG29).
Motherboard designers should treat key pins like NC (No
Connect) pins. A socket designer has the option of creating a
top mold piece that allows PGA key pins only where designated.
However, sockets that populate all 16 key pins must be allowed,
so the motherboard must always provide for pins at all key pin
locations.
See “NC Pins“ for more information.
Chapter 10
Pin Descriptions
73
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
NC Pins
The motherboard should provide a plated hole for an NC pin.
The pin hole should not be electrically connected to anything.
NMI Pin
The motherboard should provide a plated hole for an NC pin.
The pin hole should not be electrically connected to anything.
PGA Orientation Pins
No pin is present at pin locations A1 and AN1. Motherboard
designers should not allow for a PGA socket pin at these
locations.
For more information, see the AMD Athlon™ Processor-Based
Motherboard Design Guide, order# 24363.
PLL Bypass and Test
Pins
P L LT E S T # , P L L B Y PA S S # , P L L M O N 1 , P L L M O N 2 ,
PLLBYPASSCLK, and PLLBYPASSCLK# are the PLL bypass
and test interface. This interface is tied disabled on the
motherboard. All six pin signals are routed to the debug
connector. All four processor inputs (PLLTEST#, PLLBYPASS#,
PLLMON1, and PLLMON2) are tied to VCC_CORE with pullup
resistors.
PWROK Pin
The PWROK input to the processor must not be asserted until
all voltage planes in the system are within specification and all
system clocks are running within specification.
For more information, Chapter 8, “Signal and Power-Up
Requirements” on page 41.
SADDIN[1:0]# and
SADDOUT[1:0]# Pins
The AMD Athlon MP processor model 10 does not support
SADDIN[1:0]# or SADDOUT[1:0]#. SADDIN[1]# is tied to VCC
with pullup resistors, if this bit is not supported by the
Northbridge (future models can support SADDIN[1]#).
SADDOUT[1:0]# are tied to VCC with pullup resistors if these
pins are supported by the Northbridge. For more information,
see the AMD Athlon™ and AMD Duron™ System Bus
Specification, order# 21902.
Scan Pins
SCANSHIFTEN, SCANCLK1, SCANINTEVAL, and SCANCLK2
are the scan interface. This interface is AMD internal and is
tied disabled with pulldown resistors to ground on the
motherboard.
SCHECK[7:0]# Pins
For systems that do not support ECC, SCHECK[7:0]# should be
treated as NC pins.
74
Pin Descriptions
Chapter 10
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
SMI# Pin
SMI# is an input that causes the processor to enter the system
management mode.
STPCLK# Pin
STPCLK# is an input that causes the processor to enter a lower
power mode and issue a Stop Grant special cycle.
SYSCLK and SYSCLK#
SYSCLK and SYSCLK# are differential input clock signals
provided to the PLL of the processor from a system-clock
generator.
See “CLKIN, RSTCLK (SYSCLK) Pins” on page 71 for more
information.
THERMDA and
THERMDC Pins
Thermal Diode anode and cathode pins are used to monitor the
actual temperature of the processor die, providing more
accurate temperature control to the system.
See Table 13, “Thermal Diode Electrical Characteristics,” on
page 38 for more information.
VCCA Pin
VCCA is the processor PLL supply. For information about the
VCCA pin, see Table 5, “VCCA AC and DC Characteristics,” on
page 35 and the AMD Athlon™ Processor-Based Motherboard
Design Guide, order# 24363.
To prevent damage to the processor, do not pull this signal High
above 2.5 V. Do not expose this pin to a differential voltage
greater than 1.60 V, relative to the processor core voltage.
VID[4:0] Pins
The VID[4:0] (Voltage Identification) outputs are used to
dictate the V CC_CORE voltage level. The VID[4:0] pins are
strapped to ground or left unconnected on the processor
package. The VID[4:0] pins are pulled up on the motherboard
and used by the VCC_CORE DC/DC converter.
The VID codes and corresponding voltage levels are shown in
Table 22, “VID[4:0] Code to Voltage Definition,” on page 76.
