Freescale Semiconductor Technical Data Document Number: MW6S010N Rev. 3, 5/2006 RF Power Field Effect Transistor N - Channel Enhancement - Mode Lateral MOSFETs Designed for Class A or Class AB base station applications with frequencies up to 1500 MHz. Suitable for analog and digital modulation and multicarrier amplifier applications. • Typical Two - Tone Performance at 960 MHz: VDD = 28 Volts, IDQ = 125 mA, Pout = 10 Watts PEP Power Gain — 18 dB Drain Efficiency — 32% IMD — - 37 dBc • Capable of Handling 10:1 VSWR, @ 28 Vdc, 960 MHz, 10 Watts CW Output Power Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • On - Chip RF Feedback for Broadband Stability • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • 200°C Capable Plastic Package • N Suffix Indicates Lead - Free Terminations. RoHS Compliant. • In Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel. MW6S010NR1 MW6S010GNR1 450 - 1500 MHz, 10 W, 28 V LATERAL N - CHANNEL BROADBAND RF POWER MOSFETs CASE 1265 - 08, STYLE 1 TO - 270- 2 PLASTIC MW6S010NR1 CASE 1265A - 02, STYLE 1 TO - 270- 2 GULL PLASTIC MW6S010GNR1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain- Source Voltage VDSS - 0.5, +68 Vdc Gate- Source Voltage VGS - 0.5, +12 Vdc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 61.4 0.35 W W/°C Storage Temperature Range Tstg - 65 to +175 °C Operating Junction Temperature TJ 200 °C Symbol Value (1.2) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 10 W PEP RθJC 2.85 °C/W 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MW6S010NR1 MW6S010GNR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1A Machine Model (per EIA/JESD22 - A115) A Charge Device Model (per JESD22 - C101) III Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 1 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 100 μAdc) VGS(th) 1.5 2.3 3 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, ID = 125 mAdc) VGS(Q) — 3.1 — Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 0.3 Adc) VDS(on) — 0.27 0.35 Vdc Input Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Ciss — 23 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 10 — pF Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.32 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 125 mA, Pout = 10 W PEP, f = 960 MHz, Two - Tone Test, 100 kHz Tone Spacing Power Gain Gps 17.5 18 20.5 dB Drain Efficiency ηD 31 32 — % Intermodulation Distortion IMD — - 37 - 33 dBc Input Return Loss IRL — - 18 - 10 dB Typical Performances (In Freescale 450 MHz Demo Board, 50 οhm system) VDD = 28 Vdc, IDQ = 150 mA, Pout = 10 W PEP, 420- 470 MHz, Two - Tone Test, 100 kHz Tone Spacing Power Gain Gps — 20 — dB Drain Efficiency ηD — 33 — % Intermodulation Distortion IMD — - 40 — dBc Input Return Loss IRL — - 10 — dB MW6S010NR1 MW6S010GNR1 2 RF Device Data Freescale Semiconductor C11 B1 VBIAS + + C2 C3 C4 C6 C12 C7 C10 C15 + + + C16 C18 C19 C13 L1 RF INPUT DUT R1 Z1 Z2 C1 Z1 Z2 Z3 Z4 Z3 VSUPPLY Z5 Z6 Z7 RF OUTPUT Z4 C14 C5 C8 C17 C20 C9 Z5 Z6 Z7 PCB 0.073″ x 0.223″ Microstrip 0.112″ x 0.070″ Microstrip 0.213″ x 0.500″ Microstrip 0.313″ x 1.503″ Microstrip 0.313″ x 0.902″ Microstrip 0.073″ x 1.080″ Microstrip 0.073″ x 0.314″ Microstrip Rogers ULTRALAM 2000, 0.031″, εr = 2.55 Figure 1. MW6S010NR1(GNR1) Test Circuit Schematic — 900 MHz Table 6. MW6S010NR1(GNR1) Test Circuit Component Designations and Values — 900 MHz Part Description Part Number Manufacturer B1 Ferrite Bead 2743019447 