ONSEMI 74VCXH16374DT

74VCXH16374
Low−Voltage 1.8/2.5/3.3V
16−Bit D−Type Flip−Flop
With 3.6 V−Tolerant Inputs and Outputs
(3−State, Non−Inverting)
The 74VCXH16374 is an advanced performance, non−inverting
16−bit D−type flip−flop. It is designed for very high−speed, very
low−power operation in 1.8 V, 2.5 V or 3.3 V systems. The VCXH16374
is byte controlled, with each byte functioning identically, but
independently. Each byte has separate Output Enable and Clock Pulse
inputs. These control pins can be tied together for full 16−bit operation.
When operating at 2.5 V (or 1.8 V) the part is designed to tolerate
voltages it may encounter on either inputs or outputs when interfacing
to 3.3 V busses. It is guaranteed to be overvoltage tolerant to 3.6V.
The 74VCXH16374 consists of 16 edge−triggered flip−flops with
individual D−type inputs and 3.6 V−tolerant 3−state outputs. The
clocks (CPn) and Output Enables (OEn) are common to all flip−flops
within the respective byte. The flip−flops will store the state of
individual D inputs that meet the setup and hold time requirements on
the LOW−to−HIGH Clock (CP) transition. With the OE LOW, the
contents of the flip−flops are available at the outputs. When the OE is
HIGH, the outputs go to the high impedance state. The OE input level
does not affect the operation of the flip−flops. The data inputs include
active bushold circuitry, eliminating the need for external pullup
resistors to hold unused or floating inputs at a valid logic state.
Features
• Designed for Low Voltage Operation: VCC = 1.65 V − 3.6 V
• 3.6 V Tolerant Inputs and Outputs
• High Speed Operation: 3.0 ns max for 3.0 V to 3.6V
•
•
•
•
•
•
•
•
3.9 ns max for 2.3 V to 2.7V
7.8 ns max for 1.65 V to 1.95V
Static Drive: ±24 mA Drive at 3.0 V
±18 mA Drive at 2.3 V
±6 mA Drive at 1.65 V
Supports Live Insertion and Withdrawal
Includes Active Bushold to Hold Unused or Floating Inputs at a Valid
Logic State
IOFF Specification Guarantees High Impedance When VCC = 0 V*
Near Zero Static Supply Current in All Three Logic States (20 mA)
Substantially Reduces System Power Requirements
Latchup Performance Exceeds ±250 mA @ 125°C
ESD Performance: Human Body Model >2000 V
Machine Model >200 V
All Devices in Package TSSOP are Inherently Pb−Free**
http://onsemi.com
MARKING DIAGRAM
48
48
VCXH16374
AWLYYWW
1
TSSOP−48
DT SUFFIX
CASE 1201
A
WL
YY
WW
1
= Assembly Location
= Wafer Lot
= Year
= Work Week
PIN NAMES
Pins
Function
OEn
CPn
D0−D15
O0−O15
Output Enable Inputs
Clock Pulse Inputs
Inputs
Outputs
ORDERING INFORMATION
Package
Shipping †
74VCXH16374DT
TSSOP
(Pb−Free)
39 / Rail
74VCXH16374DTR
TSSOP
(Pb−Free)
2500 / Reel
Device
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
*To ensure the outputs activate in the 3−state condition, the output enable pins
should be connected to VCC through a pullup resistor. The value of the resistor
is determined by the current sinking capability of the output connected to the
OE pin.