Chapter 10
Pin Descriptions
75
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 22. VID[4:0] Code to Voltage Definition
VID[4:0]
VCC_CORE (V)
VID[4:0]
VCC_CORE (V)
00000
1.850
10000
1.450
00001
1.825
10001
1.425
00010
1.800
10010
1.400
00011
1.775
10011
1.375
00100
1.750
10100
1.350
00101
1.725
10101
1.325
00111
1.675
10111
1.275
01000
1.650
11000
1.250
01001
1.625
11001
1.225
01010
1.600
11010
1.200
01011
1.575
11011
1.175
01100
1.550
11100
1.150
01101
1.525
11101
1.125
01110
1.500
11110
1.100
01111
1.475
11111
No CPU
For more information, see the “Required Circuits” chapter of
the AMD Athlon™ Processor-Based Motherboard Design Guide,
order# 24363.
VREFSYS Pin
VREFSYS (W5) drives the threshold voltage for the system bus
input receivers. The value of VREFSYS is system specific. In
addition, to minimize VCC_CORE noise rejection from VREFSYS,
include decoupling capacitors. For more information, see the
AMD Athlon™ Processor-Based Motherboard Design Guide, order#
24363.
ZN and ZP Pins
ZN (AC5) and ZP (AE5) are the push-pull compensation circuit
pins. In Push-Pull mode (selected by the SIP parameter
SysPushPull asserted), ZN is tied to VCC_CORE with a resistor
that has a resistance matching the impedance Z 0 of the
transmission line. ZP is tied to VSS with a resistor that has a
resistance matching the impedance Z0 of the transmission line.
76
Pin Descriptions
Chapter 10
Preliminary Information
26426C—October 2003
11
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Ordering Information
Standard AMD Athlon™ MP Processor Model 10 Products
AMD standard products are available in several operating ranges. The Ordering Part
Numbers (OPN) are formed by a combination of the elements, as shown in Figure 16.
OPN
AMS N 2800 D U T 4 C
Note: Spaces are added to the number shown
above for viewing clarity only.
Advanced Front-Side Bus: C = 266
Size of L2 Cache: 4 = 512 Kbytes
Die Temperature: T = 90°C
Operating Voltage: U = 1.60 V
Package Type: D = OPGA
Model Number: 2600 operates at 2000 MHz,
2800 operates at 2133 MHz
Maximum Power: N = 60 Watt Processor in Multiprocessor Platform
Architecture Segment: AMS = AMD Athlon™ MP Processor Model 10 with
QuantiSpeed™ Architecture for Multiprocessor
Platforms
Figure 16. OPN Example for the AMD Athlon™ MP Processor Model 10
Chapter 11
Ordering Information
77
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
78
Ordering Information
26426C—October 2003
Chapter 11
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Appendix A
Thermal Diode Calculations
This section contains information about the calculations for the
on-die thermal diode of the AMD Athlon™ MP processor model
10. For electrical information about this thermal diode, see
Table 13, “Thermal Diode Electrical Characteristics,” on
page 38.
Ideal Diode Equation
The ideal diode equation uses the variables and constants
defined in Table 23.
Table 23. Constants and Variables for the Ideal Diode Equation
Equation Symbol
nf, lumped
Variable, Constant Description
Lumped ideality factor
k
Boltzmann constant
q
Electron charge constant
T
Diode temperature (Kelvin)
VBE
Voltage from base to emitter
IC
Collector current
IS
Saturation current
Appendix A - Thermal Diode Calculations
79
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Equation (1) shows the ideal diode calculation.
k
I
V BE = n f, lumped ⋅ --- ⋅ T ⋅ ln  ---C-

q
I S
(1)
Sourcing two currents and using Equation (1) derives the
difference in the base-to-emitter voltage that leads to finding
the diode temperature as shown in Equation (2). The use of
dual sourcing currents allows the measurement of the thermal
diode temperature to be more accurate and less susceptible to
die and process revisions. Temperature sensors that utilize
series resistance cancellation can use more than two sourcing
currents and are suitable to be used with the AMD thermal
diode. Equation (2) is the formula for calculating the
temperature of a thermal diode.
