Freescale Semiconductor Technical Data Document Number: MRF6P3300H Rev. 0, 9/2005 RF Power Field Effect Transistor N - Channel Enhancement - Mode Lateral MOSFET MRF6P3300HR3 MRF6P3300HR5 Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain and broadband performance of this device make it ideal for large - signal, common - source amplifier applications in 32 volt analog or digital television transmitter equipment. • Typical Narrowband Two - Tone Performance @ 860 MHz: VDD = 32 Volts, IDQ = 1600 mA, Pout = 270 Watts PEP Power Gain — 20.2 dB Drain Efficiency — 44.1% IMD — - 30.8 dBc • Typical Narrowband DVBT OFDM Performance @ 860 MHz: VDD = 32 Volts, IDQ = 1600 mA, Pout = 60 Watts Avg., 8K Mode, 64 QAM Power Gain — 20.4 dB Drain Efficiency — 29% ACPR @ 3.9 MHz Offset — - 57 dBc @ 20 kHz Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 860 MHz, 300 Watts CW Output Power • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Designed for Push - Pull Operation Only • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • Lower Thermal Resistance Package • Low Gold Plating Thickness on Leads, 40µ″ Nominal. • Pb - Free and RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. R5 Suffix = 50 Units per 56 mm, 13 inch Reel. 470 - 860 MHz, 300 W, 32 V LATERAL N - CHANNEL RF POWER MOSFET CASE 375G - 04, STYLE 1 NI - 860C3 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +68 Vdc Gate - Source Voltage VGS - 0.5, +12 Vdc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 761 4.3 W W/°C Storage Temperature Range Tstg - 65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Value (1,2) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 300 W CW Case Temperature 82°C, 220 W CW Case Temperature 79°C, 100 W CW Case Temperature 81°C, 60 W CW RθJC 0.23 0.24 0.27 0.27 °C/W 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. Freescale Semiconductor, Inc., 2005. All rights reserved. RF Device Data Freescale Semiconductor MRF6P3300HR3 MRF6P3300HR5 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 3B (Minimum) Machine Model (per EIA/JESD22 - A115) C (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 µAdc Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) IDSS — — 1 µAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 µAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 350 µAdc) VGS(th) 1 2.2 3 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 2.4 Adc) VDS(on) — 0.22 0.3 Vdc Forward Transconductance (VDS = 10 Vdc, ID = 2.4 Adc) gfs — 7.4 — S Crss — 1.4 — pF Off Characteristics(1) On Characteristics(1) Dynamic Characteristics (1,2) Reverse Transfer Capacitance (VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Functional Tests(3) (In Freescale Narrowband Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 1600 mA, Pout = 270 W PEP, f1 = 857 MHz, f2 = 863 MHz Power Gain Drain Efficiency Gps 19 20.2 23 dB ηD 41 44.1 — % Intermodulation Distortion IMD — - 30.8 - 28 dBc Input Return Loss IRL — - 24 -9 dB Pout @ 1 dB Compression Point, CW (f = 860 MHz) P1dB — 320 — W Gate Quiescent Voltage (VDS = 32 Vdc, ID = 1600 mAdc) VGS(Q) 2 2.8 4 Vdc 1. Each side of the device measured separately. 