ONSEMI MC14585BDR2

MC14585B
4-Bit Magnitude
Comparator
The MC14585B 4–Bit Magnitude Comparator is constructed with
complementary MOS (CMOS) enhancement mode devices. The
circuit has eight comparing inputs (A3, B3, A2, B2, A1, B1, A0, B0),
three cascading inputs (A < B, A = B, and A > B), and three outputs (A
< B, A = B, and A > B). This device compares two 4–bit words (A and
B) and determines whether they are “less than”, “equal to”, or “greater
than” by a high level on the appropriate output. For words greater than
4–bits, units can be cascaded by connecting outputs (A > B), (A < B),
and (A = B) to the corresponding inputs of the next significant
comparator. Inputs (A < B), (A = B), and (A > B) on the least
significant (first) comparator are connected to a low, a high, and a low,
respectively.
Applications include logic in CPU’s, correction and/or detection of
instrumentation conditions, comparator in testers, converters, and
controls.
•
•
•
•
•
•
Diode Protection on All Inputs
Expandable
Applicable to Binary or 8421–BCD Code
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load over the Rated Temperature Range
Can be Cascaded – See Fig. 3
MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 2.)
Parameter
Symbol
VDD
Unit
– 0.5 to +18.0
V
– 0.5 to VDD + 0.5
V
Input or Output Current
(DC or Transient) per Pin
±10
mA
PD
Power Dissipation,
per Package (Note 3.)
500
mW
TA
Ambient Temperature Range
– 55 to +125
°C
Tstg
Storage Temperature Range
– 65 to +150
°C
TL
Lead Temperature
(8–Second Soldering)
260
°C
Vin, Vout
Iin, Iout
DC Supply Voltage Range
Value
Input or Output Voltage Range
(DC or Transient)
http://onsemi.com
MARKING
DIAGRAMS
16
PDIP–16
P SUFFIX
CASE 648
MC14585BCP
AWLYYWW
1
16
SOIC–16
D SUFFIX
CASE 751B
14585B
AWLYWW
1
16
SOEIAJ–16
F SUFFIX
CASE 966
MC14585B
AWLYWW
1
A
= Assembly Location
WL or L = Wafer Lot
YY or Y = Year
WW or W = Work Week
ORDERING INFORMATION
Device
Package
Shipping
MC14585BCP
PDIP–16
2000/Box
MC14585BD
SOIC–16
48/Rail
MC14585BDR2
SOIC–16
2500/Tape & Reel
SOEIAJ–16
See Note 1.
MC14585BF
1. For ordering information on the EIAJ version of
the SOIC packages, please contact your local
ON Semiconductor representative.
2. Maximum Ratings are those values beyond which damage to the device
may occur.
3. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high–impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS
(Vin or Vout)
VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
v
v
 Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 3
1
Publication Order Number:
MC14585B/D
MC14585B
PIN ASSIGNMENT
B2
1
16
VDD
A2
2
15
A3
(A = B)out
3
14
B3
(A
4
13
(A
5
12
u B)out
(A t B)out
u B)in
(A t B)in
(A = B)in
6
11
B0
A1
7
10
A0
VSS
8
9
B1
BLOCK DIAGRAM
(A > B)in
(A = B)in
(A < B)in
A0
B0
A1
B1
A2
B2
A3
B3
4
6
5
10
11
7
9
2
1
15
14
(A > B)out
13
(A = B)out
3
(A < B)out
12
VDD = PIN 16
VSS = PIN 8
TRUTH TABLE (x = Don’t Care)
Inputs
Comparing
Outputs
Cascading
A3, B3
A2, B2
A1, B1
A0, B0
A<B
A=B
A>B
A<B
A=B
A>B
A3 > B3
A3 = B3
A3 = B3
A3 = B3
x
A2 > B2
A2 = B2
A2 = B2
x
x
A1 > B1
A1 = B1
x
x
x
A0 > B0
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
0
0
0
0
0
1
1
1
1
A3 = B3
A3 = B3
A3 = B3
A3 = B3
A2 = B2
A2 = B2
A2 = B2
A2 = B2
A1 = B1
A1 = B1
A1 = B1
A1 = B1
A0 = B0
A0 = B0
A0 = B0
A0 = B0
0
0
1
1
0
1
0
1
x
x
x
x
0
0
1
1
0
1
0
1
1
0
0
0
A3 = B3
A3 = B3
A3 = B3
A2 = B2
A2 = B2
A2 < B2
A1 = B1
A1 < B1
x
A0 < B0
x
x
x
x
x
x
x
x
x
x
x
1
1
1
0
0
0
0
0
0
A3 < B3
x
x
x
x
x
x
1
0
0
http://onsemi.com
2
MC14585B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
Characteristic
Output Voltage
Vin = VDD or 0
Symbol
– 55_C
25_C
125_C
VDD
Vdc
Min
Max
Min
Typ (4.)
