FREESCALE MRF6P3300HR5

Freescale Semiconductor
Technical Data
Document Number: MRF6P3300H
Rev. 0, 9/2005
RF Power Field Effect Transistor
N - Channel Enhancement - Mode Lateral MOSFET
MRF6P3300HR3
MRF6P3300HR5
Designed for broadband commercial and industrial applications with
frequencies from 470 to 860 MHz. The high gain and broadband performance
of this device make it ideal for large - signal, common - source amplifier
applications in 32 volt analog or digital television transmitter equipment.
• Typical Narrowband Two - Tone Performance @ 860 MHz: VDD = 32 Volts,
IDQ = 1600 mA, Pout = 270 Watts PEP
Power Gain — 20.2 dB
Drain Efficiency — 44.1%
IMD — - 30.8 dBc
• Typical Narrowband DVBT OFDM Performance @ 860 MHz: VDD =
32 Volts, IDQ = 1600 mA, Pout = 60 Watts Avg., 8K Mode, 64 QAM
Power Gain — 20.4 dB
Drain Efficiency — 29%
ACPR @ 3.9 MHz Offset — - 57 dBc @ 20 kHz Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 860 MHz, 300 Watts CW
Output Power
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Designed for Push - Pull Operation Only
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• Lower Thermal Resistance Package
• Low Gold Plating Thickness on Leads, 40µ″ Nominal.
• Pb - Free and RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
R5 Suffix = 50 Units per 56 mm, 13 inch Reel.
470 - 860 MHz, 300 W, 32 V
LATERAL N - CHANNEL
RF POWER MOSFET
CASE 375G - 04, STYLE 1
NI - 860C3
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +68
Vdc
Gate - Source Voltage
VGS
- 0.5, +12
Vdc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
761
4.3
W
W/°C
Storage Temperature Range
Tstg
- 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 300 W CW
Case Temperature 82°C, 220 W CW
Case Temperature 79°C, 100 W CW
Case Temperature 81°C, 60 W CW
RθJC
0.23
0.24
0.27
0.27
°C/W
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to
access the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
 Freescale Semiconductor, Inc., 2005. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6P3300HR3 MRF6P3300HR5
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
3B (Minimum)
Machine Model (per EIA/JESD22 - A115)
C (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
µAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
µAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
µAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 350 µAdc)
VGS(th)
1
2.2
3
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 2.4 Adc)
VDS(on)
—
0.22
0.3
Vdc
Forward Transconductance
(VDS = 10 Vdc, ID = 2.4 Adc)
gfs
—
7.4
—
S
Crss
—
1.4
—
pF
Off
Characteristics(1)
On Characteristics(1)
Dynamic Characteristics (1,2)
Reverse Transfer Capacitance
(VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Functional Tests(3) (In Freescale Narrowband Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 1600 mA, Pout = 270 W PEP,
f1 = 857 MHz, f2 = 863 MHz
Power Gain
Drain Efficiency
Gps
19
20.2
23
dB
ηD
41
44.1
—
%
Intermodulation Distortion
IMD
—
- 30.8
- 28
dBc
Input Return Loss
IRL
—
- 24
-9
dB
Pout @ 1 dB Compression Point, CW
(f = 860 MHz)
P1dB
—
320
—
W
Gate Quiescent Voltage
(VDS = 32 Vdc, ID = 1600 mAdc)
VGS(Q)