2. Part is internally matched both on input and output. 3. Measurement made with device in push - pull configuration. MRF6P3300HR3 MRF6P3300HR5 2 RF Device Data Freescale Semiconductor R1 VBIAS + B1 C23 + R3 C1 C2 C3 Z8 Z4 Z2 RF INPUT C16 C15 Z12 C17 C18 Z10 COAX1 VSUPPLY + COAX3 Z14 Z16 C14 Z6 RF Z18 OUTPUT C4 Z1 Z3 C6 Z7 DUT C10 C11 C5 Z9 R2 Z13 C12 Z15 Z17 Z5 C13 Z11 B2 COAX2 VBIAS COAX4 + C9 C7 + C8 C24 Z1, Z18 Z2, Z3 Z4, Z5 Z6, Z7 Z8, Z9 0.401″ 0.563″ 1.643″ 0.416″ 0.191″ x 0.810″ x 0.810″ x 0.058″ x 0.727″ x 0.507″ Microstrip Microstrip Microstrip Microstrip Microstrip Z10, Z11 Z12, Z13 Z14, Z15 Z16, Z17 PCB VSUPPLY + C20 C19 C21 C22 1.054″ x 0.150″ Microstrip 0.225″ x 0.507″ Microstrip 0.440″ x 0.335″ Microstrip 0.123″ x 0.140″ Microstrip Arlon GX - 0300 - 55 - 22, 0.030″, εr = 2.5 Figure 1. 820 - 900 MHz Narrowband Test Circuit Schematic Table 5. 820 - 900 MHz Narrowband Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 Ferrite Beads, Short 2743019447 Fair - Rite C1, C9 1.0 µF, 50 V Tantulum Chip Capacitors T491C105K050AS Kemet C2, C7, C17, C21 0.1 µF, 50 V Chip Capacitors CDR33BX104AKWS Kemet C3, C8, C16, C20 1000 pF 100B Chip Capacitors 100B102JP50X ATC C4, C5, C13, C14 100 pF 100B Chip Capacitors 100B101JP500X ATC C6, C12 8.2 pF 600B Chip Capacitors 600B8R2BT250XT ATC C10 9.1 pF 600B Chip Capacitor 600B9R1BT250XT ATC C11 1.8 pF 600B Chip Capacitor 600B1R8BT250XT ATC C15, C19 47 µF, 50 V Electrolytic Capacitors MVK50VC47RM8X10TP Nippon C18, C22 470 µF, 63 V Electrolytic Capacitors SME63V471M12X25LL United Chemi - Con C23, C24 22 pF 600B Chip Capacitors 600B220FT250XT ATC Coax1, 2, 3, 4 50 Ω, Semi Rigid Coax, 2.06″ Long UT - 141A - TP Micro - Coax R1, R2 10 Ω, 1/8 W Chip Resistors (1206) CRCW1206100J Dale/Vishay R3 1 kΩ, 1/8 W Chip Resistor (1206) CRCW1206102J Dale/Vishay MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 3 C15 C1 C18 C23 VGG VDD B1 C2 C3 R3 R1 C16 COAX3 MRF6P9220, Rev. 2 COAX1 C4 C6 CUT OUT AREA C5 C14 C10 C11 C12 C13 COAX2 COAX4 R2 VGG C7 C8 C17 C20 B2 C21 VDD C24 C22 C9 C19 Figure 2. 820 - 900 MHz Narrowband Test Circuit Component Layout MRF6P3300HR3 MRF6P3300HR5 4 RF Device Data Freescale Semiconductor TYPICAL NARROWBAND CHARACTERISTICS 29 20.5 20 27 Gps VDD = 32 Vdc, Pout = 60 W (Avg.) IDQ = 1600 mA, 8K Mode OFDM 64 QAM Data Carrier Modulation 5 Symbols 19.5 19 25 −45 −5 18.5 −50 −10 18 −55 17.5 IRL ACPR −60 830 840 850 860 870 880 −15 −20 −25 −65 900 17 820 ACPR (dBc) Gps, POWER GAIN (dB) 31 890 IRL, INPUT RETURN LOSS (dB) ηD ηD, DRAIN EFFICIENCY (%) 21 f, FREQUENCY (MHz) Figure 3. Single - Carrier OFDM Broadband Performance @ 60 Watts Avg. 42 40 Gps 19.5 38 19 −45 −5 18.5 −47 −10 18 −49 IRL ACPR 17.5 −51 −53 900 17 820 830 840 850 860 870 880 890 −15 −20 −25 IRL, INPUT RETURN LOSS (dB) ηD ACPR (dBc) Gps, POWER GAIN (dB) VDD = 32 Vdc, Pout = 120 W (Avg.) 20.5 IDQ = 1600 mA, 8K Mode OFDM 64 QAM Data Carrier 20 Modulation, 5 Symbols ηD, DRAIN EFFICIENCY (%) 44 21 f, FREQUENCY (MHz) Figure 4. Single - Carrier OFDM Broadband Performance @ 120 Watts Avg. 21.5 −10 Gps, POWER GAIN (dB) 21 20.5 2000 mA 20 1600 mA IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 2400 mA 1200 mA 19.5 19 IDQ = 800 mA 18.5 VDD = 32 Vdc f1 = 857 MHz, f2 = 863 MHz Two−Tone Measurements, 6 MHz Tone Spacing 18 17.5 5 10 100 Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power VDD = 32 Vdc, f1 = 857 MHz, f2 = 863 MHz Two−Tone Measurements, 6 MHz Tone Spacing −20 −30 IDQ = 2400 mA 800 mA −40 2000 mA −50 1600 mA 1200 mA −60 600 5 10 100 600 Pout, OUTPUT POWER (WATTS) PEP Figure 6. Third Order Intermodulation Distortion versus Output Power MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 5 −10 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL NARROWBAND CHARACTERISTICS VDD = 32 Vdc, IDQ = 1600 mA, f1 = 857 MHz f2 = 863 MHz, Two−Tone Measurements −20 −30 −40 3rd Order −50 5th Order −60 7th Order −70 5 10 100 600 −20 VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements, f = 860 MHz −25 −30 3rd Order −35 5th Order −40 −45 −50 7th Order −55 0.01 0.1 1 10 Pout, OUTPUT POWER (WATTS) PEP TWO−TONE SPACING (MHz) Figure 7. Intermodulation Distortion Products versus Output Power Figure 8. Intermodulation Distortion Products versus Tone Spacing @ 860 MHz Pout, OUTPUT POWER (dBm) 64 63 62 40 P6dB = 56.28 dBm (424.54 W) P3dB = 55.87 dBm (386.48 W) 61 60 59 Ideal P1dB = 55.20 dBm (330.94 W) 58 57 Actual 56 55 54 VDD = 32 Vdc, IDQ = 1600 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 860 MHz 53 52 32 33 34 35 36 37 38 40 39 41 42 43 44 Pin, INPUT POWER (dBm) 45 −40 VDD = 32 Vdc, IDQ = 1600 mA, f = 860 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 40 25_C −44 TC = 85_C 25_C 35 −30_C ηD 30 ACPR 25 −48 −52 −56 20 Gps −30_C 25_C 85_C 15 20 30 40 50 60 70 80 90 100 −60 −64 200 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Figure 9. Pulse CW Output Power versus Input Power Pout, OUTPUT POWER (WATTS) AVG. Figure 10. Single - Carrier DVBT OFDM ACPR, Power Gain and Drain Efficiency versus Output Power MRF6P3300HR3 MRF6P3300HR5 6 RF Device Data Freescale Semiconductor TYPICAL NARROWBAND CHARACTERISTICS 23 21.5 70 −30_C Gps 25_C 85_C 21 25_C 20 40 85_C 19 50 30 18 20 17 VDD = 32 Vdc IDQ = 1600 mA f = 860 MHz ηD 10 16 5 10 0 800 100 20.5 Gps, POWER GAIN (dB) TC = −30_C IDQ = 1600 mA f = 860 MHz 21 60 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 22 20 19.5 19 18.5 18 17.5 32 V 17 VDD = 12 V 16.5 0 50 16 V 100 24 V 20 V 150 200 250 28 V 300 350 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 11. Power Gain and Drain Efficiency versus CW Output Power Figure 12. Power Gain versus Output Power 400 MTTF FACTOR (HOURS x AMPS2) 1010 109 108 107 90 100 110 120 130 140 150 160 170 180 190 200 210 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 13. MTTF Factor versus Junction Temperature MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 7 DIGITAL TEST SIGNALS 100 −20 7.61 MHz −30 10 −50 −60 0.1 (dB) PROBABILITY (%) −40 1 8K Mode DVTB OFDM 64 QAM Data Carrier Modulation 5 Symbols 0.01 ACPR Measured at 3.9 MHz Offset from Center Frequency −70 −80 −90 0.001 20 kHz BW −100 20 kHz BW −110 0.0001 0 2 4 6 8 10 12 −5 −4 −3 −2 −1 0 1 2 3 f, FREQUENCY (MHz) Figure 14. Single - Carrier DVTB OFDM Figure 15. 