ONSEMI NSB1011XV6T5

NSB1011XV6T5
Preferred Device
Dual Bias Resistor
Transistors
NPN Silicon Surface Mount Transistors
with Monolithic Bias Resistor Network
The BRT (Bias Resistor Transistor) contains a single transistor with
a monolithic bias network consisting of two resistors; a series base
resistor and a base−emitter resistor. These digital transistors are
designed to replace a single device and its external resistor bias
network. The BRT eliminates these individual components by
integrating them into a single device. In the NSB1011XV6T5, two
BRT devices are housed in the SOT−563 package which is ideal for
low power surface mount applications where board space is at a
premium.
•
•
•
•
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
This device is manufactured with a Pb−Free external lead finish only.
http://onsemi.com
(3)
R1
Value
Unit
Collector-Base Voltage
VCBO
50
Vdc
Collector-Emitter Voltage
VCEO
50
Vdc
IC
100
mAdc
(4)
Symbol
PD
RqJA
54
12
3
MARKING DIAGRAM
Max
Unit
357 (Note 1)
2.9 (Note 1)
mW
mW/°C
350 (Note 1)
°C/W
UT = Specific Device Code
(see table on following page)
D = Date Code
ORDERING INFORMATION
Device
Symbol
Total Device Dissipation
TA = 25°C
Derate above 25°C
PD
Max
Unit
500 (Note 1)
4.0 (Note 1)
mW
mW/°C
Thermal Resistance −
Junction-to-Ambient
RqJA
250 (Note 1)
°C/W
Junction and Storage
Temperature Range
TJ, Tstg
−55 to +150
°C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. FR−4 @ Minimum Pad.
 Semiconductor Components Industries, LLC, 2005
January, 2005 − Rev. 0
(6)
UT D
Total Device Dissipation
TA = 25°C
Derate above 25°C
Characteristic
(Both Junctions Heated)
(5)
6
THERMAL CHARACTERISTICS
Thermal Resistance −
Junction-to-Ambient
R1
SOT−563
CASE 463A
PLASTIC
Symbol
Characteristic
(One Junction Heated)
R2
Q2
R2
(TA = 25°C unless otherwise noted, common for Q1 and Q2)
Collector Current
(1)
Q1
MAXIMUM RATINGS
Rating
(2)
1
Package
NSB1011XV6T5 SOT−563
(Pb−Free)
Shipping †
8000 / Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Preferred devices are recommended choices for future use
and best overall value.
Publication Order Number:
NSB1011XV6/D
NSB1011XV6T5
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Collector-Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
nAdc
Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0)
ICEO
−
−
500
nAdc
Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0)
IEBO
−
−
0.5
mAdc
Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector-Emitter Breakdown Voltage (Note 2) (IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
Q1
OFF CHARACTERISTICS
ON CHARACTERISTICS (Note 2)
DC Current Gain (VCE = 10 V, IC = 5.0 mA)
hFE
35
60
−
−
VCE(sat)
−
−
0.25
Vdc
Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
−
−
0.2
Vdc
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
VOH
4.9
−
−
Vdc
Input Resistor
R1
7.0
10
13
kW
Resistor Ratio
R1/R2
0.8
1.0
1.2
−
Collector-Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
nAdc
Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0)
ICEO
−
−
500
nAdc
Collector-Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)
Q2
OFF CHARACTERISTICS
Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0)
IEBO
−
−
0.2
mAdc
Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector-Emitter Breakdown Voltage (Note 2) (IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
hFE
80
140
−
−
VCE(sat)
−
−
0.25
Vdc
Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
−
−
0.2
Vdc
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
ON CHARACTERISTICS (Note 2)
DC Current Gain (VCE = 10 V, IC = 5.0 mA)
Collector-Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)
VOH
4.9
−
−
Vdc
Input Resistor
R1
1.54
2.2
2.86
kW
Resistor Ratio
R1/R2
0.038
0.047
0.056
−
2. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%.