2
2.8
4
Vdc
1. Each side of the device measured separately.
2. Part is internally matched both on input and output.
3. Measurement made with device in push - pull configuration.
MRF6P3300HR3 MRF6P3300HR5
2
RF Device Data
Freescale Semiconductor
R1
VBIAS
+
B1
C23
+
R3
C1
C2
C3
Z8
Z4
Z2
RF
INPUT
C16
C15
Z12
C17
C18
Z10
COAX1
VSUPPLY
+
COAX3
Z14
Z16
C14
Z6
RF
Z18 OUTPUT
C4
Z1
Z3
C6
Z7
DUT
C10 C11
C5
Z9
R2
Z13
C12
Z15
Z17
Z5
C13
Z11
B2
COAX2
VBIAS
COAX4
+
C9
C7
+
C8
C24
Z1, Z18
Z2, Z3
Z4, Z5
Z6, Z7
Z8, Z9
0.401″
0.563″
1.643″
0.416″
0.191″
x 0.810″
x 0.810″
x 0.058″
x 0.727″
x 0.507″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z10, Z11
Z12, Z13
Z14, Z15
Z16, Z17
PCB
VSUPPLY
+
C20
C19
C21
C22
1.054″ x 0.150″ Microstrip
0.225″ x 0.507″ Microstrip
0.440″ x 0.335″ Microstrip
0.123″ x 0.140″ Microstrip
Arlon GX - 0300 - 55 - 22, 0.030″, εr = 2.5
Figure 1. 820 - 900 MHz Narrowband Test Circuit Schematic
Table 5. 820 - 900 MHz Narrowband Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1, B2
Ferrite Beads, Short
2743019447
Fair - Rite
C1, C9
1.0 µF, 50 V Tantulum Chip Capacitors
T491C105K050AS
Kemet
C2, C7, C17, C21
0.1 µF, 50 V Chip Capacitors
CDR33BX104AKWS
Kemet
C3, C8, C16, C20
1000 pF 100B Chip Capacitors
100B102JP50X
ATC
C4, C5, C13, C14
100 pF 100B Chip Capacitors
100B101JP500X
ATC
C6, C12
8.2 pF 600B Chip Capacitors
600B8R2BT250XT
ATC
C10
9.1 pF 600B Chip Capacitor
600B9R1BT250XT
ATC
C11
1.8 pF 600B Chip Capacitor
600B1R8BT250XT
ATC
C15, C19
47 µF, 50 V Electrolytic Capacitors
MVK50VC47RM8X10TP
Nippon
C18, C22
470 µF, 63 V Electrolytic Capacitors
SME63V471M12X25LL
United Chemi - Con
C23, C24
22 pF 600B Chip Capacitors
600B220FT250XT
ATC
Coax1, 2, 3, 4
50 Ω, Semi Rigid Coax, 2.06″ Long
UT - 141A - TP
Micro - Coax
R1, R2
10 Ω, 1/8 W Chip Resistors (1206)
CRCW1206100J
Dale/Vishay
R3
1 kΩ, 1/8 W Chip Resistor (1206)
CRCW1206102J
Dale/Vishay
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
3
C15
C1
C18
C23
VGG
VDD
B1
C2 C3
R3
R1
C16
COAX3
MRF6P9220, Rev. 2
COAX1
C4
C6
CUT OUT AREA
C5
C14
C10 C11
C12
C13
COAX2
COAX4
R2
VGG
C7
C8
C17
C20
B2
C21
VDD
C24
C22
C9
C19
Figure 2. 820 - 900 MHz Narrowband Test Circuit Component Layout
MRF6P3300HR3 MRF6P3300HR5
4
RF Device Data
Freescale Semiconductor
TYPICAL NARROWBAND CHARACTERISTICS
29
20.5
20
27
Gps
VDD = 32 Vdc, Pout = 60 W (Avg.)
IDQ = 1600 mA, 8K Mode OFDM
64 QAM Data Carrier Modulation
5 Symbols
19.5
19
25
−45
−5
18.5
−50
−10
18
−55
17.5
IRL
ACPR
−60
830
840
850
860
870
880
−15
−20
−25
−65
900
17
820
ACPR (dBc)
Gps, POWER GAIN (dB)
31
890
IRL, INPUT RETURN LOSS (dB)
ηD
ηD, DRAIN
EFFICIENCY (%)
21
f, FREQUENCY (MHz)
Figure 3. Single - Carrier OFDM Broadband Performance @ 60 Watts Avg.
42
40
Gps
19.5
38
19
−45
−5
18.5
−47
−10
18
−49
IRL
ACPR
17.5
−51
−53
900
17
820
830
840
850
860
870
880
890
−15
−20
−25
IRL, INPUT RETURN LOSS (dB)
ηD
ACPR (dBc)
Gps, POWER GAIN (dB)
VDD = 32 Vdc, Pout = 120 W (Avg.)
20.5 IDQ = 1600 mA, 8K Mode OFDM
64 QAM Data Carrier
20 Modulation, 5 Symbols
ηD, DRAIN
EFFICIENCY (%)
44
21
f, FREQUENCY (MHz)
Figure 4. Single - Carrier OFDM Broadband Performance @ 120 Watts Avg.
