Order this document by 2N6282/D SEMICONDUCTOR TECHNICAL DATA ! !$ # ! . . . designed for general–purpose amplifier and low–frequency switching applications. • High DC Current Gain @ IC = 10 Adc — hFE = 2400 (Typ) — 2N6282, 2N6283, 2N6284 hFE = 4000 (Typ) — 2N6285, 2N6286, 2N6287 • Collector–Emitter Sustaining Voltage — VCEO(sus) = 60 Vdc (Min) — 2N6282, 2N6285 VCEO(sus) = 80 Vdc (Min) — 2N6283, 2N6286 VCEO(sus) = 100 Vdc (Min) — 2N6284, 2N6287 • Monolithic Construction with Built–In Base–Emitter Shunt Resistors ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *MAXIMUM RATINGS Rating Collector–Emitter Voltage Symbol 2N6282 2N6285 2N6283 2N6286 2N6284 2N6287 Unit VCEO 60 80 100 Vdc Collector–Base Voltage VCB 60 80 100 Vdc Emitter–Base Voltage VEB 5.0 Vdc IC 20 40 Adc Collector Current — Continuous Peak Base Current IB 0.5 Adc Total Device Dissipation @ TC = 25_C Derate above 25_C PD 160 0.915 Watts W/_C TJ,Tstg – 65 to + 200 _C Operating and Storage Junction Temperature Range *THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol Max Unit RθJC 1.09 _C/W !" !" *Motorola Preferred Device DARLINGTON 20 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60, 80, 100 VOLTS 160 WATTS CASE 1–07 TO–204AA (TO–3) * Indicates JEDEC Registered Data. PD, POWER DISSIPATION (WATTS) 160 140 120 100 80 60 40 20 0 0 25 50 100 125 75 150 TC, CASE TEMPERATURE (°C) 175 200 Figure 1. Power Derating Preferred devices are Motorola recommended choices for future use and best overall value. Motorola, Inc. 1995 Motorola Bipolar Power Transistor Device Data 1 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic Symbol Min Max 60 80 100 — — — — — — 1.0 1.0 1.0 — — 0.5 5.0 — 2.0 750 100 18,000 — — — 2.0 3.0 Unit OFF CHARACTERISTICS Collector–Emitter Sustaining Voltage (IC = 0.1 Adc, IB = 0) VCEO(sus) Vdc 2N6282, 2N6285 2N6283, 2N6286 2N6284, 2N6287 Collector Cutoff Current (VCE = 30 Vdc, IB = 0) (VCE = 40 Vdc, IB = 0) (VCE = 50 Vdc, IB = 0) ICEO mAdc 2N6282, 2N6285 2N6283, 2N6286 2N6284, 2N6287 Collector Cutoff Current (VCE = Rated VCB, VBE(off) = 1.5 Vdc) (VCE = Rated VCB, VBE(off) = 1.5 Vdc, TC = 150_C) ICEX Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0) IEBO mAdc mAdc ON CHARACTERISTICS (1) DC Current Gain (IC = 10 Adc, VCE = 3.0 Vdc) (IC = 20 Adc, VCE = 3.0 Vdc) hFE — Collector–Emitter Saturation Voltage (IC = 10 Adc, IB = 40 mAdc) (IC = 20 Adc, IB = 200 mAdc) VCE(sat) Vdc Base–Emitter On Voltage (IC = 10 Adc, VCE = 3.0 Vdc) VBE(on) — 2.8 Vdc Base–Emitter Saturation Voltage (IC = 20 Adc, IB = 200 mAdc) VBE(sat) — 4.0 Vdc |hfe| 4.0 — MHz — — 400 600 300 — DYNAMIC CHARACTERISTICS Magnitude of Common Emitter Small–Signal Short–Circuit Forward Current Transfer Ratio (IC = 10 Adc, VCE = 3.0 Vdc, f = 1.0 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) Cob pF 2N6282,83,84 2N6285,86,87 Small–Signal Current Gain (IC = 10 Adc, VCE = 3.0 Vdc, f = 1.0 kHz) hfe — * Indicates JEDEC Registered Data. (1) Pulse test: Pulse Width = 300 µs, Duty Cycle = 2% 10 7.0 5.0 VCC – 30 V [ [ [ V1 APPROX – 12 V 25 µs v tr, tf 10 ns DUTY CYCLE = 1.0% ts 2N6282/84 (NPN) 2N6285/87 (PNP) 3.0 SCOPE [ + 4.0 V FOR td AND tr, D1 IS DISCONNECTED AND V2 = 0 FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES Figure 2. Switching Times Test Circuit 2 RC t, TIME ( µs) RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS D1 MUST BE FAST RECOVERY TYPE e.g., 1N5825 USED ABOVE IB 100 mA MSD6100 USED BELOW IB 100 mA TUT RB V2 APPROX + 8.0 V D1 51 8.0 k 50 0 2.0 tf tr 1.0 0.7 0.5 0.3 VCC = 30 Vdc I /I = 250 0.2 C B IB1 = IB2 td @ VBE(off) = 0 V T = 25°C 0.1 J 0.5 0.7 1.0 2.0 3.0 0.2 0.3 5.0 7.0 10 IC, COLLECTOR CURRENT (AMP) Figure 3. Switching Times Motorola Bipolar Power Transistor Device Data 20 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.1 0.1 0.07 RθJC(t) = r(t) RθJC RθJC = 1.09°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) – TC = P(pk) RθJC(t) 0.05 0.02 0.05 0.03 0.01 0.02 SINGLE PULSE 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 t, TIME OR PULSE WIDTH (ms) 20 30 P(pk) t1 t2 DUTY CYCLE, D = t1/t2 50 100 200 300 500 1000 Figure 4. Thermal Response ACTIVE–REGION SAFE OPERATING AREA 0.1 ms 0.5 ms 10 1.0 ms 5.0 5.0 ms dc 2.0 1.0 TJ = 200°C 0.5 0.2 SECOND BREAKDOWN LIMITED BONDING WIRE LIMITED THERMAL LIMITATION @ TC = 25°C SINGLE PULSE 0.1 2.0 5.0 10 20 50 20 0.5 ms 10 1.0 ms 5.0 5.0 ms dc 2.0 TJ = 200°C 1.0 0.5 0.2 SECOND BREAKDOWN LIMITED BONDING WIRE LIMITED THERMAL LIMITATION @ TC = 25°C SINGLE PULSE 0.1 100 0.1 ms IC, COLLECTOR CURRENT (AMP) 20 0.05 50 50 0.1 ms IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) 50 0.05 2.0 5.0 10 20 50 20 0.5 ms 10 1.0 ms 5.0 5.0 ms dc 2.0 1.0 TJ = 200°C 0.5 SECOND BREAKDOWN LIMITED BONDING WIRE LIMITED THERMAL LIMITATION @ TC = 25°C SINGLE PULSE 0.2 0.1 100 0.05 2.0 5.0 10 20 50 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 5. 2N6282, 2N6285 Figure 6. 2N6283, 2N6286 Figure 7. 2N6284, 2N6287 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e. the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 5, 6 and 7 is based on TJ(pk) = 200_C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) < 200_C. TJ(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1000 TJ = 25°C VCE = 3.0 Vdc IC = 10 A 5000 2000 1000 500 200 100 TJ = 25°C 700 C, CAPACITANCE (PF) hFE, SMALL–SIGNAL CURRENT GAIN 10,000 500 300 Cib Cob 200 50 10 2N6282/84 (NPN) 2N6285/87 (PNP) 2N6282/84 (NPN) 2N6285/87 (PNP) 20 1.0 2.0 5.0 10 20 50 100 f, FREQUENCY (kHz) 200 500 1000 Figure 8. Small–Signal Current Gain Motorola Bipolar Power Transistor Device Data 100 0.1 0.2 0.5 1.0 2.0 5.0 10 20 VR, REVERSE VOLTAGE (VOLTS) 50 100 Figure 9. Capacitance 3 NPN 2N6282, 2N6283, 2N6284 PNP 2N6285, 2N6286, 2N6287 20,000 VCE = 3.0 V 30,000 20,000 VCE = 3.0 V TJ = 150°C 10,000 TJ = 150°C 7000 5000 3000 2000 1000 700 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 10,000 25°C – 55°C 500 300 200 5.0 7.0 10 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMP) 0.2 0.3 7000 5000 25°C 3000 2000 – 55°C 1000 700 500 300 0.2 0.3 