**For additional information on our Pb−Free strategy and soldering details,
please download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
June, 2006 − Rev. 5
1
Publication Order Number:
74VCXH16374/D
74VCXH16374
OE1 1
48 CP1
OE1
O0 2
47 D0
CP1
O1 3
46 D1
GND 4
45 GND
O2 5
44 D2
O3 6
43 D3
VCC 7
42 VCC
O4 8
41 D4
O5 9
40 D5
GND 10
39 GND
O6 11
38 D6
O7 12
37 D7
O8 13
36 D8
O9 14
35 D9
GND 15
D0
D1
D2
D3
34 GND
O10 16
33 D10
O11 17
32 D11
VCC 18
O12 19
31 VCC
30 D12
O13 20
29 D13
GND 21
28 GND
O14 22
27 D14
O15 23
26 D15
OE2 24
25 CP2
D4
D5
D6
D7
1
OE2
48
CP2
47
46
44
43
41
40
38
37
nCP
2
Q
D
nCP
3
Q
D
nCP
5
Q
D
nCP
6
Q
D
nCP
8
Q
D
nCP
9
Q
D
nCP
11
Q
D
nCP
12
Q
D
Figure 1. 48−Lead Pinout
(Top View)
O0
D8
O1
D9
O2
D10
O3
D11
O4
D12
O5
D13
O6
D14
O7
D15
24
25
36
35
33
32
30
29
27
26
nCP
D
nCP
D
nCP
D
nCP
D
nCP
D
nCP
D
nCP
D
nCP
D
Figure 2. Logic Diagram
1
OE1 48
CP1
25
CP2 24
OE2
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
47
46
44
43
41
40
38
37
36
35
33
32
30
29
27
26
EN1
EN2
EN3
EN4
1
1∇
1
2∇
1
3∇
1
4∇
2
3
5
6
8
9
11
12
13
14
16
17
19
20
22
23
Figure 3. IEC Logic Diagram
http://onsemi.com
2
O0
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15
Q
Q
Q
Q
Q
Q
Q
Q
13
14
16
17
19
20
22
23
O8
O9
O10
O11
O12
O13
O14
O15
74VCXH16374
TRUTH TABLE
Inputs
Outputs
Inputs
Outputs
CP1
OE1
D0:7
O0:7
CP2
OE2
D8:15
O8:15
↑
L
H
H
↑
L
H
H
↑
L
L
L
↑
L
L
L
X
L
X
O0
X
L
X
O0
X
H
X
Z
X
H
X
Z
H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
↑ = Low−to−High Transition
X = High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs.
O0 = No Change.
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VCC
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
Value
Condition
Unit
−0.5 to +4.6
V
−0.5 ≤ VI ≤ +4.6
V
−0.5 ≤ VO ≤ +4.6
Output in 3−State
V
−0.5 ≤ VO ≤ VCC + 0.5
Note 1; Outputs Active
V
IIK
DC Input Diode Current
−50
VI < GND
mA
IOK
DC Output Diode Current
−50
VO < GND
mA
+50
VO > VCC
mA
IO
DC Output Source/Sink Current
±50
mA
ICC
DC Supply Current Per Supply Pin
±100
mA
IGND
DC Ground Current Per Ground Pin
±100
mA
TSTG
Storage Temperature Range
−65 to +150
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. IO absolute maximum rating must be observed.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Operating
Data Retention Only
Min
Typ
Max
Unit
1.65
1.2
3.3
3.3
3.6
3.6
V
−0.3
3.6
V
0
0
VCC
3.6
V
VCC
Supply Voltage
VI
Input Voltage
VO
Output Voltage
IOH
HIGH Level Output Current, VCC = 3.0 V − 3.6 V
−24
mA
IOL
LOW Level Output Current, VCC = 3.0 V − 3.6 V
24
mA
IOH
HIGH Level Output Current, VCC = 2.3 V − 2.7 V
−18
mA
IOL
LOW Level Output Current, VCC = 2.3 V − 2.7 V
18
mA
IOH
HIGH Level Output Current, VCC = 1.65 V − 1.95 V
−6
mA
IOL
LOW Level Output Current, VCC = 1.65 V − 1.95 V
TA
Operating Free−Air Temperature
Dt/DV
Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V
(Active State)
(3−State)
http://onsemi.com
3
6
mA
−40
+85
°C
0
10
ns/V
74VCXH16374
DC ELECTRICAL CHARACTERISTICS
TA = −40°C to +85°C
Symbol
VIH
VIL
VOH
VOL
II
Characteristic
Condition
Min
HIGH Level Input Voltage (Note 2)
1.65 V ≤ VCC < 2.3 V
0.65 x VCC
2.3 V ≤ VCC ≤ 2.7 V
1.6
2.7 V < VCC ≤ 3.6 V
2.0
LOW Level Input Voltage (Note 2)
HIGH Level Output Voltage
LOW Level Output Voltage
Input Leakage Current
II(HOLD)
II (OD)
Minimum Bushold Input Current
Minimum Bushold Over−Drive
Current Needed to Change State
IOZ
3−State Output Current
IOFF
Power−Off Leakage Current
ICC
DICC
2.