T =
V BE, high – V BE, low -------------------------------------------------------------k
I high
n f, lumped ⋅ --- ⋅ ln  ------q
I low 
(2)
Temperature Offset Correction
A temperature offset may be required to correct the value
measured by a temperature sensor. An offset is necessary if a
difference exists between the lumped ideality factor of the
processor and the ideality factor assumed by the temperature
sensor. The lumped ideality factor can be calculated using the
equations in this section to find the temperature offset that
should be used with the temperature sensor.
Table 24 shows the constants and variables used to calculate the
temperature offset correction.
Table 24. Constants and Variables Used in Temperature Offset Equations
Equation Symbol
80
Variable, Constant Description
nf, actual
Actual ideality factor
nf, lumped
Lumped ideality factor
nf, TS
Ideality factor assumed by temperature sensor
Ihigh
High sourcing current
Ilow
Low sourcing current
Appendix A - Thermal Diode Calculations
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 24. Constants and Variables Used in Temperature Offset Equations
Equation Symbol
Tdie, spec
Toffset
Variable, Constant Description
Die temperature specification
Temperature offset
The formulas in Equation (3) and Equation (4) can be used to
calculate the temperature offset for temperature sensors that
do not employ series resistance cancellation. The result is
added to the value measured by the temperature sensor.
Contact the vendor of the temperature sensor being used for
the value of nf,TS. Refer to the document, On-Die Thermal Diode
Characterization, order# 25443, for further details.
Equation (3) shows the equation for calculating the lumped
ideality factor (nf, lumped) in sensors that do not employ series
resistance cancellation.
R T ⋅ ( I high – I low )
n f, lumped = n f, actual + --------------------------------------------------------------------k--I------high

( T die, spec + 273.15 ) ⋅ ln  -
q
I low
(3)
Equation (4) shows the equation for calculating temperature
offset (Toffset) in sensors that do not employ series resistance
cancellation.
n f, lumped-
T o f f s e t = ( T die, spec + 273.15 ) ⋅  1 – -------------
n f, TS 
(4)
Equation (5) is the temperature offset for temperature sensors
that utilize series resistance cancellation. Add the result to the
value measured by the temperature sensor. Note that the value
of n f,TS in Equation (5) may not equal the value used in
Equation (4).
n f, actual
T o f f s e t = ( T die, spec + 273.15 ) ⋅  1 – -------------
n f, TS 
Appendix A - Thermal Diode Calculations
(5)
81
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
82
26426C—October 2003
Appendix A - Thermal Diode Calculations
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Appendix B
Conventions and
Abbreviations
This section contains information about the conventions and
abbreviations used in this document.
Signals and Bits
■
■
■
■
■
Active-Low Signals—Signal names containing a pound sign,
such as SFILL#, indicate active-Low signals. They are
asserted in their Low-voltage state and negated in their
High-voltage state. When used in this context, High and Low
are written with an initial upper case letter.
Signal Ranges—In a range of signals, the highest and lowest
signal numbers are contained in brackets and separated by a
colon (for example, D[63:0]).
Reserved Bits and Signals—Signals or bus bits marked
reserved must be driven inactive or left unconnected, as
indicated in the signal descriptions. These bits and signals
are reserved by AMD for future implementations. When
software reads registers with reserved bits, the reserved bits
must be masked. When software writes such registers, it
must first read the register and change only the
non-reserved bits before writing back to the register.
Three-State—In timing diagrams, signal ranges that are
high impedance are shown as a straight horizontal line
half-way between the high and low levels.
Invalid and Don’t-Care—In timing diagrams, signal ranges
that are invalid or don't-care are filled with a screen pattern.
Appendix B - Conventions and Abbreviations
83
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Data Terminology
The following list defines data terminology:
■
■
■
■
■
■
■
84
Quantities
• A word is two bytes (16 bits)
• A doubleword is four bytes (32 bits)
• A quadword is eight bytes (64 bits)
Addressing—Memory is addressed as a series of bytes on
eight-byte (64-bit) boundaries in which each byte can be
separately enabled.
