ONSEMI NTR0202PLT1

NTR0202PL
Power MOSFET
−20 V, −400 mA, P−Channel
SOT−23 Package
Features
• Low RDS(on) Provides Higher Efficiency and Extends Battery Life
•
•
RDSon = 0.80 , VGS = −10 V
RDSon = 1.10 , VGS = −4.5 V
Miniature SOT−23 Surface Mount Package Saves Board Space
Pb−Free Package is Available
http://onsemi.com
V(BR)DSS
RDS(on) TYP
ID MAX
−20 V
550 m @ −10 V
−400 mA
Applications
•
•
•
•
•
P−Channel
D
DC−DC Converters
Computers
Printers
PCMCIA Cards
Cellular and Cordless Telephones
G
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
S
Drain−to−Source Voltage
VDSS
−20
V
Gate−to−Source Voltage − Continuous
VGS
20
V
Continuous Drain Current @ TA = 25°C
Pulsed Drain Current (tp ≤ 10 s)
ID
IDM
−0.4
−1.0
A
Total Power Dissipation @ TA = 25°C (Note 1)
PD
225
mW
TJ, Tstg
− 55 to
150
°C
2
SOT−23
CASE 318
STYLE 21
Operating and Storage Temperature Range
Thermal Resistance − Junction−to−Ambient
Maximum Lead Temperature for Soldering
Purposes, 1/8″ from case for 10 s
RJA
556
°C/W
TL
260
°C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Pulse Test: Pulse Width 300 s, Duty Cycle 2%.
MARKING DIAGRAM/
PIN ASSIGNMENT
3
3
Drain
1
PLW
1
Gate
PL
W
2
Source
= Specific Device Code
= Work Week
ORDERING INFORMATION
Device
Package
Shipping†
NTR0202PLT1
SOT−23
3000 Tape & Reel
NTR0202PLT1G SOT−23
(Pb−Free)
NTR0202PLT3
SOT−23
NTR0202PLT3G SOT−23
(Pb−Free)
3000 Tape & Reel
10,000 Tape & Reel
10,000 Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
 Semiconductor Components Industries, LLC, 2004
July, 2004 − Rev. 2
1
Publication Order Number:
NTR0202PL/D
NTR0202PL
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Drain−to−Source Breakdown Voltage
(VGS = 0 V, ID = −10 A)
(Positive Temperature Coefficient)
V(BR)DSS
−20
V
mV/°C
33
Zero Gate Voltage Drain Current
(VDS = −20 V, VGS = 0 V, TJ = 25°C)
(VDS = −20 V, VGS = 0 V, TJ = 150°C)
IDSS
Gate−Body Leakage Current (VGS = ± 20 V, VDS = 0 V)
IGSS
A
−1.0
−10
±100
nA
−1.9
3.0
−2.3
V
mV/°C
0.55
0.80
0.80
1.10
ON CHARACTERISTICS (Note 2)
Gate Threshold Voltage
(VDS = VGS, ID = −250 A)
(Negative Temperature Coefficient)
VGS(th)
Static Drain−to−Source On−Resistance
(VGS = −10 V, ID = −200 mA)
(VGS = −4.5 V, ID = −50 mA)
RDS(on)
Forward Transconductance
(VDS = −10 V, ID = −200 mA)
gfs
0.5
Mhos
Ciss
70
pF
Coss
74
Crss
26
td(on)
3.0
tr
6.0
td(off)
18
tf
4
QTOT
2.18
QGS
0.41
QGD
0.40
−1.1
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
(VDS = −5.0 V, VGS = 0 V,
F = 1.0 MHz)
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS (Note 3)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
(VDD = −15 V, ID = −200 mA,
VGS = −10 V, RG = 6.0 )
Fall Time
Total Gate Charge
Gate−Source Charge
(VDS = −15 V, ID = −200 mA,
VGS = −10 V)
Gate−Drain Charge
ns
nC
BODY−DRAIN DIODE CHARACTERISTICS (Note 2)
Diode Forward Voltage (Note 2)
(IS = −400 mA, VGS = 0 V)
(IS = −400 mA, VGS = 0 V, TJ = 150°C)
VSD
Reverse Recovery Time
(IS = −1.0 A, VGS = 0 V,
dIS/dt = 100 A/s)
Reverse Recovery Stored Charge
V
−0.8
−0.65
(IS = −1.0 A, VGS = 0 V,
dIS/dt = 100 A/s)