3.
4.
5.
Quiescent Supply Current (Note 5)
Increase in ICC per Input
Max
V
1.65 V ≤ VCC < 2.3 V
0.35 x VCC
2.3 V ≤ VCC ≤ 2.7 V
0.7
2.7 V < VCC ≤ 3.6 V
0.8
1.65 V ≤ VCC ≤ 3.6 V; IOH = −100 mA
VCC − 0.2
VCC = 1.65 V; IOH = −6 mA
1.25
VCC = 2.3 V; IOH = −6 mA
2.0
VCC = 2.3 V; IOH = −12 mA
1.8
VCC = 2.3 V; IOH = −18 mA
1.7
VCC = 2.7 V; IOH = −12 mA
2.2
VCC = 3.0 V; IOH = −18 mA
2.4
VCC = 3.0 V; IOH = −24 mA
2.2
0.2
VCC = 1.65 V; IOL = 6 mA
0.3
VCC = 2.3 V; IOL = 12 mA
0.4
VCC = 2.3 V; IOL = 18 mA
0.6
VCC = 2.7 V; IOL = 12 mA
0.4
VCC = 3.0 V; IOL = 18 mA
0.4
VCC = 3.0 V; IOL = 24 mA
0.55
±5.0
VCC = 3.0 V, VIN = 0.8 V
75
VCC = 3.0 V, VIN = 2.0 V
−75
VCC = 2.3 V, VIN = 0.7 V
45
VCC = 2.3 V, VIN = 1.6 V
−45
VCC = 1.65 V, VIN = 0.57 V
25
VCC = 1.65 V, VIN = 1.07 V
−25
VCC = 3.6 V, (Note 3)
450
VCC = 3.6 V, (Note 4)
−450
VCC = 2.7 V, (Note 3)
300
VCC = 2.7 V, (Note 4)
−300
VCC = 1.95 V, (Note 3)
200
VCC = 1.95 V, (Note 4)
−200
V
V
1.65 V ≤ VCC ≤ 3.6 V; IOL = 100 mA
1.65 V ≤ VCC ≤ 3.6 V; 0 V ≤ VI ≤ 3.6 V
Unit
V
mA
mA
mA
1.65 V ≤ VCC ≤ 3.6 V; 0 V ≤ VO ≤ 3.6 V;
VI = VIH or VIL
±10
mA
VCC = 0 V; VI or VO = 3.6 V
10
mA
1.65 V ≤ VCC ≤ 3.6 V; VI = GND or VCC
20
mA
1.65 V ≤ VCC ≤ 3.6 V; 3.6 V ≤ VI, VO ≤ 3.6 V
±20
mA
2.7 V < VCC ≤ 3.6 V; VIH = VCC − 0.6 V
750
mA
These values of VI are used to test DC electrical characteristics only.
An external driver must source at least the specified current to switch from LOW−to−HIGH.
An external driver must source at least the specified current to switch from HIGH−to−LOW.
