ONSEMI MC14562

MC14562B
128-Bit Static Shift
Register
The MC14562B is a 128–bit static shift register constructed with
MOS P–channel and N–channel enhancement mode devices in a
single monolithic structure. Data is clocked in and out of the shift
register on the positive edge of the clock input. Data outputs are
available every 16 bits, from 16 through bit 128. This complementary
MOS shift register is primarily used where low power dissipation
and/or high noise immunity is desired.
•
•
•
•
•
http://onsemi.com
MARKING
DIAGRAMS
Diode Protection on All Inputs
Fully Static Operation
Cascadable to Provide Longer Shift Register Lengths
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load Over the Rated Temperature Range
14
PDIP–14
P SUFFIX
CASE 646
MC14562BCP
AWLYYWW
1
A
= Assembly Location
WL or L = Wafer Lot
YY or Y = Year
WW or W = Work Week
MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 1.)
Parameter
Value
Unit
– 0.5 to +18.0
V
– 0.5 to VDD + 0.5
V
Input or Output Current
(DC or Transient) per Pin
± 10
mA
PD
Power Dissipation,
per Package (Note 2.)
500
mW
TA
Ambient Temperature Range
– 55 to +125
°C
Tstg
Storage Temperature Range
– 65 to +150
°C
TL
Lead Temperature
(8–Second Soldering)
260
°C
Symbol
VDD
Vin, Vout
Iin, Iout
DC Supply Voltage Range
Input or Output Voltage Range
(DC or Transient)
ORDERING INFORMATION
Device
MC14562BCP
Package
Shipping
PDIP–14
25/Rail
1. Maximum Ratings are those values beyond which damage to the device
may occur.
2. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high–impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS
(Vin or Vout)
VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
v
v
 Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 3
1
Publication Order Number:
MC14562B/D
MC14562B
PIN ASSIGNMENT
Q64
1
14
VDD
Q96
2
13
Q32
Q128
3
12
DATA
NC
4
11
NC
CLOCK
5
10
Q16
Q112
6
9
Q48
VSS
7
8
Q80
NC = NO CONNECTION
BLOCK DIAGRAM
12
Q16
Q32
Q48
Q64
Q80
Q96
Q112
Q128
DATA
5
CLOCK
10
13
9
1
8
2
6
3
VDD = PIN 14
VSS = PIN 7
Pins 4 and 11
not used.
LOGIC DIAGRAM
CLOCK 5
DATA IN 12
D Q
C
1
D Q
C
2
D Q
C
3
D Q
C
16
D Q
C
17
D Q
C
32
D Q
C
33
D Q
C
48
D Q
C
49
D Q
C
64
10 Q16
D Q
C
D Q
C
D Q
C
D Q
C
D Q
C
D Q
C
D Q
C
D Q
C
65
80
81
96
97
112
113
128
13 Q32
9 Q48
1 Q64
8 Q80
2 Q96
6 Q112
3 Q128
http://onsemi.com
2
MC14562B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
Characteristic
Output Voltage
Vin = VDD or 0
Symbol
– 55_C
25_C
125_C
VDD
Vdc
Min
Max
Min
Typ (3.)
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
—
—
—
0.05
0.05
0.05
—
—
—
0
0
0
0.05
0.05
0.05
—
—
—
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
—
—
—
4.95
9.95
14.95
5.0
10
15
—
—
—
4.95
9.95
14.95
—
—
—
Vdc
Input Voltage
“0” Level
(VO = 4.5 or 05 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
VIL
5.0
10
15
—
—
—
1.5
3.0
4.0
—
—
—
2.25
4.50
6.75
1.5
3.0
4.0
—
—
—
1.5
3.0
4.0
“1” Level
VIH
5.0
10
15
3.5
7.0
11
—
—
—
3.5
7.0
11
2.75
5.50
8.25
—
—
—
3.5
7.0
11
—
—
—
5.0
5.0
10
15
– 3.0
– 0.64
– 1.6
– 4.2
—
—
—
—
– 2.4
– 0.51
– 1.3
– 3.4
– 4.2
– 0.88
– 2.25
– 8.8
—
—
—
—
– 1.7
– 0.36
– 0.9
– 2.4
—
—
—
—
IOL
5.0
10
15
0.64
1.6
4.2
—
—
—
0.51
1.3
3.4
0.88
2.25
8.8
—
—
—
0.36
0.9
2.4
—
—
—
mAdc
Input Current
Iin
15
—
± 0.1
—
± 0.00001
± 0.1
—
± 1.0
µAdc
Input Capacitance
(Vin = 0)
Cin
—
—
—
—
5.0
7.5
—
—
pF
Quiescent Current
(Per Package)
IDD
5.0
10
15
—
—
—
5.0
10
20
—
—
—
0.010
0.020
0.030
5.0
10
20
—
—
—
150
300
600
µAdc
IT
5.0
10
15
Vin = 0 or VDD
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Vdc
Vdc
IOH
Source
Sink
Total Supply Current (4.) (5.)