8K Mode DVBT OFDM Spectrum 100 5 4 PEAK−TO−AVERAGE (dB) −10 Reference Point −20 10 1 −40 −50 0.1 (dB) PROBABILITY (%) −30 IMRL IMRU −60 −70 0.01 −80 ATSC 8VSB 0.001 −90 3.25 MHz Offset 3.25 MHz Offset −100 0.0001 0 1 2 3 4 5 6 7 8 −4.0 −3.2 −2.4 −1.6 −0.8 0 0.8 1.6 2.4 PEAK−TO−AVERAGE (dB) f, FREQUENCY (MHz) Figure 16. Single - Carrier ATSC 8VSB Figure 17. ATSC 8VSB Spectrum 3.2 4.0 MRF6P3300HR3 MRF6P3300HR5 8 RF Device Data Freescale Semiconductor f = 890 MHz Zload f = 830 MHz Zo = 10 Ω f = 890 MHz f = 830 MHz Zsource VDD = 32 Vdc, IDQ = 1600 mA, Pout = 270 W PEP f MHz Zsource Ω Zload Ω 830 4.52 - j6.73 4.89 - j1.35 845 4.22 - j6.38 5.06 - j1.01 860 3.89 - j5.81 5.18 - j0.58 875 3.54 - j5.10 5.27 - j0.11 890 3.39 - j4.32 5.36 + j0.43 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test − − Z source Output Matching Network + Z load Figure 18. 820 - 900 MHz Narrowband Series Equivalent Source and Load Impedance MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 9 Z6 R2 VBIAS + B1 C3 C5 C7 + R1 C28 C26 COAX1 COAX3 Z2 RF INPUT Z4 Z8 Z10 Z12 C1 Z1 C10 C9 Z3 Z5 Z9 Z11 Z13 C2 R3 COAX2 VBIAS COAX4 Z7 B2 + + C29 C4 C27 C6 C8 Z20 C18 C16 VSUPPLY + + C14 C22 COAX7 COAX5 Z14 Z16 Z18 C24 Z22 Z24 C20 RF Z26 OUTPUT DUT C11 Z15 C12 Z17 C13 Z19 Z23 Z25 C21 COAX6 C19 Z1, Z26 Z2, Z3 Z4, Z5 Z6, Z7 Z8, Z9 Z10, Z11 Z12, Z13 0.351″ 0.139″ 0.364″ 1.154″ 0.086″ 0.184″ 0.164″ x 0.081″ x 0.214″ x 0.214″ x 0.051″ x 0.100″ x 0.802″ x 0.802″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z14, Z15 Z16, Z17 Z18, Z19 Z20, Z21 Z22, Z23 Z24, Z25 PCB COAX8 Z21 C17 + + C15 C23 VSUPPLY C25 0.276″ x 0.420″ Microstrip 0.072″ x 0.420″ Microstrip 0.072″ x 0.031″ Microstrip 1.404″ x 0.141″ Microstrip 0.363″ x 0.214″ Microstrip 0.139″ x 0.214″ Microstrip Arlon GX - 0300 - 55 - 22, 0.030″, εr = 2.5 Figure 19. 470 - 860 MHz Broadband Test Circuit Schematic MRF6P3300HR3 MRF6P3300HR5 10 RF Device Data Freescale Semiconductor Table 6. 470 - 860 MHz Broadband Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 Ferrite Beads, Short 2743019447 Fair - Rite C1, C2, C20, C21 43 pF 600B Chip Capacitors 700B430FW500XT ATC C3, C4, C14, C15 100 µF, 50 V Electrolytic Capacitors 515D107M050BB6A Vishay C5, C6, C16, C17 220 nF, 100 V Chip Capacitors C1812C224K5RAC Kemet C7, C8, C18, C19 0.01 µF, 100 V Chip Capacitors C1210C103J1RAC Kemet C9, C13 0.8 - 8.0 pF Variable Capacitors, Gigatrim 27291SL Johanson C10 15 pF 600B Chip Capacitor 600S150FT250XT ATC C11 16 pF 600B Chip Capacitor 600B160FT250XT ATC C12 4.3 pF 600B Chip Capacitor 600B4R3BT250XT ATC C22, C23 470 µF, 63 V Electrolytic Capacitors NACZF471M63V Nippon C24, C25, C26, C27 0.1 µF, 50 V Chip Capacitors CDR33BX104AKWS Kemet C28, C29 10 µF, 50 V Electrolytic Capacitors ECE - V1HA100SP Panasonic Coax1, 2, 7, 8 50 Ω, Semi Rigid Coax, 3.00″ Long UT - 141C- 50 - SP Micro - Coax Coax3, 4, 5, 6 25 Ω, Semi Rigid Coax, 3.00″ Long UT - 141C- 25 Micro - Coax R1 1 kΩ, 1/8 W Resistor (1206) CRCW1206102J Dale/Vishay R2, R3 10 Ω, 1/8 W Resistors (1206) CRCW1206100J Dale/Vishay C28 C22 R1 C26 VGG COAX1 R2 C5 C7 C16 C18 MRF6P93300 C8 C6 C4 COAX2 R3 VGG B2 COAX4 C27 C29 CUT OUT AREA C9 C20 C11 C10 C2 COAX7 C14 C3 C1 VDD COAX5 COAX3 B1 Rev. 3 C24 C12 C13 C21 C19 C17 C15 COAX8 COAX6 VDD C25 C23 Figure 20. 