Abbreviations—The following notation is used for bits and
bytes:
• Kilo (K, as in 4-Kbyte page)
• Mega (M, as in 4 Mbits/sec)
• Giga (G, as in 4 Gbytes of memory space)
See Table 25 on page 85 for more abbreviations.
Little-endian Convention—The byte with the address
xx...xx00 is in the least-significant byte position (little end).
In byte diagrams, bit positions are numbered from right to
left—the little end is on the right and the big end is on the
left. Data structure diagrams in memory show low addresses
at the bottom and high addresses at the top. When data
items are aligned, bit notation on a 64-bit data bus maps
directly to bit notation in 64-bit-wide memory. Because byte
addresses increase from right to left, strings appear in
reverse order when illustrated.
Bit Ranges—In text, bit ranges are shown with a dash (for
example, bits 9–1). When accompanied by a signal or bus
name, the highest and lowest bit numbers are contained in
brackets and separated by a colon (for example, AD[31:0]).
Bit Values—Bits can either be set to 1 or cleared to 0.
Hexadecimal and Binary Numbers—Unless the context
makes interpretation clear, hexadecimal numbers are
followed by an h and binary numbers are followed by a b.
Appendix B - Conventions and Abbreviations
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Abbreviations and Acronyms
Table 25 contains the definitions of abbreviations used in this
document.
Table 25. Abbreviations
Abbreviation
Meaning
A
ampere
F
farad
G
giga-
Gbit
gigabit
Gbyte
gigabyte
GHz
gigahertz
H
henry
h
hexadecimal
K
kilo-
Kbyte
kilobyte
lbf
foot-pound
M
mega-
Mbit
megabit
Mbyte
megabyte
MHz
megahertz
m
milli-
ms
millisecond
mW
milliwatt
µ
micro-
µA
microampere
µF
microfarad
µH
microhenry
µs
microsecond
µV
microvolt
n
nano-
nA
nanoampere
nF
nanofarad
nH
nanohenry
ns
nanosecond
Ω
ohm
Appendix B - Conventions and Abbreviations
85
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 25. Abbreviations (Continued)
Abbreviation
Meaning
p
pico-
pA
picoampere
pF
picofarad
pH
picohenry
ps
picosecond
s
second
V
volt
W
watt
Table 26 contains the definitions of commonly-used acronyms .
Table 26. Acronyms
86
Abbreviation
Meaning
ACPI
Advanced Configuration and Power Interface
AGP
Accelerated Graphics Port
APCI
AGP Peripheral Component Interconnect
API
Application Programming Interface
APIC
Advanced Programmable Interrupt Controller
BAR
basic address register
BGA
ball grid array
BIOS
basic input/output system
BIST
built-in self-test
BIU
bus interface unit
CAD
computer-aided design
CCGA
ceramic column grid array
CLGA
ceramic line grid array
CMOS
complementary metal-oxide semiconductor
CPGA
ceramic pin grid array
CPU
central processing unit—replace with “the processor”
DDR
double-data rate
DIMM
dual inline memory module
DMA
direct memory access
DRAM
direct random access memory
Appendix B - Conventions and Abbreviations
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 26. Acronyms (Continued)
Abbreviation
Meaning
DSP
digital signal processing
DTR
desktop replacement
DUT
device under test
ECC
error correction code
EEPROM
electronically erasable programmable read-only
memory
EIDE
Enhanced Integrated Device Electronics
EISA
Extended Industry Standard Architecture
EOI
end of interrupt
EPROM
enhanced programmable read-only memory
FID
frequency identifier
FIFO
first in, first out
FON
full on
FPU
floating-point unit
FSB
front-side bus
GART
graphics address remapping table
HSTL
high-speed transistor logic
IC
integrated circuit
IDE
Integrated Drive (Device) Electronics
IPC
instructions per cycle
IRQ
interrupt request
ISA
Industry Standard Architecture
ISDN
Integrated Services Digital Network
ISO
International Organization for Standardization
ISR
interrupt service routine and in–service register