Outputs disabled or 3−state only.
http://onsemi.com
4
74VCXH16374
AC CHARACTERISTICS (Note 6; tR = tF = 2.0 ns; CL = 30 pF; RL = 500 W)
TA = −40°C to +85°C
VCC = 3.0 V to 3.6 V
Symbol
Parameter
Waveform
Min
Max
VCC = 2.3 V to 2.7 V
Min
Max
200
VCC = 1.65 V to 1.95 V
Min
Max
100
Unit
fmax
Clock Pulse Frequency
1
250
tPLH
tPHL
Propagation Delay
CP−to−On
1
0.8
0.8
3.0
3.0
1.0
1.0
3.9
3.9
1.5
1.5
7.8
7.8
ns
tPZH
tPZL
Output Enable Time to
High and Low Level
2
0.8
0.8
3.5
3.5
1.0
1.0
4.6
4.6
1.5
1.5
9.2
9.2
ns
tPHZ
tPLZ
Output Disable Time From
High and Low Level
2
0.8
0.8
3.5
3.5
1.0
1.0
3.8
3.8
1.5
1.5
6.8
6.8
ns
ts
Setup Time, High or Low
Dn−to−CP
3
1.5
1.5
2.5
ns
th
Hold Time, High or Low
Dn−to−CP
3
1.0
1.0
1.0
ns
tw
CP Pulse Width, High
3
1.5
1.5
4.0
ns
tOSHL
tOSLH
Output−to−Output Skew
(Note 7)
0.5
0.5
0.5
0.5
MHz
0.75
0.75
ns
6. For CL = 50 pF, add approximately 300 ps to the AC maximum specification.
7. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
AC CHARACTERISTICS (tR = tF = 2.0 ns; CL = 50 pF; RL = 500 W)
TA = −40°C to +85°C
VCC = 3.0 V to 3.6 V
Symbol
Parameter
Waveform
Min
Max
VCC = 2.7 V
Min
Max
150
Unit
fmax
Clock Pulse Frequency
4
150
tPLH
tPHL
Propagation Delay
CP−to−On
4
1.0
1.0
4.2
4.2
4.9
4.9
MHz
ns
tPZH
tPZL
Output Enable Time to
High and Low Level
5
1.0
1.0
4.8
4.8
5.9
5.9
ns
tPHZ
tPLZ
Output Disable Time From
High and Low Level
5
1.0
1.0
4.3
4.3
4.7
4.7
ns
tOSHL
tOSLH
Output−to−Output Skew
(Note 8)
0.5
0.5
0.5
0.5
ns
8. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
http://onsemi.com
5
74VCXH16374
DYNAMIC SWITCHING CHARACTERISTICS
TA = +255C
Symbol
VOLP
VOLV
VOHV
Condition
Typ
Unit
Dynamic LOW Peak Voltage
Characteristic
VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V
0.25
V
(Note 9)
VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V
0.6
VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V
0.8
Dynamic LOW Valley Voltage
VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V
−0.25
(Note 9)
VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V
−0.6
VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V
−0.8
Dynamic HIGH Valley Voltage
VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V
1.5
(Note 10)
VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V
1.9
VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V
2.2
V
V
9. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the LOW state.
10. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the HIGH state.