21.5
−10
Gps, POWER GAIN (dB)
21
20.5
2000 mA
20
1600 mA
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
2400 mA
1200 mA
19.5
19
IDQ = 800 mA
18.5
VDD = 32 Vdc
f1 = 857 MHz, f2 = 863 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
18
17.5
5
10
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
VDD = 32 Vdc, f1 = 857 MHz, f2 = 863 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
−20
−30
IDQ = 2400 mA
800 mA
−40
2000 mA
−50
1600 mA
1200 mA
−60
600
5
10
100
600
Pout, OUTPUT POWER (WATTS) PEP
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
5
−10
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL NARROWBAND CHARACTERISTICS
VDD = 32 Vdc, IDQ = 1600 mA, f1 = 857 MHz
f2 = 863 MHz, Two−Tone Measurements
−20
−30
−40
3rd Order
−50
5th Order
−60
7th Order
−70
5
10
100
600
−20
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements, f = 860 MHz
−25
−30
3rd Order
−35
5th Order
−40
−45
−50
7th Order
−55
0.01
0.1
1
10
Pout, OUTPUT POWER (WATTS) PEP
TWO−TONE SPACING (MHz)
Figure 7. Intermodulation Distortion Products
versus Output Power
Figure 8. Intermodulation Distortion Products
versus Tone Spacing @ 860 MHz
Pout, OUTPUT POWER (dBm)
64
63
62
40
P6dB = 56.28 dBm
(424.54 W)
P3dB = 55.87 dBm
(386.48 W)
61
60
59
Ideal
P1dB = 55.20 dBm
(330.94 W)
58
57
Actual
56
55
54
VDD = 32 Vdc, IDQ = 1600 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
f = 860 MHz
53
52
32
33
34
35
36
37
38
40
39
41
42
43
44
Pin, INPUT POWER (dBm)
45
−40
VDD = 32 Vdc, IDQ = 1600 mA, f = 860 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
40
25_C
−44
TC = 85_C
25_C
35
−30_C
ηD
30
ACPR
25
−48
−52
−56
20
Gps
−30_C
25_C
85_C
15
20
30
40
50
60 70 80 90 100
−60
−64
200
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Figure 9. Pulse CW Output Power versus
Input Power
Pout, OUTPUT POWER (WATTS) AVG.
Figure 10. Single - Carrier DVBT OFDM ACPR,
Power Gain and Drain Efficiency
versus Output Power
MRF6P3300HR3 MRF6P3300HR5
6
RF Device Data
Freescale Semiconductor
TYPICAL NARROWBAND CHARACTERISTICS
23
21.5
70
−30_C
Gps
25_C
85_C
21
25_C
20
40
85_C
19
50
30
18
20
17
VDD = 32 Vdc
IDQ = 1600 mA
f = 860 MHz
ηD
10
16
5
10
0
800
100
20.5
Gps, POWER GAIN (dB)
TC = −30_C
IDQ = 1600 mA
f = 860 MHz
21
60
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
22
20
19.5
19
18.5
18
17.5
32 V
17
VDD = 12 V
16.5
0
50
16 V
100
24 V
20 V
150
200
250
28 V
300
350
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 11. Power Gain and Drain Efficiency
versus CW Output Power
Figure 12. Power Gain versus Output Power
400
MTTF FACTOR (HOURS x AMPS2)
1010
109
108
107
90 100 110 120 130 140 150 160 170 180 190 200 210
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 13. MTTF Factor versus Junction Temperature
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
7
DIGITAL TEST SIGNALS
100
−20
7.61 MHz
−30
10
−50
−60
0.1
(dB)
PROBABILITY (%)
−40
1
8K Mode DVTB OFDM
64 QAM Data Carrier Modulation
5 Symbols
0.01
ACPR Measured at 3.9 MHz Offset
from Center Frequency
−70
−80
−90
0.001
20 kHz BW
−100
20 kHz BW
−110
0.0001
0
2
4
6
8
10
12
−5
−4
−3
−2
−1
0
1
2
3
f, FREQUENCY (MHz)
Figure 14. Single - Carrier DVTB OFDM
Figure 15. 8K Mode DVBT OFDM Spectrum
100
5
4
PEAK−TO−AVERAGE (dB)
−10
Reference
Point
−20
10
1
−40
−50
0.1
