Order this document by MJD112/D SEMICONDUCTOR TECHNICAL DATA DPAK For Surface Mount Applications *Motorola Preferred Device Designed for general purpose power and switching such as output or driver stages in applications such as switching regulators, converters, and power amplifiers. • • • • • • • Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix) Straight Lead Version in Plastic Sleeves (“1” Suffix) Lead Formed Version in 16 mm Tape and Reel (“T4” Suffix) Surface Mount Replacements for TIP110–TIP117 Series Monolithic Construction With Built–in Base–Emitter Shunt Resistors High DC Current Gain — hFE = 2500 (Typ) @ IC = 2.0 Adc Complementary Pairs Simplifies Designs ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ v v SILICON POWER TRANSISTORS 2 AMPERES 100 VOLTS 20 WATTS MAXIMUM RATINGS Unit VCEO VCB 100 Vdc 100 Vdc VEB IC 5 Vdc 2 4 Adc IB PD 50 mAdc 20 0.16 Watts W/_C PD 1.75 0.014 Watts W/_C TJ, Tstg – 65 to + 150 _C Symbol Max Unit Thermal Resistance, Junction to Case RθJC 6.25 _C/W Thermal Resistance, Junction to Ambient* RθJA 71.4 _C/W Symbol Collector–Emitter Voltage Collector–Base Voltage Emitter–Base Voltage Collector Current — Continuous Peak Base Current Total Power Dissipation @ TC = 25_C Derate above 25_C Total Power Dissipation* @ TA = 25_C Derate above 25_C Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Characteristic CASE 369A–13 CASE 369–07 MINIMUM PAD SIZES RECOMMENDED FOR SURFACE MOUNTED APPLICATIONS 0.190 4.826 MJD112 MJD117 Rating Characteristic Symbol Min Max Unit VCEO(sus) 100 — Vdc Collector Cutoff Current (VCE = 50 Vdc, IB = 0) ICEO — 20 µAdc Collector Cutoff Current (VCB = 100 Vdc, IE = 0) ICBO — 20 µAdc Emitter Cutoff Current (VBE = 5 Vdc, IC = 0) IEBO — 2 mAdc 0.165 4.191 ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) * These ratings are applicable when surface mounted on the minimum pad sizes recommended. (1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%. (continued) 0.118 3.0 0.063 1.6 0.243 6.172 Collector–Emitter Sustaining Voltage (1) (IC = 30 mAdc, IB = 0) 0.07 1.8 OFF CHARACTERISTICS inches mm Preferred devices are Motorola recommended choices for future use and best overall value. REV 1 Motorola, Inc. 1995 Motorola Bipolar Power Transistor Device Data 1 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ *ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise noted) Characteristic Symbol Min Max — — 10 500 Unit OFF CHARACTERISTICS – continued µAdc Collector–Cutoff Current (VCE = 80 Vdc, VBE(off) = 1.5 Vdc) (VCE = 80 Vdc, VBE(off) = 1.5 Vdc, TC = 125_C) ICEX Collector–Cutoff Current (VCB = 80 Vdc, IE = 0) ICBO — 10 µAdc Emitter–Cutoff Current (VBE = 5 Vdc, IC = 0) IEBO — 2 mAdc 500 1000 200 — 12,000 — — — 2 3 ON CHARACTERISTICS DC Current Gain (IC = 0.5 Adc, VCE = 3 Vdc) (IC = 2 Adc, VCE = 3 Vdc) (IC = 4 Adc, VCE = 3 Vdc) hFE — Collector–Emitter Saturation Voltage (IC = 2 Adc, IB = 8 mAdc) (IC = 4 Adc, IB = 40 mAdc) VCE(sat) Vdc Base–Emitter Saturation Voltage (IC = 4 Adc, IB = 40 mAdc) VBE(sat) — 4 Vdc Base–Emitter On Voltage (IC = 2 Adc, VCE = 3 Vdc) VBE(on) — 2.8 Vdc fT 25 — MHz — — 200 100 DYNAMIC CHARACTERISTICS Current–Gain — Bandwidth Product (IC = 0.75 Adc, VCE = 10 Vdc, f = 1 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) Cob MJD117 MJD112 2%. RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS D1, MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE IB ≈ 100 mA MSD6100 USED BELOW IB ≈ 100 mA TUT V2 APPROX +8 V 0 V1 APPROX –12 V 25 µs tr, tf ≤ 10 ns DUTY CYCLE = 1% D1 ≈8k ts ≈ 60 +4V FOR td AND tr, D1 IS DISCONNECTED AND V2 = 0 FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES. Figure 1. Switching Times Test Circuit VCC = 30 V IC/IB = 250 IB1 = IB2 TJ = 25°C 2 RC SCOPE RB 51 4 VCC – 30 V t, TIME ( µs) 300 µs, Duty Cycle * Pulse Test: Pulse Width pF tf 1 0.8 tr 0.6 0.4 0.2 0.04 0.06 PNP NPN 0.1 td @ VBE(off) = 0 V 0.4 0.6 0.2 1 IC, COLLECTOR CURRENT (AMP) 2 Figure 2. Switching Times Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. 2 Motorola Bipolar Power Transistor Device Data 4 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.1 RθJC(t) = r(t) RθJC RθJC = 6.25°C/W D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) – TC = P(pk) θJC(t) 0.05 0.1 0.07 0.05 0.01 0.03 SINGLE PULSE P(pk) t1 t2 DUTY CYCLE, D = t1/t2 0.02 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 t, TIME OR PULSE WIDTH (ms) 20 30 50 100 200 300 1000 500 Figure 3. Thermal Response TA TC 2.5 25 10 7 5 3 2 500 µs 1 0.7 0.5 0.3 0.2 100 µs PD, POWER DISSIPATION (WATTS) IC, COLLECTOR CURRENT (AMP) ACTIVE–REGION SAFE–OPERATING AREA 5 ms 1 ms dc BONDING WIRE LIMITED THERMAL LIMIT SECOND BREAKDOWN LIMIT 0.1 TJ = 150°C CURVES APPLY BELOW RATED VCEO 2 3 5 7 10 20 30 50 70 100 200 2 20 1.5 15 TA SURFACE MOUNT 1 10 0.5 5 0 0 25 50 75 100 T, TEMPERATURE (°C) VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 4. Maximum Rated Forward Biased Safe Operating Area 125 150 Figure 5. Power Derating 200 TC = 25°C C, CAPACITANCE (pF) There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 5 and 6 is based on T J(pk) = 150_C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T J(pk) < 150_C. T J(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. TC 100 70 50 Cob 30 Cib 20 PNP NPN 10 0.04 0.06 0.1 0.2 0.4 0.6 1 2 4 6 10 40 20 VR, REVERSE VOLTAGE (VOLTS) Figure 6. Capacitance Motorola Bipolar Power Transistor Device Data 3 TYPICAL ELECTRICAL CHARACTERISTICS NPN MJD112 PNP MJD117 6k 6k VCE = 3 V 4k 4k 3k 3k 2k hFE , DC CURRENT GAIN hFE , DC CURRENT GAIN TJ = 125°C 25°C 1k 800 – 55°C 600 400 300 0.04 0.06 0.1 0.4 0.6 1 0.2 IC, COLLECTOR CURRENT (AMP) 2 25°C 2k 1k 800 – 55°C 600 400 300 0.04 0.06 4 VCE = 3 V TC = 125°C 0.1 2 0.2 0.4 0.6 1 IC, COLLECTOR CURRENT (AMP) 4 3.4 VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 7. DC Current Gain TJ = 125°C 3 IC = 0.5 A 2.6 1A 2A 4A 2.2 1.8 1.4 1 0.6 0.1 0.2 0.5 1 2 5 10 20 50 100 3.4 TJ = 125°C 3 IC = 0.5 A 2.6 1A 2A 4A 2.2 1.8 1.4 1 0.6 0.1 0.2 0.5 IB, BASE CURRENT (mA) 1 2 5 10 20 50 100 IB, BASE CURRENT (mA) Figure 8. Collector Saturation Region 2.2 2.2 TJ = 25°C TJ = 25°C 1.4 1.8 VBE(sat) @ IC/IB = 250 V, VOLTAGE (VOLTS) V, VOLTAGE (VOLTS) 1.8 VBE @ VCE = 3 V 1 VCE(sat) @ IC/IB = 250 0.6 0.2 0.04 0.06 VBE(sat) @ IC/IB = 250 1.4 VBE @ VCE = 3 V 1 VCE(sat) @ IC/IB = 250 0.6 0.1 0.2 0.4 0.6 1 2 4 0.2 0.04 0.06 0.1 0.2 0.4 0.6 1 2 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 9. “On Voltages 4 Motorola Bipolar Power Transistor Device Data 4 PNP MJD117 + 0.8 0 θV, TEMPERATURE COEFFICIENTS (mV/°C) θV, TEMPERATURE COEFFICIENTS (mV/°C) NPN MJD112 *APPLIED FOR IC/IB < hFE/3 – 0.8 25°C TO 150°C – 1.6 – 2.4 *θVC FOR VCE(sat) – 55°C TO 25°C – 3.2 –4 25°C TO 150°C θVC FOR VBE – 4.8 0.04 0.06 0.1 – 55°C TO 25°C 0.2 0.4 0.6 1 IC, COLLECTOR CURRENT (AMP) 2 + 0.8 0 *APPLIES FOR IC/IB < hFE/3 25°C TO 150°C – 0.8 – 1.6 *θVC FOR VCE(sat) – 55°C TO 25°C – 2.4 25°C TO 150°C – 3.2 –4 – 4.8 0.04 0.06 4 – 55°C TO 25°C θVB FOR VBE 0.1 0.2 0.4 0.6 1 IC, COLLECTOR CURRENT (AMP) 2 4 Figure 10. Temperature Coefficients 105 104 103 REVERSE FORWARD IC, COLLECTOR CURRENT ( µ A) IC, COLLECTOR CURRENT ( µ A) 105 VCE = 30 V 102 TJ = 150°C 101 100 100°C 25°C 10–1 – 0.6 – 0.4 – 0.2 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1 VBE, BASE–EMITTER VOLTAGE (VOLTS) + 1.2 + 1.4 104 103 REVERSE FORWARD VCE = 30 V 102 101 TJ = 150°C 100°C 100 25°C 10–1 0 – 0.2 – 0.4 – 0.6 – 0.8 – 1 + 0.6 + 0.4 + 0.2 VBE, BASE–EMITTER VOLTAGE (VOLTS) – 1.2 – 1.4 Figure 11. Collector Cut–Off Region COLLECTOR PNP BASE COLLECTOR NPN BASE ≈8k ≈ 120 EMITTER ≈8k ≈ 120 EMITTER Figure 12. Darlington Schematic Motorola Bipolar Power Transistor Device Data 5 PACKAGE DIMENSIONS C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. SEATING PLANE –T– E R 4 Z A S 1 2 DIM A B C D E F G H J K L R S U V Z 3 U K F J L H D 2 PL G 0.13 (0.005) M T INCHES MIN MAX 0.235 0.250 0.250 0.265 0.086 0.094 0.027 0.035 0.033 0.040 0.037 0.047 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.090 BSC 0.175 0.215 0.020 0.050 0.020 ––– 0.030 0.050 0.138 ––– STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 5.97 6.35 6.35 6.73 2.19 2.38 0.69 0.88 0.84 1.01 0.94 1.19 4.58 BSC 0.87 1.01 0.46 0.58 2.60 2.89 2.29 BSC 4.45 5.46 0.51 1.27 0.51 ––– 0.77 1.27 3.51 ––– BASE COLLECTOR EMITTER COLLECTOR CASE 369A–13 ISSUE W C B V E R 4 A 1 2 3 S –T– K SEATING PLANE J F H D G 3 PL 0.13 (0.005) M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G H J K R S V INCHES MIN MAX 0.235 0.250 0.250 0.265 0.086 0.094 0.027 0.035 0.033 0.040 0.037 0.047 0.090 BSC 0.034 0.040 0.018 0.023 0.350 0.380 0.175 0.215 0.050 0.090 0.030 0.050 STYLE 1: PIN 1. 2. 3. 4. T MILLIMETERS MIN MAX 5.97 6.35 6.35 6.73 2.19 2.38 0.69 0.88 0.84 1.01 0.94 1.19 2.29 BSC 0.87 1.01 0.46 0.58 8.89 9.65 4.45 5.46 1.27 2.28 0.77 1.27 BASE COLLECTOR EMITTER COLLECTOR CASE 369–07 ISSUE K How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 6 ◊ Motorola Bipolar Power Transistor Device Data *MJD112/D* MJD112/D