ONSEMI NB7L111MMN

NB7L111M
2.5V / 3.3V, 6.125Gb/s 1:10
Differential Clock/Data
Driver with CML Output
Description
The NB7L111M is a low skew 1–to–10 differential clock/data
driver, designed with clock/data distribution in mind. It accepts two
clock/data sources into multiplexer input and reproduces ten identical
CML differential outputs. This device is ideal for clock/data
distribution across the backplane or a board, and redundant clock
switchover applications.
The input signals can be either differential or single–ended (if the
external reference voltage is provided). Differential inputs incorporate
internal 50 W termination resistors and accept Negative ECL (NECL),
Positive ECL (PECL), LVCMOS, LVTTL, CML, or LVDS (using
appropriate power supplies). The differential 16 mA CML output
provides matching internal 50 W termination, and 400 mV output
swing when externally terminated 50 W to VCC.
The NB7L111M operates from a 2.5 V $5% supply or a
3.3 V $5% supply and is guaranteed over the full industrial
temperature range of −40°C to +85°C. This device is packaged in a
low profile 8x8 mm, QFN−52 package with 0.5 mm pitch (see
package dimension on the back of the datasheet).
Application notes, models, and support documentation are available
at www.onsemi.com.
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
Maximum Input Clock Frequency > 5.5 GHz Typical
Maximum Input Data Rate > 6.125 Gb/s Typical
< 0.5 ps Maximum Clock RMS Jitter
< 15 ps Maximum Data Dependent Jitter at 3.125 Gb/s
50 ps Typical Rise and Fall Times
240 ps Typical Propagation Delay
2 ps Typical Duty Cycle Skew
10 ps Typical Within Device Skew
15 ps Typical Device−to−Device Skew
Operating Range: VCC = 2.5 V $5 and 3.3 V $5
400 mV Differential CML Output Swing
50 W Internal Input and Output Termination Resistors
Pb−Free Packages are Available*
http://onsemi.com
1
52
QFN−52
MN SUFFIX
CASE 485M
MARKING DIAGRAM*
52
1
NB7L
111M
AWLYYWWG
A
WL
YY
WW
G
= Assembly Site
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 12 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
January, 2006 − Rev. 1
1
Publication Order Number:
NB7L111M/D
NC
VCC
Q0
Q0
VEE
Q1
Q1
VEE
Q2
Q2
VCC
NC
VEE
51
50
49
48
47
46
45
44
43
42
41
40
Exposed Pad (EP)
52
NB7L111M
VEE
1
39
VCC
VTCLK0
2
38
Q3
CLK0
3
37
Q3
CLK0
4
36
VEE
VTCLK0
5
35
Q4
6
34
Q4
33
VEE
VTSEL
QFN52
26
VEE
VCC
25
27
NC
13
24
VTCLK1
23
Q6
Q7
28
VCC
12
22
CLK1
Q7
Q6
21
29
VEE
11
20
CLK1
Q8
VEE
19
30
Q8
10
18
VTCLK1
VEE
Q5
17
31
Q9
9
16
VTSEL
Q9
Q5
15
32
VCC
8
14
7
SEL
NC
SEL
Figure 1. Pinout (Top View)
Q0
Q0
VCC
Q1
VEE
Q1
Q2
VTCLK0
50 W
Q2
Q3
CLK0
Q3
0
CLK0
50 W
VTCLK0
Q4
Q4
Q5
VTCLK1
50 W
CLK1
Q5
Q6
1
CLK1
50 W
VTCLK1
VTSEL
50 W
SEL
Q6
Q7
Q7
R1
Q8
Q8
SEL
VTSEL
50 W
Q9
R2
R3
Q9
Figure 2. Logic Diagram
Table 1. FUNCTION TABLE
SEL
SEL
CLK0/CLK0
CLK1/CLK1
LOW
HIGH
HIGH
ON
OFF
LOW
OFF
ON
http://onsemi.com
2
NB7L111M
Table 2. PIN DESCRIPTION
Pin
Name
I/O
15, 24, 27, 39, 42, 51
VCC
−
Positive supply voltage. All VCC pins must be externally connected to
power supply to guarantee proper operation.
Description
1, 18, 21, 26, 30, 33,
36, 40, 45, 48
VEE
−
Negative supply voltage. All VEE pins must be externally connected to
power supply to guarantee proper operation.