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
—
—
—
0.05
0.05
0.05
—
—
—
0
0
0
0.05
0.05
0.05
—
—
—
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
—
—
—
4.95
9.95
14.95
5.0
10
15
—
—
—
4.95
9.95
14.95
—
—
—
Vdc
Input Voltage
“0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
VIL
5.0
10
15
—
—
—
1.5
3.0
4.0
—
—
—
2.25
4.50
6.75
1.5
3.0
4.0
—
—
—
1.5
3.0
4.0
“1” Level
VIH
5.0
10
15
3.5
7.0
11
—
—
—
3.5
7.0
11
2.75
5.50
8.25
—
—
—
3.5
7.0
11
—
—
—
5.0
5.0
10
15
– 3.0
– 0.64
– 1.6
– 4.2
—
—
—
—
– 2.4
– 0.51
– 1.3
– 3.4
– 4.2
– 0.88
– 2.25
– 8.8
—
—
—
—
– 1.7
– 0.36
– 0.9
– 2.4
—
—
—
—
IOL
5.0
10
15
0.64
1.6
4.2
—
—
—
0.51
1.3
3.4
0.88
2.25
8.8
—
—
—
0.36
0.9
2.4
—
—
—
mAdc
Input Current
Iin
15
—
± 0.1
—
± 0.00001
± 0.1
—
± 1.0
µAdc
Input Capacitance
(Vin = 0)
Cin
—
—
—
—
5.0
7.5
—
—
pF
Quiescent Current
(Per Package)
IDD
5.0
10
15
—
—
—
5.0
10
20
—
—
—
0.005
0.010
0.015
5.0
10
20
—
—
—
150
300
600
µAdc
IT
5.0
10
15
Vin = 0 or VDD
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Vdc
Vdc
IOH
Source
Sink
Total Supply Current (5.) (6.)
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
mAdc
IT = (0.6 µA/kHz) f + IDD
IT = (1.2 µA/kHz) f + IDD
IT = (1.8 µA/kHz) f + IDD
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
5. The formulas given are for the typical characteristics only at 25_C.
6. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
http://onsemi.com
3
µAdc
MC14585B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS (7.) (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
tTLH,
tTHL
Turn–On, Turn–Off Delay Time
tPLH, tPHL = (1.7 ns/pF) CL + 345 ns
tPLH, tPHL = (0.66 ns/pF) CL + 147 ns
tPLH, tPHL = (0.5 ns/pF) CL + 105 ns
tPLH,
tPHL
VDD
Min
Typ (8.)
Max
5.0
10
15
—
—
—
100
50
40
200
100
80
5.0
10
15
—
—
—
430
180
130
860
360
260
Unit
ns
ns
7. The formulas given are for the typical characteristics only at 25_C.
8. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
20 ns
20 ns
VDD
A3
1
2f
VSS
VDD
B3
VSS
20 ns
20 ns
VOH
(A > B)out
VOL
50%
B0
10%
VOH
VSS
tPLH
(A = B)out
tPHL
VOL
VOH
90%
VOH
(A < B)out
VDD
90%
50%
(A < B)out
10%
VOL
tTLH
Inputs (A>B) and (A=B) high, and inputs B2, A2, B1,
A1, B0, A0 and (A<B) low.
f in respect to a system clock.
VOL
tTHL
Inputs (A>B) and (A=B) high, and inputs B3, A3, B2,
A2, B1, A1, A0, and (A<B) low.
Figure 1. Dynamic Power Dissipation
Signal Waveforms
Figure 2. Dynamic Signal Waveforms
http://onsemi.com
4
MC14585B
(A>B)
(A=B)
(A<B)
(A>B)
(A=B)
B3 A3 B2 A2 B1 A1 B0 A0
OUTPUT
MC14585B
VSS VDD VSS
(A<B)
WORD
B = B11
B10
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0
WORD
A=
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
INPUTS
MC14585B
WORD B = B11, B10, ..., B0.
WORD A = A11, A10, ..., A0.
(A>B)
(A=B)
(A<B)
MC14585B
OUTPUTS
Figure 3. Cascading Comparators
LOGIC DIAGRAM
A3
B3
A2
B2
A1
B1
A0
B0
(A < B)in
15
14
2
1
12
7
9
10
11
5
3
(A = B)in
(A > B)in
(A < B)out
6
13
4
http://onsemi.com
5
(A = B)out
(A > B)out
MC14585B
PACKAGE DIMENSIONS
PDIP–16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648–08
ISSUE R
–A–
16
9
1
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
F
C
DIM
A
B
C
D
F
G
H
J
K
L
M
S
L
S
–T–
SEATING
PLANE
K
H
G
D
M
J
16 PL
0.25 (0.010)
M
T A
M
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9
–B–
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
MILLIMETERS
MIN
MAX
18.80
19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC–16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
–A–
–T–
INCHES
MIN
MAX
0.740
0.770
0.250
0.270
0.145
0.175
0.015
0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008
0.015
0.110
0.130
0.295
0.305
0_
10 _
0.020
0.040
M
T B
S
A
S
http://onsemi.com
6
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC14585B
PACKAGE DIMENSIONS
SOEIAJ–16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966–01
ISSUE O
16
LE
9
Q1
M_
E HE
1
L
8
DETAIL P
Z
D
e
VIEW P
A
A1
b
0.13 (0.005)
c
M
0.10 (0.004)
http://onsemi.com
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
MILLIMETERS
MIN
MAX
–––
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
–––
0.78
INCHES
MIN
MAX
–––
0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
–––
0.031
MC14585B
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: [email protected]
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549
Phone: 81–3–5740–2745
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
MC14585B/D