470 - 860 MHz Broadband Test Circuit Component Layout MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 11 48 −24 ηD 44 −27 40 −30 36 −33 IMD −36 32 VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements, 6 MHz Tone Spacing 28 24 −39 −42 Gps −45 20 16 400 500 600 700 800 −48 900 IMD, INTERMODULATION DISTORTION (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) TYPICAL TWO - TONE BROADBAND CHARACTERISTICS f, FREQUENCY (MHz) Figure 21. Two - Tone Broadband Performance @ Pout = 270 Watts PEP MRF6P3300HR3 MRF6P3300HR5 12 RF Device Data Freescale Semiconductor TYPICAL TWO - TONE BROADBAND CHARACTERISTICS 24.5 23.5 23 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) IDQ = 2400 mA IDQ = 2400 mA 24 2000 mA 23.5 23 1600 mA 22.5 1200 mA 22 21.5 21 5 10 100 22 1600 mA 21.5 21 1200 mA VDD = 32 Vdc, f1 = 557 MHz, f2 = 563 MHz Two−Tone Measurements, 6 MHz Tone Spacing 800 mA 20 1000 5 10 100 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 22. Two - Tone Power Gain versus Output Power @ 473 MHz Figure 23. Two - Tone Power Gain versus Output Power @ 560 MHz 21 1000 19 IDQ = 2400 mA IDQ = 2400 mA 18.5 Gps, POWER GAIN (dB) 20.5 Gps, POWER GAIN (dB) 2000 mA 20.5 VDD = 32 Vdc, f1 = 470 MHz, f2 = 476 MHz Two−Tone Measurements, 6 MHz Tone Spacing 800 mA 22.5 2000 mA 20 1600 mA 19.5 1200 mA 19 2000 mA 18 1600 mA 17.5 1200 mA 17 800 mA 18.5 5 VDD = 32 Vdc, f1 = 657 MHz, f2 = 663 MHz Two−Tone Measurements, 6 MHz Tone Spacing 10 100 VDD = 32 Vdc, f1 = 757 MHz, f2 = 763 MHz Two−Tone Measurements, 6 MHz Tone Spacing 800 mA 16.5 5 1000 10 100 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 24. Two - Tone Power Gain versus Output Power @ 660 MHz Figure 25. Two - Tone Power Gain versus Output Power @ 760 MHz 1000 20 IDQ = 2400 mA Gps, POWER GAIN (dB) 19.5 2000 mA 19 1600 mA 18.5 1200 mA 18 800 mA VDD = 32 Vdc, f1 = 854 MHz, f2 = 860 MHz Two−Tone Measurements, 6 MHz Tone Spacing 17.5 5 10 100 1000 Pout, OUTPUT POWER (WATTS) PEP Figure 26. Two - Tone Power Gain versus Output Power @ 857 MHz MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 13 TYPICAL TWO - TONE BROADBAND CHARACTERISTICS −25 IDQ = 800 mA IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −25 −30 −35 1200 mA −40 2400 mA 2000 mA −45 1600 mA −50 VDD = 32 Vdc, f1 = 470 MHz, f2 = 476 MHz Two−Tone Measurements, 6 MHz Tone Spacing −55 10 100 −30 −35 IDQ = 800 mA 1200 mA −40 1600 mA −45 2000 mA 2400 mA −50 VDD = 32 Vdc, f1 = 557 MHz, f2 = 563 MHz Two−Tone Measurements, 6 MHz Tone Spacing −55 1000 10 Pout, OUTPUT POWER (WATTS) PEP Figure 28. Third Order Intermodulation Distortion versus Output Power @ 560 MHz −25 VDD = 32 Vdc, f1 = 657 MHz, f2 = 663 MHz Two−Tone Measurements, 6 MHz Tone Spacing −35 IDQ = 800 mA −40 1200 mA IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −30 −45 2400 mA −50 2000 mA 1600 mA −55 −30 IDQ = 800 mA −35 1200 mA −40 2400 mA −45 −50 2000 mA 1600 mA −55 100 10 1000 Pout, OUTPUT POWER (WATTS) PEP Figure 27. Third Order Intermodulation Distortion versus Output Power @ 473 MHz −25 100 1000 VDD = 32 Vdc, f1 = 757 MHz, f2 = 763 MHz Two−Tone Measurements, 6 MHz Tone Spacing 100 10 Pout, OUTPUT POWER (WATTS) PEP 1000 Pout, OUTPUT POWER (WATTS) PEP Figure 29. Third Order Intermodulation Distortion versus Output Power @ 660 MHz Figure 30. Third Order Intermodulation Distortion versus Output Power @ 760 MHz IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −25 −30 IDQ = 800 mA −35 1200 mA −40 −45 2400 mA 2000 mA 1600 mA −50 VDD = 32 Vdc, f1 = 854 MHz, f2 = 860 MHz Two−Tone Measurements, 6 MHz Tone Spacing −55 10 100 1000 Pout, OUTPUT POWER (WATTS) PEP Figure 31. Third Order Intermodulation Distortion versus Output Power @ 857 MHz MRF6P3300HR3 MRF6P3300HR5 14 RF Device Data Freescale Semiconductor −10 VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements f1 = 470 MHz, f2 = 470 MHz + Tone Spacing −20 3rd Order −30 5th Order −40 7th Order −50 −60 0.1 1 10 100 −10 VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements, f = 560 MHz −20 −30 3rd Order −40 5th Order 7th Order −50 −60 0.01 0.1 1 10 TWO−TONE SPACING (MHz) Figure 32. Intermodulation Distortion Products versus Tone Spacing @ 470 MHz Figure 33. Intermodulation Distortion Products versus Tone Spacing @ 560 MHz 0 −10 0 TWO−TONE SPACING (MHz) VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements, f = 660 MHz −20 −30 3rd Order 5th Order −40 −50 −60 0.01 7th Order 0.1 1 10 100 100 0 −10 VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements, f = 760 MHz −20 −30 3rd Order −40 5th Order −50 7th Order −60 0.01 0.1 1 10 TWO−TONE SPACING (MHz) TWO−TONE SPACING (MHz) Figure 34. Intermodulation Distortion Products versus Tone Spacing @ 660 MHz Figure 35. Intermodulation Distortion Products versus Tone Spacing @ 760 MHz IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) 0 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL TWO - TONE BROADBAND CHARACTERISTICS 100 0 −10 VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA Two−Tone Measurements, 6 MHz Tone Spacing f1 = 860 MHz − Tone Spacing, f2 = 860 MHz −20 3rd Order −30 5th Order −40 7th Order −50 −60 0.1 1 10 100 TWO−TONE SPACING (MHz) Figure 36. Intermodulation Distortion Products versus Tone Spacing @ 860 MHz MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 15 30 −52 ηD 28 −53 26 −54 ACPR 24 −55 22 −56 20 18 400 VDD = 32 Vdc, Pout = 60 W (Avg.) IDQ = 1600 mA, 8K Mode OFDM 64 QAM Data Carrier Modulation, 5 Symbols 500 600 −57 Gps 700 −58 900 800 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) TYPICAL DVBT OFDM BROADBAND CHARACTERISTICS f, FREQUENCY (MHz) Figure 37. Single - Carrier OFDM Broadband Performance @ 60 Watts Avg. 24 45 f = 560 MHz ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 22 660 MHz 21 760 MHz 20 VDD = 32 Vdc, IDQ = 1600 mA 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 860 MHz 19 VDD = 32 Vdc, IDQ = 1600 mA 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 40 23 35 f = 660 MHz 860 MHz 30 760 MHz 25 560 MHz 20 15 10 18 5 10 100 200 3 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 38. Single - Carrier DVBT OFDM Power Gain versus Output Power Figure 39. Single - Carrier DVBT