2
VTCLK0
−
Internal 50 W termination pin for CLK0. (Note 2)
3
CLK0
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Non−inverted differential clock/data input 0 (Note 2).
4
CLK0
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Inverted differential clock/data input 0 (Note 2).
5
VTCLK0
−
Internal 50 W termination pin for CLK0. (Note 2)
6
VTSEL
7
SEL
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Non−inverted differential clock/data select input. Internal 75 kW to VEE.
8
SEL
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Inverted differential clock/data select input. Internal 56 KW to VCC and
56 kW to VEE bias this pin to (VCC−VEE)/2.
9
VTSEL
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Internal 50 W termination pin for SEL. (Note 2)
10
VTCLK1
−
Internal 50 W termination pin for CLK1. (Note 2)
11
CLK1
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Non−inverted differential clock/data input 1 (Note 2).
12
CLK1
LVPECL, CML,
LVCMOS, LVTTL,
LVDS Input
Inverted differential clock/data input 1 (Note 2).
13
VTCLK1
−
Internal 50 W termination pin for CLK1. (Note 2)
14, 25, 41, 52
NC
−
17, 20, 23, 29, 32, 35,
38, 44, 47, 50
Q[0−9]
CML Outputs
Non−inverted CML outputs [0−9] with internal 50 W source termination
resistor (Note 1).
16, 19, 22, 28, 31, 34,
37, 43, 46, 49
Q[0−9]
CML Outputs
Inverted CML outputs [0−9] with internal 50 W source termination
resistor (Note 1).
EP
−
−
Internal 50 W termination pin for SEL. (Note 2)
Exposed Pad (EP). The thermally exposed pad on package bottom (see
case drawing) must be attached to a heat−sinking conduit on the printed
circuit board.
1. CML output requires 50 W receiver termination resistor to VCC for proper operation.
2. In the differential configuration when the input termination pin (VTCLK, VTCLK) are connected to a common termination voltage or left open,
and if no signal is applied on CLK and CLK then the device will be susceptible to self−oscillation.
http://onsemi.com
3
NB7L111M
Table 3. ATTRIBUTES
Characteristics
Value
Input Default State Resistors
ESD Protection
R1, R3
R2
56 kW
75 kW
Human Body Model
Machine Model
> 1400 V
> 80 V
Moisture Sensitivity (Note 3)
QFN−52
Flammability Rating
Oxygen Index: 28 to 34
Pb Pkg
Pb−Free Pkg
Level 2
Level 1
UL 94 V−0 @ 0.125 in
Transistor Count
339
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
3. For additional information, see Application Note AND8003/D.
Table 4. MAXIMUM RATINGS (Note 4)
Symbol
Parameter
Condition 1
Rating
Unit
3.6
V
3.6
V
2.8
|VCC − VEE|
V
V
Continuous
Surge
25
50
mA
mA
Output Current
Continuous
Surge
25
50
mA
mA
TA
Operating Temperature Range
QFN52
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
(Note 5)
0 lfpm
500 lfpm
QFN52
25
19.6
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
1S2P (Note 8)
QFN52
21
°C/W
Tsol
Wave Solder
265
265
°C
VCC
Positive Power Supply
VEE = 0 V
VI
Input Voltage
VEE = 0 V
VINPP
Differential Input Voltage |CLK − CLK|
VCC − VEE ≥ 2.8 V
VCC − VEE < 2.8 V
Iin
Input Current Through RT (50 W Resistor)