2. Pulse Test: Pulse Width ≤ 300 s, Duty Cycle ≤ 2%.
3. Switching characteristics are independent of operating junction temperature.
http://onsemi.com
2
trr
11.8
ta
9
tb
3
QRR
0.007
−1.0
ns
C
NTR0202PL
1
VGS = −10 V
TJ = 25°C
−ID, DRAIN CURRENT (AMPS)
−ID, DRAIN CURRENT (AMPS)
0.75
−6 V
−4 V
−5.5 V
0.5
−5 V
−3.5 V
−3 V
0.25
−4.5 V
−2.5 V
0
VDS ≥ −10 V
0.75
TJ = 125°C
0.5
TJ = 25°C
0.25
TJ = 40°C
0
0
0.25
0.5
0.75
0
1.0
1
1.5
TJ = 150°C
1
TJ = 25°C
0.5
TJ = 40°C
0.375
0.5
5
1.0
VGS = −4.5 V
0.75
VGS = −10 V
0.5
0.25
0
0.125
0.25
0.375
0.5
0.625
0.75
0.875 1.0
−ID, DRAIN CURRENT (AMPS)
−ID, DRAIN CURRENT (AMPS)
Figure 3. On−Resistance versus Drain Current
Figure 4. On−Resistance versus Drain
Current and Gate Voltage
2.5
1000
VGS = 0 V
TJ = 150°C
2
1.5
−IDSS, LEAKAGE (nA)
RDS(on), DRAIN−TO−SOURCE
RESISTANCE (NORMALIZED)
4
Figure 2. Transfer Characteristics
RDS(on), DRAIN−TO−SOURCE RESISTANCE ()
RDS(on), DRAIN−TO−SOURCE RESISTANCE ()
Figure 1. On−Region Characteristics
0.25
3
−VGS, GATE−TO−SOURCE VOLTAGE (VOLTS)
−VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
0
0.125
2
ID = −0.05 A
VGS = −4.5 V
ID = −0.2 A
VGS = −10 V
1
0.5
0
−40
100
10
1
TJ = 25°C
0.1
−15
10
35
60
85
110
135
2
150
TJ, JUNCTION TEMPERATURE (°C)
6
10
14
−VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 5. On−Resistance Variation with
Temperature
Figure 6. Drain−to−Source Leakage
Current versus Voltage
http://onsemi.com
3
18
TJ = 25°C
Ciss
C, CAPACITANCE (pF)
80
Crss
60
Ciss
40
Coss
20
Crss
0
10
5
−VGS
0
5
−VDS
10
15
20
10
QT
7.5
Ciss
5
Q1
2.5
TJ = 25°C
ID = −0.4 A
Crss
0
0
−GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE
(VOLTS)
0.5
1
1.5
2
QG, TOTAL GATE CHARGE (nC)
Figure 8. Gate−to−Source and
Drain−to−Source Voltage versus Total
Charge
Figure 7. Capacitance Variation
100
1
−IS, SOURCE CURRENT (AMPS)
VDD = −16 V
ID = −0.2 A
VGS = −4.5 V
t, TIME (ns)
Q2
−VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
100
−VGS, GATE−TO−SOURCE VOLTAGE (VOLTS)
NTR0202PL
td(off)
tf
10
tr
td(on)
VGS = 0 V
TJ = 25°C
0.75
0.5
0.25
0
1
1
10
100
0
RG, GATE RESISTANCE ()
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
−VSD, SOURCE−TO−DRAIN VOLTAGE (VOLTS)
Figure 9. Resistive Switching Time Variation
versus Gate Resistance
Figure 10. Diode Forward Voltage versus
Current
http://onsemi.com
4
0.9
NTR0202PL
PACKAGE DIMENSIONS
SOT−23 (TO−236)
CASE 318−09
ISSUE AJ
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIUMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS OF
BASE MATERIAL.
4. 318−01, −02, AND −06 OBSOLETE, NEW
STANDARD 318−09.
A
L
3
1
V
B
2
S
DIM
A
B
C
D
G
H
J
K
L
S
V
G
C
D
H
K
INCHES
MIN
MAX
0.1102
0.1197
0.0472
0.0551
0.0385
0.0498
0.0140
0.0200
0.0670
0.0826
0.0040
0.0098
0.0034
0.0070
0.0180
0.0236
0.0350
0.0401
0.0830
0.0984
0.0177
0.0236
J
STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN
SOLDERING FOOTPRINT*
0.95
0.037
0.95
0.037
2.0
0.079
0.9
0.035
0.8
0.031
SCALE 10:1
mm inches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
MILLIMETERS
MIN
MAX
2.80
3.04
1.20
1.40
0.99
1.26
0.36
0.50
1.70
2.10
0.10
0.25
0.085
0.177
0.45
0.60
0.89
1.02
2.10
2.50
0.45
0.60
NTR0202PL
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
6
For additional information, please contact your
local Sales Representative.
NTR0202PL/D