(dB)
PROBABILITY (%)
−30
IMRL
IMRU
−60
−70
0.01
−80
ATSC 8VSB
0.001
−90
3.25 MHz
Offset
3.25 MHz
Offset
−100
0.0001
0
1
2
3
4
5
6
7
8
−4.0 −3.2
−2.4 −1.6 −0.8
0
0.8
1.6
2.4
PEAK−TO−AVERAGE (dB)
f, FREQUENCY (MHz)
Figure 16. Single - Carrier ATSC 8VSB
Figure 17. ATSC 8VSB Spectrum
3.2
4.0
MRF6P3300HR3 MRF6P3300HR5
8
RF Device Data
Freescale Semiconductor
f = 890 MHz
Zload
f = 830 MHz
Zo = 10 Ω
f = 890 MHz
f = 830 MHz
Zsource
VDD = 32 Vdc, IDQ = 1600 mA, Pout = 270 W PEP
f
MHz
Zsource
Ω
Zload
Ω
830
4.52 - j6.73
4.89 - j1.35
845
4.22 - j6.38
5.06 - j1.01
860
3.89 - j5.81
5.18 - j0.58
875
3.54 - j5.10
5.27 - j0.11
890
3.39 - j4.32
5.36 + j0.43
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured
from drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
−
−
Z
source
Output
Matching
Network
+
Z
load
Figure 18. 820 - 900 MHz Narrowband Series Equivalent Source and Load Impedance
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
9
Z6
R2
VBIAS
+
B1
C3
C5
C7
+
R1
C28
C26
COAX1
COAX3
Z2
RF
INPUT
Z4
Z8
Z10
Z12
C1
Z1
C10
C9
Z3
Z5
Z9
Z11
Z13
C2
R3
COAX2
VBIAS
COAX4
Z7
B2
+
+
C29
C4
C27
C6
C8
Z20
C18
C16
VSUPPLY
+
+
C14
C22
COAX7
COAX5
Z14
Z16
Z18
C24
Z22
Z24
C20
RF
Z26 OUTPUT
DUT
C11
Z15
C12
Z17
C13
Z19
Z23
Z25
C21
COAX6
C19
Z1, Z26
Z2, Z3
Z4, Z5
Z6, Z7
Z8, Z9
Z10, Z11
Z12, Z13
0.351″
0.139″
0.364″
1.154″
0.086″
0.184″
0.164″
x 0.081″
x 0.214″
x 0.214″
x 0.051″
x 0.100″
x 0.802″
x 0.802″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z14, Z15
Z16, Z17
Z18, Z19
Z20, Z21
Z22, Z23
Z24, Z25
PCB
COAX8
Z21
C17
+
+
C15
C23
VSUPPLY
C25
0.276″ x 0.420″ Microstrip
0.072″ x 0.420″ Microstrip
0.072″ x 0.031″ Microstrip
1.404″ x 0.141″ Microstrip
0.363″ x 0.214″ Microstrip
0.139″ x 0.214″ Microstrip
Arlon GX - 0300 - 55 - 22, 0.030″, εr = 2.5
Figure 19. 470 - 860 MHz Broadband Test Circuit Schematic
MRF6P3300HR3 MRF6P3300HR5
10
RF Device Data
Freescale Semiconductor
Table 6. 470 - 860 MHz Broadband Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1, B2
Ferrite Beads, Short
2743019447
Fair - Rite
C1, C2, C20, C21
43 pF 600B Chip Capacitors
700B430FW500XT
ATC
C3, C4, C14, C15
100 µF, 50 V Electrolytic Capacitors
515D107M050BB6A
Vishay
C5, C6, C16, C17
220 nF, 100 V Chip Capacitors
C1812C224K5RAC
Kemet
C7, C8, C18, C19
0.01 µF, 100 V Chip Capacitors
C1210C103J1RAC
Kemet
C9, C13
0.8 - 8.0 pF Variable Capacitors, Gigatrim
27291SL
Johanson
C10
15 pF 600B Chip Capacitor
600S150FT250XT
ATC
C11
16 pF 600B Chip Capacitor
600B160FT250XT
ATC
C12
4.3 pF 600B Chip Capacitor
600B4R3BT250XT
ATC
C22, C23
470 µF, 63 V Electrolytic Capacitors
NACZF471M63V
Nippon
C24, C25, C26, C27
0.1 µF, 50 V Chip Capacitors
CDR33BX104AKWS
Kemet
C28, C29
10 µF, 50 V Electrolytic Capacitors
ECE - V1HA100SP
Panasonic
Coax1, 2, 7, 8
50 Ω, Semi Rigid Coax, 3.00″ Long
UT - 141C- 50 - SP
Micro - Coax
Coax3, 4, 5, 6
25 Ω, Semi Rigid Coax, 3.00″ Long
UT - 141C- 25
Micro - Coax
R1
1 kΩ, 1/8 W Resistor (1206)
CRCW1206102J
Dale/Vishay
R2, R3
10 Ω, 1/8 W Resistors (1206)
CRCW1206100J
Dale/Vishay
C28
C22
R1
C26
VGG
COAX1 R2
C5
C7
C16
C18
MRF6P93300
C8
C6
C4
COAX2
R3
VGG
B2
COAX4
C27
C29
CUT OUT AREA
C9
C20
C11
C10
C2
COAX7
C14
C3
C1
VDD
COAX5
COAX3
B1
Rev. 3
C24
C12
C13
C21
C19
C17
C15
COAX8
COAX6
VDD
C25
C23