Iout
Pb
Pb−Free
Condition 2
VEE v VI v VCC
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
4. Maximum Ratings are those values beyond which device damage may occur.
5. JEDEC standard multilayer board − 1S2P (1 signal, 2 power).
http://onsemi.com
4
NB7L111M
Table 5. DC CHARACTERISTICS VCC = 2.375 V 2.625 V and 3.135 V to 3.465 V, VEE = 0 V, TA = −40°C to +85°C (Notes 6 and 7)
Characteristic
Symbol
ICC
Power Supply Current (Inputs and Outputs Open)
VCC = 2.375 V to 2.625 V
VCC = 3.135 V to 3.465 V
VOH
Output HIGH Voltage (Notes 6 and 7)
VOL
Output LOW Voltage (Notes 6 and 7)
VCC = 2.375 V to 2.625 V
VCC = 3.135 V to 3.465 V
Min
Typ
Max
255
270
290
305
325
340
VCC − 40
VCC − 20
VCC
VCC − 440
VCC − 490
VCC − 350
VCC − 400
VCC – 290
VCC − 340
Unit
mA
mV
mV
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (See Figures 13 and 15)
Vth
Input Threshold Reference Voltage Range (Note 8)
VIH
Single−ended Input HIGH Voltage (Note 7)
VIL
Single−ended Input LOW Voltage (Note 7)
1125
VCC – 75
mV
Vth + 75
VCC
mV
VEE
VCC – 150
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (See Figures 14 and 16)
VIHD
Differential Input HIGH Voltage
1200
VCC
mV
VILD
Differential Input LOW Voltage
VEE
VCC – 75
mV
VCMR
Input Common Mode Range (Differential Configuration) (Note 9)
1163
VCC – 37
mV
VID
Differential Input Voltage (VIHD − VILD)
2500
mV
IIH
Input HIGH Current
(Termination Pins Open)
CLK[0−1]/CLK[0−1]
SEL/SEL
−100
−150
5
100
150
mA
IIL
Input LOW Current
(Termination Pins Open)
CLK[0−1]/CLK[0−1]
SEL/SEL
−100
−150
5
100
150
mA
RTIN
Internal Input Termination Resistor
45
50
55
W
RTOUT
Internal Output Termination Resistor
45
50
55
W
RTemp
Coef
Internal I/O Termination Resistor Temperature Coefficient
75
−3.75
mW/C
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
6. CML outputs require 50 W receiver termination resistors to VCC for proper operation.
7. Input and output parameters vary 1:1 with VCC.
8. Vth is applied to the complementary input when operating in single−ended mode.
9. VCMR(MIN) varies 1:1 with VEE, VCMR(MAX) varies 1:1 with VCC.
http://onsemi.com
5
NB7L111M
Table 6. AC CHARACTERISTICS VCC = 2.375 V to 2.625 V and 3.135 V to 3.465 V, VEE = 0 V; (Note 10)
−40°C
Min
Symbol
Characteristic
VOUTPP
Output Voltage Amplitude (@ Vinppmin)
(See Figures 3, 4, 5, and 6)
VCC = 2.375 V to 2.625 V
fin ≤ 3 GHz
fin ≤ 5.5 GHz
VCC = 3.135 V to 3.465 V
fin ≤ 3 GHz
fin ≤ 5.5 GHz
fDATA
Maximum Operating Data Rate
tPLH,
tPHL
Differential Input−to−Output Propagation Delay
@ 1 GHz (See Figures 7 and 11)
CLK−Q
SEL−Q
tSKEW
Duty Cycle Skew (Note 11)
Within Device Skew
Device−to−Device Skew (Note 15)
tJITTER
RMS Random Clock Jitter (Note 13)
fin = 3 GHz
fin = 5.5 GHz
Peak−to−Peak Data Dependent Jitter
(Note 14)
fDATA = 3.125 Gb/s
fDATA = 5 Gb/s
fDATA = 6.125 Gb/s
VINPP
Input Voltage Swing/Sensitivity
(Differential Configuration)
(Note 12 and Figures 3, 4, 5, and 6)
tr
tf
Output Rise/Fall Times @ 1 GHz
(20% − 80%)
Typ
25°C
Max
Min
Typ
85°C
Max
Min
Typ
Max
Unit
mV
240
115
330
220
240
115
330
220
240
115
330
220
250
130
350
250
250
130
350
250
250
130
350
250
5
6
5
6
5
6
200
290
240
340
280
390
200
290
240
340
280
390
200
290
240
340
280
390
2
10
15
15
20
80
2
10
15
15
20
80
2
10
15
15
20
80
0.2
0.2
0.5
0.5
0.2
0.2
0.5
0.5
0.2
0.2
0.5
0.5
6
15
15
15
25
25
6
15
15
15
25
25
6
15
15
15
25
25
400
2500
400
2500
400
2500
mV
50
75
50
75
50
75
ps
75
75
75
Gb/s
ps
ps
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured by forcing VINPP(MIN) from a 50% duty cycle clock source. All loading with an external RL = 50 W to VCC. Input edge rates 40 ps
(20% − 80%).
11. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw− and Tpw+ @ 1 GHz.
12. VINPP(MAX) cannot exceed VCC − VEE. Input voltage swing is a single−ended measurement operating in differential mode.
13. Additive RMS jitter with 50% duty cycle clock signal.
14. Additive peak−to−peak data dependent jitter with input NRZ data at PRBS 223−1.
15. Device−to−device skew is measured between outputs under identical transition and conditions @ 1 GHz.
http://onsemi.com
6
350
OUTPUT VOLTAGE AMPLITUDE (mV)
400
−40
25
300
250
85
200
150
100
50
0
1
2
3
3.5
4
4.5
5
5.5
6
400
350
25
300
−40
250
85
200
150
100
50
0
6.5
1
2
3
3.5
4
4.5
5
5.5
6
6.5
INPUT CLOCK FREQUENCY (GHz)
INPUT CLOCK FREQUENCY (GHz)
Figure 3. Output Voltage Amplitude vs. Input
Clock Frequency and Temperature
(Vinpp = 400 mV; VCC = 3.3 V)
Figure 4. Output Voltage Amplitude vs. Input
Clock Frequency and Temperature
(Vinpp = 75 mV; VCC = 3.3 V)
OUTPUT VOLTAGE AMPLITUDE (mV)
400
350
300
25
−40
250
200
85
150
100
50
0
1
2
3
3.5
4
4.5
5
5.5
6
400
350
300
85
200
150
100
50
0
6.5
1
2
3
3.5
4.5
5
5.5
6
6.5
Figure 6. Output Voltage Amplitude vs. Input
Clock Frequency and Temperature
(Vinpp = 75 mV; VCC = 2.5 V)
280
270
260
250
Typical Tpd
240
230
220
210
−40
4
INPUT CLOCK FREQUENCY (GHz)
Figure 5. Output Voltage Amplitude vs. Input
Clock Frequency and Temperature
(Vinpp = 400 mV; VCC = 2.5 V)
200
−40
25
250
INPUT CLOCK FREQUENCY (GHz)
PROPAGATION DELAY (ps)
OUTPUT VOLTAGE AMPLITUDE (mV)
OUTPUT VOLTAGE AMPLITUDE (mV)
NB7L111M
25
Temperature (°C)
Figure 7. Propagation Delay versus Temperature
http://onsemi.com
7
85
VOLTAGE (50 mV/div)
VOLTAGE (50 mV/div)
NB7L111M
Device DDJ = 6 ps
TIME (22.1 ps/div)
Device DDJ = 7 ps
TIME (22.1 ps/div)
VOLTAGE (40 mv/ div)
VOLTAGE (40 mv/ div)
Figure 8. Typical Output Waveform at 3.125 Gb/s with PRBS 223−1 (Vinpp = 75 mV−left and 400 mV−right)
Device DDJ=16ps
Device DDJ=17ps
TIME (22.1 ps/div)
TIME (22.1 ps/div)
VOLTAGE (35 mv/div)
VOLTAGE (35 mv/div)
Figure 9. Typical Output Waveform at 5 Gb/s with PRBS 223−1 (Vinpp=75 mV−left and 400 mV−right)
Device DDJ=12ps
TIME (22.1 ps/div)
Device DDJ=15ps
TIME (22.1 ps/div)
Figure 10. Typical Output Waveform at 6.125 Gb/s with PRBS 223−1 (Vinpp = 75 mV−left and 400 mV−right)
http://onsemi.com
8
NB7L111M
CLK
VINPP = VIH(CLK) − VIL(CLK)
CLK
Q
VOUTPP = VOH(Q) − VOL(Q)
Q
tPHL
tPLH
Figure 11. AC Reference Measurement
VCC
NB7L111M
50 W
VCC
50 W
50 W
Q
Receiver
Device
50 W
CLK
Q
CLK
Figure 12. Typical Termination for 16 mA Output Drive and Device Evaluation
CLK
CLK
CLK
CLK
Vth
Vth
Figure 13. Differential Input Driven
Single−Ended
VCC
Vthmax
Figure 14. Differential Inputs Driven
Differentially
VCC
VCMmax
VIHmax
VILmax
Vth
Vthmin
GND
VIH
Vth
VIL
VCMR
VIHDmax
VILDmax
VID = VIHD − VILD
VIHDtyp
VILDtyp
VIHmin
VCMmax
VILmin
GND
Figure 15. Vth Diagram
VIHDmin
VILDmin
Figure 16. VCMR Diagram
http://onsemi.com
9
NB7L111M
VCC
50 W
50 W
Q
Q
16 mA
VEE
Figure 17. CML Output Structure
Table 7. Interfacing Options
INTERFACING OPTIONS
CONNECTIONS
CML
Connect VTCLK0, VTCLK0, VTCLK1, VTCLK1, VTSEL, VTSEL to VCC
LVDS
Connect VTCLK0, VTCLK0 together for CLK0 input; Connect VTCLK1, VTCLK1 together for CLK1 input;
Connect VTSEL, VTSEL together for SEL control input.