Fair- Rite C1, C6, C11, C20 47 pF Chip Capacitors 100B470JP500X ATC C2, C18, C19 22 μF, 35 V Tantalum Capacitors T491D226K035AS Kemet C3, C16 220 μF, 63 V Electrolytic Capacitors, Radial 13668221 Phillips C4, C15 0.1 μF Chip Capacitors CDR33BX104AKWS Kemet C5, C8, C17 0.8- 8.0 pF Variable Capacitors, Gigatrim 272915L Johanson C7, C12 24 pF Chip Capacitors 100B240JP500X ATC C9, C10, C13 6.8 pF Chip Capacitors 100B6R8JP500X ATC C14 7.5 pF Chip Capacitor 100B7R5JP500X ATC L1 12.5 nH Inductor A04T- 5 Coilcraft R1 1 kΩ Chip Resistor CRCW12061001F100 Vishay - Dale MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 3 C3 C18 C7 C4 C16 C15 C10 C2 B1 C6 C11 C19 C13 C12 L1 R1 C20 C9 C1 C17 C5 C8 C14 MW6S010N Figure 2. MW6S010NR1(GNR1) Test Circuit Component Layout — 900 MHz MW6S010NR1 MW6S010GNR1 4 RF Device Data Freescale Semiconductor −8 48 ηD −10 44 −12 40 IRL −14 36 32 −16 VDD = 28 Vdc, Pout = 10 W (Avg.) IDQ = 125 mA, 100 kHz Tone Spacing −18 28 −20 24 IMD −22 20 Gps −24 16 910 920 940 930 950 −26 970 960 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) TYPICAL CHARACTERISTICS — 900 MHz f, FREQUENCY (MHz) 20 IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Two - Tone Wideband Performance @ Pout = 10 Watts IDQ = 190 mA Gps, POWER GAIN (dB) 19 125 mA 18 90 mA 17 VDD = 28 Vdc, f = 945 MHz Two−Tone Measurements 100 kHz Tone Spacing 16 15 10 1 −40 7th Order −50 −60 −70 1 0.1 10 100 Figure 4. Two - Tone Power Gain versus Output Power Figure 5. Intermodulation Distortion Products versus Output Power 48 VDD = 28 Vdc, Pout = 10 W (Avg.) IDQ = 125 mA, Two−Tone Measurements (f1+f2)/2 = Center Frequency = 945 MHz Ideal −30 3rd Order −35 −40 5th Order −50 −55 0.1 5th Order −30 Pout, OUTPUT POWER (WATTS) AVG. −25 −45 3rd Order Pout, OUTPUT POWER (WATTS) AVG. −15 −20 VDD = 28 Vdc, IDQ = 125 mA f = 945 MHz, Two−Tone Measurements 100 kHz Tone Spacing −20 100 Pout, OUTPUT POWER (dBm) IMD, INTERMODULATION DISTORTION (dBc) 0.1 −10 P3dB = 43.14 dBm (20.61 W) 46 P1dB = 42.23 dBm (16.71 W) 44 Actual 42 VDD = 28 Vdc, IDQ = 125 mA Pulsed CW, 8 μsec(on), 1 msec(off) f = 945 MHz 40 7th Order 38 1 10 100 19 21 23 25 27 29 TWO−TONE SPACING (MHz) Pin, INPUT POWER (dBm) Figure 6. Intermodulation Distortion Products versus Tone Spacing Figure 7. Pulse CW Output Power versus Input Power MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 5 50 −10 VDD = 28 Vdc IDQ = 125 mA f = 945 MHz 40 −20 30 −30 Gps 20 −40 ACPR (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) TYPICAL CHARACTERISTICS — 900 MHz ηD 10 −50 ACPR 0 −60 0.1 1 10 Pout, OUTPUT POWER (WATTS) AVG. Figure 8. Single - Carrier CDMA ACPR, Power Gain and Power Added Efficiency versus Output Power 50 20 −30_C Gps, POWER GAIN (dB) Gps ηD 85_C 25_C 18 40 30 85_C 17 20 16 VDD = 28 Vdc 10 IDQ = 125 mA f = 945 MHz 0 100 15 0.1 1 10 ηD, DRAIN EFFICIENCY (%) TC = −30_C 19 25_C Pout, OUTPUT POWER (WATTS) CW Figure 9. Power Gain and Power Added Efficiency versus Output Power 24 19 5 20 0 S21 17 16 −5 12 −10 8 −15 16 16 V VDD = 12 V 15 0 2 20 V 4 6 28 V 24 V 8 10 12 32 V 14 Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain versus Output Power 4 16 0 500 S11 (dB) 18 S21 (dB) Gps, POWER GAIN (dB) IDQ = 125 mA f = 945 MHz S11 VDD = 28 Vdc Pout = 10 W CW IDQ = 125 mA −20 −25 600 700 800 900 1000 1100 1200 f, FREQUENCY (MHz) Figure 11. Broadband Frequency Response MW6S010NR1 MW6S010GNR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS MTTF FACTOR (HOURS x AMPS2) 108 107 106 105 90 100 110 120 130 140 150 160 170 180 190 200 210 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 12. MTTF Factor versus Junction Temperature MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 7 Zo = 25 Ω f = 980 MHz f = 980 MHz Zsource Zload f = 800 MHz f = 800 MHz VDD = 28 Vdc, IDQ = 125 mA, Pout = 10 W PEP f MHz Zsource Ω Zload Ω 800 3.1 + j1.9 10.1 + j2.3 820 2.8 + j1.7 8.3 + j2.5 840 2.7 + j2.2 8.2 + j3.3 860 3.1 + j3.4 9.8 + j4.8 880 3.3 + j3.8 10.6 + j5.6 900 2.9 + j3.7 9.5 + j5.5 920 2.8 + j4.4 10.1 + j5.9 940 3.0 + j4.7 11.0 + j6.4 960 3.2 + j4.9 11.8 + j6.6 980 3.6 + j5.2 12.1 + j7.1 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 13. Series Equivalent Source and Load Impedance — 900 MHz MW6S010NR1 MW6S010GNR1 8 RF Device Data Freescale Semiconductor T1 R1 VBIAS + C1 R2 B1 B2 R5 C2 R3 VSUPPLY + + C3 C13 C4 C14 C15 T2 R4 R6 L1 DUT RF INPUT Z1 Z2 Z3 Z4 Z6 Z7 Z5 C10 C6 Z1 Z2 Z3 Z4, Z7 C5 C7 C8 C9 Z5 Z6 Z8 PCB 0.540″ x 0.080″ Microstrip 0.365″ x 0.080″ Microstrip 0.225″ x 0.080″ Microstrip 0.440″ x 0.080″ Microstrip RF OUTPUT Z8 C12 C11 0.475″ x 0.330″ Microstrip 0.475″ x 0.325″ Microstrip 1.250″ x 0.080″ Microstrip Rogers ULTRALAM 2000, 0.030″, εr = 2.55 Figure 14. MW6S010NR1(GNR1) Test Circuit Schematic — 450 MHz Table 7. MW6S010NR1(GNR1) Test Circuit Component Designations and Values — 450 MHz Part Description Part Number Manufacturer B1, B2 Ferrite Bead 2743019447 Fair- Rite C1 1 μF, 35 V Tantalum Capacitor T491C105K050AS Kemet C2, C15 22 μF, 35 V Tantalum Capacitors T491X226K035AS Kemet C3, C14 0.1 μF Chip Capacitors C1210C104K5RACTR Kemet C4, C9, C10, C13 330 pF Chip Capacitors 700A331JP150X ATC C5 4.3 pF Chip Capacitor 100B4R3JP500X ATC C6, C11 0.6- 8.0 pF Variable Capacitors 27291SL Johanson C7, C8, C12 4.7 pF Chip Capacitors 100B4R7JP500X ATC L1 39 μH Chip Inductor ISC - 1210 Vishay - Dale R1 10 Ω Chip Resistor (0805) CRCW080510R0F100 Vishay - Dale R2 1 kΩ Chip Resistor (0805) CRCW08051001F100 Vishay - Dale R3 1.2 kΩ Chip Resistor (0805) CRCW08051201F100 Vishay - Dale R4 2.2 kΩ Chip Resistor (0805) CRCW08052201F100 Vishay - Dale R5 5 kΩ Potentiometer 1224W Bourns R6 1 kΩ Chip Resistor (1206) CRCW12061001F100 Vishay - Dale T1 5 Volt Regulator, Micro 8 LP2951 On Semiconductor T2 NPN Transistor BC847ALT1 On Semiconductor MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 9 R2 R1 R5 T1 B1 R3 T2 R4 C2 C4 C1 B2 C15 C14 C3 C13 C5 C12 C9 C6 C7 R6 L1 C10 C8 C11 MW6S010N 450 MHz Figure 15. MW6S010NR1(GNR1) Test Circuit Component Layout — 450 MHz MW6S010NR1 MW6S010GNR1 10 RF Device Data Freescale Semiconductor 37 34 Gps Gps, POWER GAIN (dB) 20 19.8 31 28 ηD VDD = 28 Vdc, Pout = 3 W (Avg.), IDQ = 150 mA 2−Carrier W−CDMA, 10 MHz Carrier Spacing, 3.84 MHz Channel Bandwidth, PAR = 8.5 dB @ 0.01% Probability (CCDF) 19.6 19.4 19.2 25 −40 −45 19 ACPR IRL −50 −55 18.8 18.6 18.4 400 ALT1 −60 410 −65 500 420 430 440 450 460 470 480 490 ACPR (dBc), ALT1 (dBc) 20.2 −6 −9 −12 −15 −18 −21 IRL, INPUT RETURN LOSS (dB) 20.4 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS — 450 MHz f, FREQUENCY (MHz) 55 Gps 18.3 45 ηD 40 VDD = 28 Vdc, Pout = 7.5 W (Avg.), IDQ = 150 mA 2−Carrier W−CDMA, 10 MHz Carrier Spacing, 3.84 MHz Channel Bandwidth, PAR = 8.5 dB @ 0.01% Probability (CCDF) 18 17.8 35 −30 17.5 17.3 16.5 400 −40 IRL 17 16.8 −35 ACPR −45 ALT1 410 −50 420 430 440 450 460 470 480 490 −55 500 ACPR (dBc), ALT1 (dBc) Gps, POWER GAIN (dB) 18.5 50 −4 −6 −8 −10 −12 −14 IRL, INPUT RETURN LOSS (dB) 19 18.8 ηD, DRAIN EFFICIENCY (%) Figure 16. 