Figure 20. 470 - 860 MHz Broadband Test Circuit Component Layout
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
11
48
−24
ηD
44
−27
40
−30
36
−33
IMD
−36
32
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements, 6 MHz Tone Spacing
28
24
−39
−42
Gps
−45
20
16
400
500
600
700
800
−48
900
IMD, INTERMODULATION DISTORTION (dBc)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
TYPICAL TWO - TONE BROADBAND CHARACTERISTICS
f, FREQUENCY (MHz)
Figure 21. Two - Tone Broadband Performance @ Pout = 270 Watts PEP
MRF6P3300HR3 MRF6P3300HR5
12
RF Device Data
Freescale Semiconductor
TYPICAL TWO - TONE BROADBAND CHARACTERISTICS
24.5
23.5
23
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
IDQ = 2400 mA
IDQ = 2400 mA
24
2000 mA
23.5
23
1600 mA
22.5
1200 mA
22
21.5
21
5
10
100
22
1600 mA
21.5
21
1200 mA
VDD = 32 Vdc, f1 = 557 MHz, f2 = 563 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
800 mA
20
1000
5
10
100
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 22. Two - Tone Power Gain versus
Output Power @ 473 MHz
Figure 23. Two - Tone Power Gain versus
Output Power @ 560 MHz
21
1000
19
IDQ = 2400 mA
IDQ = 2400 mA
18.5
Gps, POWER GAIN (dB)
20.5
Gps, POWER GAIN (dB)
2000 mA
20.5
VDD = 32 Vdc, f1 = 470 MHz, f2 = 476 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
800 mA
22.5
2000 mA
20
1600 mA
19.5
1200 mA
19
2000 mA
18
1600 mA
17.5
1200 mA
17
800 mA
18.5
5
VDD = 32 Vdc, f1 = 657 MHz, f2 = 663 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
10
100
VDD = 32 Vdc, f1 = 757 MHz, f2 = 763 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
800 mA
16.5
5
1000
10
100
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 24. Two - Tone Power Gain versus
Output Power @ 660 MHz
Figure 25. Two - Tone Power Gain versus
Output Power @ 760 MHz
1000
20
IDQ = 2400 mA
Gps, POWER GAIN (dB)
19.5
2000 mA
19
1600 mA
18.5
1200 mA
18
800 mA
VDD = 32 Vdc, f1 = 854 MHz, f2 = 860 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
17.5
5
10
100
1000
Pout, OUTPUT POWER (WATTS) PEP
Figure 26. Two - Tone Power Gain versus
Output Power @ 857 MHz
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
13
TYPICAL TWO - TONE BROADBAND CHARACTERISTICS
−25
IDQ = 800 mA
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−25
−30
−35
1200 mA
−40
2400 mA
2000 mA
−45
1600 mA
−50
VDD = 32 Vdc, f1 = 470 MHz, f2 = 476 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
−55
10
100
−30
−35
IDQ = 800 mA
1200 mA
−40
1600 mA
−45
2000 mA
2400 mA
−50
VDD = 32 Vdc, f1 = 557 MHz, f2 = 563 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
−55
1000
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 28. Third Order Intermodulation
Distortion versus Output Power @ 560 MHz
−25
VDD = 32 Vdc, f1 = 657 MHz, f2 = 663 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
−35
IDQ = 800 mA
−40
1200 mA
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−30
−45
2400 mA
−50
2000 mA
1600 mA
−55
−30
IDQ = 800 mA
−35
1200 mA
−40
2400 mA
−45
−50
2000 mA
1600 mA
−55
100
10
1000
Pout, OUTPUT POWER (WATTS) PEP
Figure 27. Third Order Intermodulation
Distortion versus Output Power @ 473 MHz
−25
100
1000
VDD = 32 Vdc, f1 = 757 MHz, f2 = 763 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
100
10
Pout, OUTPUT POWER (WATTS) PEP
1000
Pout, OUTPUT POWER (WATTS) PEP