AC−COUPLED
Bias VTCLK0, VTCLK0, VTSEL, VTSEL and VTCLK1, VTCLK1 inputs within (VCMR) Common Mode
Range.
RSECL, LVPECL
Standard ECL termination techniques. See AND8020.
LVTTL, LVCMOS
An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V
for LVTTL and VCC/2 for LVCMOS inputs.
http://onsemi.com
10
NB7L111M
Application Information
minimum input swing of 100 mV and the maximum input
swing of 450 mV. Within these conditions, the input voltage
can range from VCC to 1.2 V. Examples interfaces are
illustrated below in a 50 W environment (Z = 50 W).
All NB7L111M inputs can accept PECL, CML, LVTTL,
LVCMOS and LVDS signal levels. The limitations for
differential input signal (LVDS, PECL, or CML) are
VCC
50 W
VCC
50 W
Q
CLK
Z
CML
or
NB7L111M
VCC VTCLK
VCC
VTCLK
Z
Q
CML
or
NB7L111M
50 W
50 W
CLK
VEE
VEE
Figure 18. CML to CML Interface
VCC
VCC
50 W
PECL
Driver
VBIAS*
VBIAS*
50 W
Recommended RT Values
VCC
RT
RT
5.0 V 290 W
3.3 V 150 W
VEE
2.5 V 80 W
CLK
Z
VTCLK
VTCLK
Z
50 W
NB7L111M
50 W
CLK
RT
VEE
VEE
Figure 19. PECL to CML Receiver Interface
*VBIAS is within VCMR Range.
VCC
LVDS
Driver
VCC
CLK
Z
VTCLK
50 W
VTCLK
50 W
Z
CLK
VEE
VEE
Figure 20. LVDS to CML Receiver Interface
http://onsemi.com
11
NB7L111M
NB7L111M
VCC
VCC
CLK
Z
LVTTL/
LVCMOS
Driver
No Connect
No Connect
50 W
VTCLK
VTCLK
NB7L111M
50 W
VREF
VEE
Recommended VREF Values
VREF
CLK
VCC
Figure 21. LVCMOS/LVTTL to CML Receiver Interface
LVCMOS VCC * VEE
2
LVTTL
1.5 V
ORDERING INFORMATION
Package
Shipping †
QFN−52
46 Units / Rail
NB7L111MMNG
QFN−52
(Pb−Free)
46 Units / Rail
NB7L1MMNR2
QFN−52
2000 / Tape & Reel
QFN−52
(Pb−Free)
2000 / Tape & Reel
Device
NB7L111MMN
NB7L1MMNR2G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
12
NB7L111M
PACKAGE DIMENSIONS
52 PIN QFN 8x8
CASE 485M−01
ISSUE A
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION:
MILLIMETERS
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED
BETWEEN 0.25 AND 0.30 MM FROM
TERMINAL.
4. COPLANARITY APPLIES TO THE
EXPOSED PAD AS WELL AS THE
TERMINALS.
B
E
DIM
A
A1
A2
A3
b
D
D2
E
E2
e
K
L
2X
0.15 C
2X
0.15 C
A2
0.10 C
A
0.08 C
SEATING PLANE
A3
A1
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.60
0.80
0.20 REF
0.18
0.30
8.00 BSC
6.50
6.80
8.00 BSC
6.50
6.80
0.50 BSC
0.20
−−−
0.30
0.50
REF
C
D2
14
52 X
L
26
27
13
E2
39
1
52 X
K
52
40
e
52 X
b
NOTE 3
0.10 C A B
0.05 C
GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
13
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
NB7L111M/D