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
CIN
Input Capacitance
COUT
Output Capacitance
CPD
Power Dissipation Capacitance
Condition
Typical
Unit
Note 11
6
pF
Note 11
7
pF
Note 11, 10 MHz
20
pF
11. VCC = 1.8 V, 2.5 V or 3.3 V; VI = 0 V or VCC.
http://onsemi.com
6
74VCXH16374
VIH
Dn
Vm
Vm
VIH
Vm
OEn
0V
0V
VIH
CPn
Vm
Vm
tPHZ
tPZH
th
ts
Vm
On
Vm
≈0V
0V
fmax
tPLH, tPHL
tPZL
tPLZ
≈ VCC
VOH
On
VOH
Vy
On
Vm
Vm
Vx
VOL
VOL
WAVEFORM 1 − PROPAGATION DELAYS, SETUP AND HOLD TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
WAVEFORM 2 − OUTPUT ENABLE AND DISABLE TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 4. AC Waveforms
VIH
CPn
Vm
Vm
tw
0V
VIH
tw
CPn
Vm
Vm
0V
WAVEFORM 3 − PULSE WIDTH
tR = tF = 2.0 ns (or fast as required) from 10% to 90%
Figure 5. AC Waveforms
Table 1. AC WAVEFORMS
VCC
Symbol
3.3 V ± 0.3 V
2.5 V ± 0.2 V
1.8 V ± 0.15 V
VIH
2.7 V
VCC
VCC
Vm
1.5 V
VCC/2
VCC/2
Vx
VOL + 0.3 V
VOL + 0.15 V
VOL + 0.15 V
Vy
VOH − 0.3 V
VOH − 0.15 V
VOH − 0.15 V
http://onsemi.com
7
74VCXH16374
VCC
PULSE
GENERATOR
RL
DUT
RT
CL
RL
Figure 6. Test Circuit
Table 2. TEST CIRCUIT
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
6 V at VCC = 3.3 ± 0.3 V;
VCC × 2 at VCC = 2.5 ± 0.2 V; 1.8 ± 0.15 V
tPZH, tPHZ
GND
CL = 30 pF or equivalent (Includes jig and probe capacitance)
RL = 500 W or equivalent
RT = ZOUT of pulse generator (typically 50 W)
http://onsemi.com
8
6 V or VCC × 2
OPEN
GND
74VCXH16374
VIH
Dn
Vm
Vm
VIH
Vm
Vm
tPHZ
tPZH
th
VIH
CPn
Vm
0V
0V
ts
Vm
OEn
On
Vm
≈0V
0V
fmax
tPLH, tPHL
tPZL
tPLZ
≈ VCC
VOH
On
VOH
Vy
On
Vm
Vm
Vx
VOL
VOL
WAVEFORM 4 − PROPAGATION DELAYS, SETUP AND HOLD TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
WAVEFORM 5 − OUTPUT ENABLE AND DISABLE TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 7. AC Waveforms
VIH
CPn
Vm
Vm
0V
tw
VIH
tw
CPn
Vm
Vm
0V
WAVEFORM 6 − PULSE WIDTH
tR = tF = 2.0 ns (or fast as required) from 10% to 90%
Figure 8. AC Waveforms
Table 3. AC WAVEFORMS
VCC
Symbol
3.3 V ± 0.3 V
2.7 V
VIH
2.7 V
2.7 V
Vm
1.5 V
1.5 V
Vx
VOL + 0.3 V
VOL + 0.3 V
Vy
VOH − 0.3 V
VOH − 0.3 V
http://onsemi.com
9
74VCXH16374
VCC
PULSE
GENERATOR
RL
DUT
RT
CL
RL
Figure 9. Test Circuit
Table 4. TEST CIRCUIT
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
6 V at VCC = 3.3 ± 0.3 V;
VCC × 2 at VCC = 2.5 ± 0.2 V; 1.8 ± 0.15 V
tPZH, tPHZ
GND
CL = 50 pF or equivalent (Includes jig and probe capacitance)
RL = 500 W or equivalent
RT = ZOUT of pulse generator (typically 50 W)
http://onsemi.com
10
6 V or VCC × 2
OPEN
GND
74VCXH16374
PACKAGE DIMENSIONS
TSSOP
DT SUFFIX
CASE 1201−01
ISSUE A
48X
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
K REF
0.12 (0.005)
M
T U
S
V
K
K1
S
T U
S
J J1
25
0.254 (0.010)
M
48
SECTION N−N
B
−U−
L
N
1
24
A
−V−
PIN 1
IDENT.
N
F
DETAIL E
D
0.076 (0.003)
−T− SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSIONS A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
C
M
0.25 (0.010)
−W−
G
H
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
12.40
12.60
6.00
6.20
−−−
1.10
0.05
0.15
0.50
0.75
0.50 BSC
0.37
−−−
0.09
0.20
0.09
0.16
0.17
0.27
0.17
0.23
7.95
8.25
0_
8_
INCHES
MIN
MAX
0.488
0.496
0.236
0.244
−−− 0.043
0.002
0.006
0.020
0.030
0.0197 BSC
0.015
−−−
0.004
0.008
0.004
0.006
0.007
0.011
0.007
0.009
0.313
0.325
0_
8_
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
74VCXH16374/D