Figure 29. Third Order Intermodulation
Distortion versus Output Power @ 660 MHz
Figure 30. Third Order Intermodulation
Distortion versus Output Power @ 760 MHz
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−25
−30
IDQ = 800 mA
−35
1200 mA
−40
−45
2400 mA
2000 mA
1600 mA
−50
VDD = 32 Vdc, f1 = 854 MHz, f2 = 860 MHz
Two−Tone Measurements, 6 MHz Tone Spacing
−55
10
100
1000
Pout, OUTPUT POWER (WATTS) PEP
Figure 31. Third Order Intermodulation
Distortion versus Output Power @ 857 MHz
MRF6P3300HR3 MRF6P3300HR5
14
RF Device Data
Freescale Semiconductor
−10
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements
f1 = 470 MHz, f2 = 470 MHz + Tone Spacing
−20
3rd Order
−30
5th Order
−40
7th Order
−50
−60
0.1
1
10
100
−10
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements, f = 560 MHz
−20
−30
3rd Order
−40
5th Order
7th Order
−50
−60
0.01
0.1
1
10
TWO−TONE SPACING (MHz)
Figure 32. Intermodulation Distortion
Products versus Tone Spacing @ 470 MHz
Figure 33. Intermodulation Distortion
Products versus Tone Spacing @ 560 MHz
0
−10
0
TWO−TONE SPACING (MHz)
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements, f = 660 MHz
−20
−30
3rd Order
5th Order
−40
−50
−60
0.01
7th Order
0.1
1
10
100
100
0
−10
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements, f = 760 MHz
−20
−30
3rd Order
−40
5th Order
−50
7th Order
−60
0.01
0.1
1
10
TWO−TONE SPACING (MHz)
TWO−TONE SPACING (MHz)
Figure 34. Intermodulation Distortion
Products versus Tone Spacing @ 660 MHz
Figure 35. Intermodulation Distortion
Products versus Tone Spacing @ 760 MHz
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
0
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL TWO - TONE BROADBAND CHARACTERISTICS
100
0
−10
VDD = 32 Vdc, Pout = 270 W (PEP), IDQ = 1600 mA
Two−Tone Measurements, 6 MHz Tone Spacing
f1 = 860 MHz − Tone Spacing, f2 = 860 MHz
−20
3rd Order
−30
5th Order
−40
7th Order
−50
−60
0.1
1
10
100
TWO−TONE SPACING (MHz)
Figure 36. Intermodulation Distortion
Products versus Tone Spacing @ 860 MHz
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
15
30
−52
ηD
28
−53
26
−54
ACPR
24
−55
22
−56
20
18
400
VDD = 32 Vdc, Pout = 60 W (Avg.)
IDQ = 1600 mA, 8K Mode OFDM
64 QAM Data Carrier Modulation, 5 Symbols
500
600
−57
Gps
700
−58
900
800
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
TYPICAL DVBT OFDM BROADBAND CHARACTERISTICS
f, FREQUENCY (MHz)
Figure 37. Single - Carrier OFDM Broadband
Performance @ 60 Watts Avg.
24
45
f = 560 MHz
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
22
660 MHz
21
760 MHz
20
VDD = 32 Vdc, IDQ = 1600 mA
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
860 MHz
19
VDD = 32 Vdc, IDQ = 1600 mA
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
40
23
35
f = 660 MHz
860 MHz
30
760 MHz
25
560 MHz
20
15
10
18
5
10
100
200
3
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 38. Single - Carrier DVBT OFDM Power
Gain versus Output Power
Figure 39. Single - Carrier DVBT OFDM Drain
Efficiency versus Output Power
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
3
200
−45
VDD = 32 Vdc, IDQ = 1600 mA
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
−50
−55
f = 860 MHz
−60
760 MHz
560 MHz
660 MHz
−65
3
10
100
200
Pout, OUTPUT POWER (WATTS) AVG.