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
mAdc
IT = (1.94 µA/kHz) f + IDD
IT = (3.81 µA/kHz) f + IDD
IT = (5.52 µA/kHz) f + IDD
3. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
4. The formulas given are for the typical characteristics only at 25_C.
5. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.004.
http://onsemi.com
3
µAdc
MC14562B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS (6.) (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
tTLH,
tTHL
Propagation Delay Time
Clock to Q
tPLH, tPHL = (1.7 ns/pF) CL + 515 ns
tPLH, tPHL = (0.66 ns/pF) CL + 217 ns
tPLH, tPHL = (0.5 ns/pF) CL + 145 ns
tPLH,
tPHL
Clock Pulse Width
(50% Duty Cycle)
Clock Pulse Frequency
Data to Clock Setup Time
Data to Clock Hold Time
Clock Input Rise and Fall Times
VDD
Min
Typ (7.)
Max
5.0
10
15
—
—
—
100
50
40
200
100
80
Unit
ns
ns
5.0
10
15
—
—
—
600
250
170
1200
500
340
tWH
5.0
10
15
600
220
150
300
110
75
—
—
—
ns
fcl
5.0
10
15
—
—
—
1.9
5.6
8.0
1.1
3.0
4.0
MHz
tsu(1)
5.0
10
15
– 20
– 10
0
– 170
– 64
– 60
—
—
—
ns
tsu(0)
5.0
10
15
– 20
– 10
0
– 91
– 58
– 48
—
—
—
ns
th(1)
5.0
10
15
350
165
155
263
109
100
—
—
—
ns
th(0)
5.0
10
15
350
200
140
267
140
93
—
—
—
ns
tr, tf
5.0
10
15
—
—
—
—
—
—
15
5
4
µs
6. The formulas given are for the typical characteristics only at 25_C.
7. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
http://onsemi.com
4
MC14562B
VDD
Q16
Q32
Q48
Q64
Q80
Q96
Q112
Q128
DATA
CLOCK
CL
VSS
7
ID
CL
CL
CL
CL
CL
CL
CL
500 µF
fo
CLOCK
VDD
DATA
(f = 1/2 fo)
VDD
VSS
VSS
Figure 1. Power Dissipation Test Circuit and Waveforms
http://onsemi.com
5
MC14562B
TIMING DIAGRAM
PIN
NO.’S
PULSE 16
PULSE 1
PULSE 32
PULSE 128
CLOCK 5
DATA IN 12
Q16 10
Q32 13
Q28 3
AC TEST WAVEFORMS
PULSE 1
CLOCK
50%
50%
PULSE 2
50%
tWH
tr
tWL
DATA IN
PULSE 16
90%
10%
PULSE 17
VSS
tf
VDD
50%
50%
VSS
tsu(0)
th(0)
50% 10%
Q16
tPHL
PULSE 1
CLOCK
VDD
50%
50%
50%
PULSE 2
90%
VSS
tTHL
PULSE 17
PULSE 16
VDD
50%
50%
VSS
tWH
tWL
DATA IN
50%
tsu(1)
VDD
VDD
50%
VSS
th(1)
Q16
50%
tPLH
90%
10%
VDD
VSS
tTHL
NOTE: The remaining Data–Bit Outputs (Q32, Q48, Q64, Q80, Q96, Q112 and Q128) will occur at Clock Pulse 32, 48, 64, 80,
96, 112, 128 in the same relationship as Q16.
http://onsemi.com
6
MC14562B
PACKAGE DIMENSIONS
P SUFFIX
PLASTIC DIP PACKAGE
CASE 646–06
ISSUE M
14
8
1
7
B
A
F
L
N
C
–T–
SEATING
PLANE
J
K
H
G
D 14 PL
0.13 (0.005)
M
M
http://onsemi.com
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
–––
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
18.80
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
–––
10_
0.38
1.01
MC14562B
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: [email protected]
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549
Phone: 81–3–5740–2745
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
MC14562B/D