2 - Carrier W - CDMA Broadband Performance @ Pout = 3 Watts Avg. f, FREQUENCY (MHz) 30 25 0 −5 S11 −20 ACPR −10 20 15 ALT1 −15 ALT2 10 5 VDD = 28 Vdc Pout = 10 W IDQ = 150 mA −30 −40 S11 S21 S21 −10 VDD = 28 Vdc, IDQ = 150 mA, f = 450 MHz, N−CDMA IS−95 Pilot, Sync, Paging, Traffic Codes 8 Through 13 −50 −60 −20 −70 −25 50 100 150 200 250 300 350 400 450 500 550 600 650 −80 0.1 1 10 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 18. Broadband Frequency Response Figure 19. Single - Carrier N - CDMA ACPR, ALT1 and ALT2 versus Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ALT1 & ALT2, CHANNEL POWER (dBc) Figure 17. 2 - Carrier W - CDMA Broadband Performance @ Pout = 7.5 Watts Avg. MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 11 Zo = 25 Ω f = 500 MHz Zsource f = 500 MHz Zload f = 400 MHz f = 400 MHz VDD = 28 Vdc, IDQ = 150 mA, Pout = 10 W PEP f MHz Zsource Ω Zload Ω 400 9.0 + j3.8 15.0 + j1.4 420 8.8 + j5.4 14.3 + j3.3 440 9.6 + j6.6 15.0 + j4.7 460 10.6 + j9.5 16.3 + j7.3 480 10.7 + j12.6 16.4 + j11.1 500 11.5 + j13.9 16.9 + j12.7 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 20. Series Equivalent Source and Load Impedance — 450 MHz MW6S010NR1 MW6S010GNR1 12 RF Device Data Freescale Semiconductor NOTES MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 13 NOTES MW6S010NR1 MW6S010GNR1 14 RF Device Data Freescale Semiconductor NOTES MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 15 PACKAGE DIMENSIONS MW6S010NR1 MW6S010GNR1 16 RF Device Data Freescale Semiconductor MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 17 MW6S010NR1 MW6S010GNR1 18 RF Device Data Freescale Semiconductor B E1 2X D3 2X E4 aaa D aaa M PIN ONE ID L1 C A M e 2X E bbb M A C B A A2 2X c1 E2 E5 D SEATING PLANE E5 E3 PIN 2 D2 PIN 3 A1 DETAIL Y DETAIL Y H L D1 b1 C A GAGE PLANE ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ EXPOSED HEATSINK AREA PIN 1 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS “D1" AND “E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS “D1" AND “E1" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −H−. 5. DIMENSION b1 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. 7. DIMENSIONS “D" AND “E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS “D" AND “E2" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −D−. DIM A A1 A2 D D1 D2 D3 E E1 E2 E3 E4 E5 L L1 b1 c1 e aaa INCHES MIN MAX .078 .082 .001 .004 .077 .088 .416 .424 .378 .382 .290 .320 .016 .024 .316 .324 .238 .242 .066 .074 .150 .180 .058 .066 .231 .235 .018 .024 .01 BSC .193 .199 .007 .011 ° 2 8° .004 MILLIMETERS MIN MAX 1.98 2.08 0.02 0.10 1.96 2.24 10.57 10.77 9.60 9.70 7.37 8.13 0.41 0.61 8.03 8.23 6.04 6.15 1.68 1.88 3.81 4.57 1.47 1.68 5.87 5.97 4.90 5.06 0.25 BSC 4.90 5.06 0.18 0.28 ° 2 8° 0.10 STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE BOTTOM VIEW CASE 1265A - 02 ISSUE B TO - 270 - 2 GULL PLASTIC MW6S010GNR1 MW6S010NR1 MW6S010GNR1 RF Device Data Freescale Semiconductor 19 How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS- compliant and/or Pb - free versions of Freescale products have the functionality and electrical characteristics of their non - RoHS- compliant and/or non - Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. MW6S010NR1 MW6S010GNR1 Document Number: MW6S010N Rev. 3, 5/2006 20 RF Device Data Freescale Semiconductor