Figure 40. Single - Carrier DVBT OFDM ACPR
versus Output Power
MRF6P3300HR3 MRF6P3300HR5
16
RF Device Data
Freescale Semiconductor
TYPICAL CW BROADBAND CHARACTERISTICS
26
70
f = 660 MHz
VDD = 32 Vdc, IDQ = 1600 mA
ηD, DRAIN EFFICIENCY (%)
f = 560 MHz
24
Gps, POWER GAIN (dB)
60
470 MHz
22
660 MHz
20
760 MHz
860 MHz
18
760 MHz
560 MHz
50
40
470 MHz
30
860 MHz
20
10
VDD = 32 Vdc, IDQ = 1600 mA
16
0
5
10
100
500
3
10
100
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 41. CW Power Gain versus
Output Power
Figure 42. CW Drain Efficiency versus
Output Power
500
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
17
TYPICAL CW BROADBAND CHARACTERISTICS
Pout, OUTPUT POWER (dBm)
57
56.5
56
Ideal
55.5
55
P1dB = 53.59 dBm
(228.67 W)
54.5
54
53.5
Actual
53
52.5
52
VDD = 32 Vdc, IDQ = 1600 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
f = 470 MHz
51.5
51
28.5
28
29
29.5
30
30.5
31.5
31
32
32.5
33
Pin, INPUT POWER (dBm)
Figure 43. Pulse CW Output Power versus
Input Power @ 470 MHz
59
60
Ideal
Pout, OUTPUT POWER (dBm)
P3dB = 55.49 dBm
(353.76 W)
58
Pout, OUTPUT POWER (dBm)
59
57
P1dB = 54.84 dBm
(304.81 W)
56
Actual
55
VDD = 32 Vdc, IDQ = 1600 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
f = 560 MHz
54
53
29
30
31
33
32
34
35
Ideal
57
P1dB = 54.04 dBm
(253.67 W)
56
55
Actual
54
53
VDD = 32 Vdc, IDQ = 1600 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
f = 660 MHz
52
51
36
30
31
32
33
35
34
36
37
Pin, INPUT POWER (dBm)
Pin, INPUT POWER (dBm)
Figure 44. Pulse CW Output Power versus
Input Power @ 560 MHz
Figure 45. Pulse CW Output Power versus
Input Power @ 660 MHz
60
38
60
P3dB = 55.25 dBm
(334.73 W)
58
59
Ideal
Pout, OUTPUT POWER (dBm)
59
Pout, OUTPUT POWER (dBm)
P3dB = 54.88 dBm
(307.45 W)
58
57
P1dB = 54.56 dBm
(286.06 W)
56
55
Actual
54
53
VDD = 32 Vdc, IDQ = 1600 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
f = 760 MHz
52
51
31
32
33
34
35
36
37
38
58
57
P1dB = 54.82 dBm
(303.25 W)
56
Actual
55
54
VDD = 32 Vdc, IDQ = 1600 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
f = 860 MHz
53
52
39
Ideal
P3dB = 55.58 dBm
(361.21 W)
32
33
34
35
36
37
38
39
Pin, INPUT POWER (dBm)
Pin, INPUT POWER (dBm)
Figure 46. Pulse CW Output Power versus
Input Power @ 760 MHz
Figure 47. Pulse CW Output Power versus
Input Power @ 860 MHz
40
MRF6P3300HR3 MRF6P3300HR5
18
RF Device Data
Freescale Semiconductor
40
−23
−24
37.5
ηD
35
−25
−26
32.5
30
−27
VDD = 32 Vdc, Pout = 100 W (Avg.)
IDQ = 1700 mA, ATSC 8VSB
27.5
−28
−29
25
22.5
−30
Gps
20
−31
17.5
−32
ACPR
15
400
500
600
700
−33
900
800
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
TYPICAL ATSC 8VSB BROADBAND CHARACTERISTICS
f, FREQUENCY (MHz)
Figure 48. Single - Carrier ATSC 8VSB
Broadband Performance @ 100 Watts Avg.