JEDEC
Joint Electron Device Engineering Council
JTAG
Joint Test Action Group
LAN
local area network
LPT
local printer terminal
LRU
least-recently used
LSB
least-significant bit
MOESI
A cache–state characteristic: exclusive modified,
owner, exclusive, shared, invalid
MOSFET
metal-oxide semiconductor field-effect transistor
MSB
most significant bit
Appendix B - Conventions and Abbreviations
87
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 26. Acronyms (Continued)
88
Abbreviation
Meaning
MSR
model-specific register
MTRR
memory type and range registers
MUX
multiplexer
NMI
non-maskable interrupt
NOP
no operation
OBGA
organic ball grid array
OCW
operation command word
OD
open-drain
OPGA
organic pin grid array
PA
physical address
PBGA
plastic ball grid array
PCB
printed circuit board
PCI
peripheral component interconnect
PDE
page directory entry
PDT
page directory table
PGA
pin grid array
PIB
processor internal buffer
PIC
programmable interrupt command
PLL
phase locked loop
PM
power management
PMSM
Power Management State Machine
PNP (or PnP)
Plug 'n Play or Plug and Play
POS
power-on suspend
POST
power-on self-test
PPA
physical page address
PQ
probe queue
PRA
probe response alert
PSQ
probe system data and control queue
RAM
random access memory
RAS
remote access storage
RDMSR
read MSR
RID
read if dirty
RIH
read if hit
ROM
read only memory
Appendix B - Conventions and Abbreviations
Preliminary Information
26426C—October 2003
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
Table 26. Acronyms (Continued)
Abbreviation
Meaning
RSD
reference system design
RTC
real-time clock
RXA
read acknowledge queue
SBA
sideband address
SCI
system controller interrupt
SCSI
small computer system interface
SDI
system DRAM interface
SDRAM
synchronous direct random access memory
SIMD
single instruction multiple data
SIP
serial initialization packet
SMbus
system management bus
SMC
SDRAM memory controller
SMI
system management interrupt
SMM
system management mode
SOFF
soft off
SPD
serial presence detect
SPSC
system power state controller
SRAM
static random access memory
SROM
serial read only memory
STP
shielded twisted pair
TCP/IP
Transmission Control Protocol/Internet Protocol
TDP
thermal dissipating power
TLB
translation lookaside buffer
TOM
top of memory
TTL
Transistor Transistor Logic
USB
universal serial bus
VAS
virtual address space
VGA
Video Graphics Adapter
VPA
virtual page address
VRM
voltage regulator module
USB
universal serial bus
WB
writeback
WBT
write buffer tag
WC
write combining
Appendix B - Conventions and Abbreviations
89
Preliminary Information
AMD Athlon™ MP Processor Model 10 Data Sheet for Multiprocessor Platforms
26426C—October 2003
Table 26. Acronyms (Continued)
Abbreviation
Meaning
WDB
write data buffer
WP
write protect
WRMSR
write MSR
WT
writethrough
XOR
exclusive OR
ZDB
Zero Delay Buffer
Related Publications
These documents provide helpful information about the
AMD Athlon™ MP processor model 10, and can be found with
o t h e r re l a t e d d o c u m e n t s a t t h e A M D We b s i t e ,
http://www.amd.com.
■
■
■
■
■
■
AMD Athlon™ Processor x86 Code Optimization Guide, order#
22007
AMD Processor Recognition Application Note, order# 20734
Methodologies for Measuring Temperature on AMD Athlon™
and AMD Duron™ Processors, order# 24228
AMD Thermal, Mechanical, and Chassis Cooling Design Guide,
order# 23794
Builders Guide for 2P Capable Servers and Workstations,
order# 25823
System Considerations for Dual AMD Athlon™ XP Processors
in Tower and 1U Form, order# 25325
Other Web sites of interest include the following:
■
JEDEC home page—www.jedec.org
IEEE home page—www.computer.org
■
AGP Forum—www.agpforum.or
■
90
Appendix B - Conventions and Abbreviations