PD, POWER DISSIPATION (mW)
300
250
200
150
100
50
0
−50
RqJA = 833°C/W
0
50
100
TA, AMBIENT TEMPERATURE (°C)
Figure 1. Derating Curve
http://onsemi.com
2
150
NSB1011XV6T5
1
1000
IC/IB = 10
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS — Q1
TA=−25°C
25°C
0.1
75°C
0
20
40
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
−25°C
100
0.01
0.001
VCE = 10 V
10
50
1
10
IC, COLLECTOR CURRENT (mA)
Figure 2. VCE(sat) versus IC
Figure 3. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
2
1
0
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (VOLTS)
25°C
75°C
f = 1 MHz
IE = 0 V
TA = 25°C
1
0.1
0.01
0.001
50
TA=−25°C
10
VO = 5 V
0
1
2
5
6
7
3
4
Vin, INPUT VOLTAGE (VOLTS)
10
VO = 0.2 V
TA=−25°C
25°C
75°C
1
0.1
0
10
8
9
Figure 5. Output Current versus Input Voltage
Figure 4. Output Capacitance
V in , INPUT VOLTAGE (VOLTS)
C ob, CAPACITANCE (pF)
4
3
100
20
30
40
IC, COLLECTOR CURRENT (mA)
Figure 6. Input Voltage versus Output Current
http://onsemi.com
3
50
10
NSB1011XV6T5
1000
1
VCE = 10 V
IC/IB = 10
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS — Q2
75°C
0.1
−25°C
25°C
0.01
0.001
30
10
20
40
IC, COLLECTOR CURRENT (mA)
0
75°C
100
1
10
IC, COLLECTOR CURRENT (mA)
Figure 7. VCE(sat) versus IC
f = 1 MHz
IE = 0 V
TA = 25°C
3
2.5
2
1.5
1
0.5
0
0
5
10 15 20 25 30 35 40 45
VR, REVERSE BIAS VOLTAGE (VOLTS)
10
75°C
1
TA = −25°C
0.1
0.01
0.001
50
25°C
VO = 5 V
0
Figure 9. Output Capacitance
1
2
3
4
5
6
7
8
Vin, INPUT VOLTAGE (VOLTS)
75°C
1
25°C
TA = −25°C
VO = 0.2 V
0.1
0
9
10
Figure 10. Output Current versus Input Voltage
10
Vin, INPUT VOLTAGE (VOLTS)
Cob, CAPACITANCE (pF)
IC, COLLECTOR CURRENT (mA)
100
3.5
100
Figure 8. DC Current Gain
4.5
4
25°C
10
1
50
TA = −25°C
10
20
30
40
IC, COLLECTOR CURRENT (mA)
Figure 11. Input Voltage versus Output Current
http://onsemi.com
4
50
NSB1011XV6T5
PACKAGE DIMENSIONS
SOT−563, 6 LEAD
CASE 463A−01
ISSUE D
A
−X−
6
5
1
G
2
C
4
3
B
−Y−
D 65 PL
0.08 (0.003)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
K
DIM
A
B
C
D
G
J
K
S
S
J
M
X Y
STYLE 1:
PIN 1. EMITTER 1
2. BASE 1
3. COLLECTOR 2
4. EMITTER 2
5. BASE 2
6. COLLECTOR 1
STYLE 2:
PIN 1. EMITTER 1
2. EMITTER2
3. BASE 2
4. COLLECTOR 2
5. BASE 1
6. COLLECTOR 1
STYLE 3:
PIN 1. CATHODE 1
2. CATHODE 1
3. ANODE/ANODE 2
4. CATHODE 2
5. CATHODE 2
6. ANODE/ANODE 1
MILLIMETERS
MIN
MAX
1.50
1.70
1.10
1.30
0.50
0.60
0.17
0.27
0.50 BSC
0.08
0.18
0.10
0.30
1.50
1.70
STYLE 4:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
SOLDERING FOOTPRINT*
0.3
0.0118
0.45
0.0177
1.35
0.0531
1.0
0.0394
0.5
0.5
0.0197 0.0197
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
INCHES
MIN
MAX
0.059 0.067
0.043 0.051
0.020 0.024
0.007 0.011
0.020 BSC
0.003 0.007
0.004 0.012
0.059 0.067
NSB1011XV6T5
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
6
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
NSB1011XV6T4/D