24
50
f = 560 MHz
VDD = 32 Vdc, IDQ = 1700 mA
ATSC 8VSB
470 MHz
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
23
22
21
660 MHz
20
760 MHz
19
860 MHz
18
VDD = 32 Vdc, IDQ = 1700 mA
17
10
760 MHz
860 MHz
470 MHz
30
560 MHz
20
10
0
100
200
3
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 49. Single - Carrier ATSC 8VSB Power
Gain versus Output Power
Figure 50. Single - Carrier ATSC 8VSB Drain
Efficiency versus Output Power
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
3
40
f = 660 MHz
200
−15
VDD = 32 Vdc, IDQ = 1700 mA
ATSC 8VSB
−20
f = 860 MHz
560 MHz
−25
−30
470 MHz
−35
660 MHz
760 MHz
−40
3
10
100
200
Pout, OUTPUT POWER (WATTS) AVG.
Figure 51. Single - Carrier ATSC 8VSB ACPR
versus Output Power
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
19
50
280
ηD
45
40
275
270
VDD = 32 Vdc, IDQ = 1500 mA
Sync Compression
Input = 33%, Output = 27%
35
30
Peak Sync
Gps
25
265
260
PEAK SYNC (W)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
TYPICAL PAL B/G BROADBAND CHARACTERISTICS
255
250
20
15
400
500
600
700
800
245
900
f, FREQUENCY (MHz)
Figure 52. Peak Sync, Power Gain and Drain
Efficiency versus Frequency
MRF6P3300HR3 MRF6P3300HR5
20
RF Device Data
Freescale Semiconductor
Zload
f = 860 MHz
f = 470 MHz
f = 470 MHz
Zsource
Zo = 25 Ω
Zo = 25 Ω
f = 860 MHz
VDD = 32 Vdc, IDQ = 1600 mA, Pout = 270 W PEP
f
MHz
Zsource
Ω
Zload
Ω
470
8.77 - j5.43
6.09 - j4.37
510
8.74 - j4.17
6.39 - j1.65
560
8.86 - j2.87
6.69 - j2.45
610
10.55 - j2.45
7.36 - j1.95
660
12.41 - j3.53
7.73 - j1.75
710
13.11 - j6.04
7.95 - j1.20
760
11.29 - j10.15
8.18 - j1.36
810
6.81 - j10.41
7.81 - j1.60
860
3.73 - j9.66
6.94 - j2.49
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured
from drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
−
−
Z
source
Output
Matching
Network
+
Z
load
Figure 53. 470 - 860 MHz Broadband Series Equivalent Source and Load Impedance
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
21
NOTES
MRF6P3300HR3 MRF6P3300HR5
22
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
4
G
ccc
R
M
T A
M
B
M
Q
bbb
2X
L
J
T A
M
M
B
M
(LID)
2
1
B
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M−1994.
3. DIMENSION H TO BE MEASURED 0.030 (0.762)
AWAY FROM PACKAGE BODY.
4. RECOMMENDED BOLT CENTER DIMENSION
OF 1.140 (28.96) BASED ON 3M SCREW.
(FLANGE)
5
4X
S
K
(INSULATOR)
bbb
M
T A
3
4X
M
B
M
4
B
D
bbb
M
ccc
T A
M
M
B
T A
M
M
B
M
B
M
F
N
(LID)
E
M
H
bbb
A
C
(INSULATOR)
M
T A
M
T
SEATING
PLANE
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
Q
R
S
bbb
ccc
INCHES
MIN
MAX
1.335
1.345
0.380
0.390
0.180
0.224
0.325
0.335
0.060
0.070
0.004
0.006
1.100 BSC
0.097
0.107
0.2125 BSC
0.135
0.165
0.425 BSC
0.852
0.868
0.851
0.869
0.118
0.138
0.395
0.405
0.394
0.406
0.010 REF
0.015 REF
STYLE 1:
PIN 1.
2.
3.
4.
5.
A
MILLIMETERS
MIN
MAX
33.91
34.16
9.65
9.91
4.57
5.69
8.26
8.51
1.52
1.78
0.10
0.15
27.94 BSC
2.46
2.72
5.397 BSC
3.43
4.19
10.8 BSC
21.64
22.05
21.62
22.07
3.00
3.30
10.03
10.29
10.01
10.31
0.25 REF
0.38 REF
DRAIN
DRAIN
GATE
GATE
SOURCE
CASE 375G - 04
ISSUE F
NI - 860C3
MRF6P3300HR3 MRF6P3300HR5
RF Device Data
Freescale Semiconductor
23
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
 Freescale Semiconductor, Inc. 2005. All rights reserved.
MRF6P3300HR3 MRF6P3300HR5
Document Number: MRF6P3300H
Rev. 0, 9/2005
24
RF Device Data
Freescale Semiconductor