OFDM Drain Efficiency versus Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dBc) 3 200 −45 VDD = 32 Vdc, IDQ = 1600 mA 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols −50 −55 f = 860 MHz −60 760 MHz 560 MHz 660 MHz −65 3 10 100 200 Pout, OUTPUT POWER (WATTS) AVG. Figure 40. Single - Carrier DVBT OFDM ACPR versus Output Power MRF6P3300HR3 MRF6P3300HR5 16 RF Device Data Freescale Semiconductor TYPICAL CW BROADBAND CHARACTERISTICS 26 70 f = 660 MHz VDD = 32 Vdc, IDQ = 1600 mA ηD, DRAIN EFFICIENCY (%) f = 560 MHz 24 Gps, POWER GAIN (dB) 60 470 MHz 22 660 MHz 20 760 MHz 860 MHz 18 760 MHz 560 MHz 50 40 470 MHz 30 860 MHz 20 10 VDD = 32 Vdc, IDQ = 1600 mA 16 0 5 10 100 500 3 10 100 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 41. CW Power Gain versus Output Power Figure 42. CW Drain Efficiency versus Output Power 500 MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 17 TYPICAL CW BROADBAND CHARACTERISTICS Pout, OUTPUT POWER (dBm) 57 56.5 56 Ideal 55.5 55 P1dB = 53.59 dBm (228.67 W) 54.5 54 53.5 Actual 53 52.5 52 VDD = 32 Vdc, IDQ = 1600 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 470 MHz 51.5 51 28.5 28 29 29.5 30 30.5 31.5 31 32 32.5 33 Pin, INPUT POWER (dBm) Figure 43. Pulse CW Output Power versus Input Power @ 470 MHz 59 60 Ideal Pout, OUTPUT POWER (dBm) P3dB = 55.49 dBm (353.76 W) 58 Pout, OUTPUT POWER (dBm) 59 57 P1dB = 54.84 dBm (304.81 W) 56 Actual 55 VDD = 32 Vdc, IDQ = 1600 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 560 MHz 54 53 29 30 31 33 32 34 35 Ideal 57 P1dB = 54.04 dBm (253.67 W) 56 55 Actual 54 53 VDD = 32 Vdc, IDQ = 1600 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 660 MHz 52 51 36 30 31 32 33 35 34 36 37 Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm) Figure 44. Pulse CW Output Power versus Input Power @ 560 MHz Figure 45. Pulse CW Output Power versus Input Power @ 660 MHz 60 38 60 P3dB = 55.25 dBm (334.73 W) 58 59 Ideal Pout, OUTPUT POWER (dBm) 59 Pout, OUTPUT POWER (dBm) P3dB = 54.88 dBm (307.45 W) 58 57 P1dB = 54.56 dBm (286.06 W) 56 55 Actual 54 53 VDD = 32 Vdc, IDQ = 1600 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 760 MHz 52 51 31 32 33 34 35 36 37 38 58 57 P1dB = 54.82 dBm (303.25 W) 56 Actual 55 54 VDD = 32 Vdc, IDQ = 1600 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 860 MHz 53 52 39 Ideal P3dB = 55.58 dBm (361.21 W) 32 33 34 35 36 37 38 39 Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm) Figure 46. Pulse CW Output Power versus Input Power @ 760 MHz Figure 47. Pulse CW Output Power versus Input Power @ 860 MHz 40 MRF6P3300HR3 MRF6P3300HR5 18 RF Device Data Freescale Semiconductor 40 −23 −24 37.5 ηD 35 −25 −26 32.5 30 −27 VDD = 32 Vdc, Pout = 100 W (Avg.) IDQ = 1700 mA, ATSC 8VSB 27.5 −28 −29 25 22.5 −30 Gps 20 −31 17.5 −32 ACPR 15 400 500 600 700 −33 900 800 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) TYPICAL ATSC 8VSB BROADBAND CHARACTERISTICS f, FREQUENCY (MHz) Figure 48. Single - Carrier ATSC 8VSB Broadband Performance @ 100 Watts Avg. 24 50 f = 560 MHz VDD = 32 Vdc, IDQ = 1700 mA ATSC 8VSB 470 MHz ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 23 