20 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (AMP) 20 VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 10. DC Current Gain 3.0 TJ = 25°C 2.6 IC = 5.0 A 10 A 15 A 2.2 1.8 1.4 1.0 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (mA) 20 30 50 3.0 TJ = 25°C 2.6 IC = 5.0 A 15 A 10 A 2.2 1.8 1.4 1.0 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (mA) 20 30 50 Figure 11. Collector Saturation Region 3.0 3.0 TJ = 25°C 2.5 V, VOLTAGE (VOLTS) V, VOLTAGE (VOLTS) TJ = 25°C 2.0 1.5 1.0 VBE(sat) @ IC/IB = 250 VBE @ VCE = 3.0 V 2.5 2.0 1.5 VBE(sat) @ IC/IB = 250 1.0 VBE @ VCE = 3.0 V VCE(sat) @ IC/IB = 250 0.5 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 VCE(sat) @ IC/IB = 250 20 0.5 0.2 0.3 IC, COLLECTOR CURRENT (AMP) 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (AMP) Figure 12. “On” Voltages 4 Motorola Bipolar Power Transistor Device Data 20 + 5.0 + 4.0 + 3.0 hFE @ VCE *APPLIES FOR IC/IB ≤ 250 + 2.0 PNP 2N6285, 2N6286, 2N6287 + 3.0 V θV, TEMPERATURE COEFFICIENTS (mV/°C) θV, TEMPERATURE COEFFICIENTS (mV/°C) NPN 2N6282, 2N6283, 2N6284 25°C to 150°C + 1.0 – 55°C to + 25°C 0 – 1.0 *θVC for VCE(sat) – 2.0 – 3.0 25°C to + 150°C θVB for VBE – 55°C to + 25°C – 4.0 – 5.0 0.2 0.3 0.7 1.0 0.5 2.0 3.0 5.0 7.0 10 + 5.0 + 4.0 + 3.0 hFE @ VCE 250 + 2.0 + 3.0 V 25°C to 150°C + 1.0 – 55°C to + 25°C 0 – 1.0 *θVC for VCE(sat) – 2.0 – 3.0 25°C to + 150°C θVB for VBE – 4.0 – 5.0 20 *APPLIES FOR IC/IB ≤ – 55°C to + 25°C 0.2 0.3 0.5 IC, COLLECTOR CURRENT (AMP) 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (AMP) Figure 13. Temperature Coefficients 104 103 VCE = 30 V 103 TJ = 150°C 102 100°C 101 REVERSE FORWARD 100 IC, COLLECTOR CURRENT ( µA) IC, COLLECTOR CURRENT ( µA) 105 102 VCE = 30 V TJ = 150°C 101 100 100°C 10–1 REVERSE 10–2 25°C 10–3 + 0.6 + 0.4 + 0.2 FORWARD 25°C 10–1 – 0.6 – 0.4 – 0.2 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1.0 + 1.2 + 1.4 VBE, BASE–EMITTER VOLTAGE (VOLTS) 0 – 0.2 – 0.4 – 0.6 – 0.8 – 1.0 – 1.2 – 1.4 VBE, BASE–EMITTER VOLTAGE (VOLTS) Figure 14. Collector Cut–Off Region NPN 2N6282 2N6283 2N6284 COLLECTOR PNP 2N6285 2N6286 2N6287 BASE COLLECTOR BASE [ 8.0 k [ 60 [ 8.0 k [ 60 EMITTER EMITTER Figure 15. Darlington Schematic Motorola Bipolar Power Transistor Device Data 5 PACKAGE DIMENSIONS A N NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO–204AA OUTLINE SHALL APPLY. C –T– E D K 2 PL 0.13 (0.005) U T Q M M Y M –Y– L V SEATING PLANE 2 H G B M T Y 1 –Q– 0.13 (0.005) M DIM A B C D E G H K L N Q U V INCHES MIN MAX 1.550 REF ––– 1.050 0.250 0.335 0.038 0.043 0.055 0.070 0.430 BSC 0.215 BSC 0.440 0.480 0.665 BSC ––– 0.830 0.151 0.165 1.187 BSC 0.131 0.188 MILLIMETERS MIN MAX 39.37 REF ––– 26.67 6.35 8.51 0.97 1.09 1.40 1.77 10.92 BSC 5.46 BSC 11.18 12.19 16.89 BSC ––– 21.08 3.84 4.19 30.15 BSC 3.33 4.77 STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR CASE 1–07 TO–204AA (TO–3) ISSUE Z Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 6 ◊ Motorola Bipolar Power Transistor Device Data *2N6282/D* 2N6282/D