22 21 660 MHz 20 760 MHz 19 860 MHz 18 VDD = 32 Vdc, IDQ = 1700 mA 17 10 760 MHz 860 MHz 470 MHz 30 560 MHz 20 10 0 100 200 3 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 49. Single - Carrier ATSC 8VSB Power Gain versus Output Power Figure 50. Single - Carrier ATSC 8VSB Drain Efficiency versus Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dBc) 3 40 f = 660 MHz 200 −15 VDD = 32 Vdc, IDQ = 1700 mA ATSC 8VSB −20 f = 860 MHz 560 MHz −25 −30 470 MHz −35 660 MHz 760 MHz −40 3 10 100 200 Pout, OUTPUT POWER (WATTS) AVG. Figure 51. Single - Carrier ATSC 8VSB ACPR versus Output Power MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 19 50 280 ηD 45 40 275 270 VDD = 32 Vdc, IDQ = 1500 mA Sync Compression Input = 33%, Output = 27% 35 30 Peak Sync Gps 25 265 260 PEAK SYNC (W) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) TYPICAL PAL B/G BROADBAND CHARACTERISTICS 255 250 20 15 400 500 600 700 800 245 900 f, FREQUENCY (MHz) Figure 52. Peak Sync, Power Gain and Drain Efficiency versus Frequency MRF6P3300HR3 MRF6P3300HR5 20 RF Device Data Freescale Semiconductor Zload f = 860 MHz f = 470 MHz f = 470 MHz Zsource Zo = 25 Ω Zo = 25 Ω f = 860 MHz VDD = 32 Vdc, IDQ = 1600 mA, Pout = 270 W PEP f MHz Zsource Ω Zload Ω 470 8.77 - j5.43 6.09 - j4.37 510 8.74 - j4.17 6.39 - j1.65 560 8.86 - j2.87 6.69 - j2.45 610 10.55 - j2.45 7.36 - j1.95 660 12.41 - j3.53 7.73 - j1.75 710 13.11 - j6.04 7.95 - j1.20 760 11.29 - j10.15 8.18 - j1.36 810 6.81 - j10.41 7.81 - j1.60 860 3.73 - j9.66 6.94 - j2.49 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test − − Z source Output Matching Network + Z load Figure 53. 470 - 860 MHz Broadband Series Equivalent Source and Load Impedance MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 21 NOTES MRF6P3300HR3 MRF6P3300HR5 22 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS 4 G ccc R M T A M B M Q bbb 2X L J T A M M B M (LID) 2 1 B NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DIMENSION H TO BE MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 4. RECOMMENDED BOLT CENTER DIMENSION OF 1.140 (28.96) BASED ON 3M SCREW. (FLANGE) 5 4X S K (INSULATOR) bbb M T A 3 4X M B M 4 B D bbb M ccc T A M M B T A M M B M B M F N (LID) E M H bbb A C (INSULATOR) M T A M T SEATING PLANE DIM A B C D E F G H J K L M N Q R S bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.180 0.224 0.325 0.335 0.060 0.070 0.004 0.006 1.100 BSC 0.097 0.107 0.2125 BSC 0.135 0.165 0.425 BSC 0.852 0.868 0.851 0.869 0.118 0.138 0.395 0.405 0.394 0.406 0.010 REF 0.015 REF STYLE 1: PIN 1. 2. 3. 4. 5. A MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 4.57 5.69 8.26 8.51 1.52 1.78 0.10 0.15 27.94 BSC 2.46 2.72 5.397 BSC 3.43 4.19 10.8 BSC 21.64 22.05 21.62 22.07 3.00 3.30 10.03 10.29 10.01 10.31 0.25 REF 0.38 REF DRAIN DRAIN GATE GATE SOURCE CASE 375G - 04 ISSUE F NI - 860C3 MRF6P3300HR3 MRF6P3300HR5 RF Device Data Freescale Semiconductor 23 How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. Freescale Semiconductor, Inc. 2005. All rights reserved. MRF6P3300HR3 MRF6P3300HR5 Document Number: MRF6P3300H Rev. 0, 9/2005 24 RF Device Data Freescale Semiconductor