FREESCALE MRF6VP3450HSR5

Freescale Semiconductor
Technical Data
Document Number: MRF6VP3450H
Rev. 2, 9/2008
RF Power Field Effect Transistors
MRF6VP3450HR6
MRF6VP3450HR5
MRF6VP3450HSR6
MRF6VP3450HSR5
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for broadband commercial and industrial applications with
frequencies from 470 to 860 MHz. The high gain and broadband performance
of these devices make them ideal for large - signal, common - source amplifier
applications in 50 volt analog or digital television transmitter equipment.
• Typical DVB - T OFDM Performance: VDD = 50 Volts, IDQ = 1400 mA,
Pout = 90 Watts Avg., f = 860 MHz, 8K Mode, 64 QAM
Power Gain — 22.5 dB
Drain Efficiency — 28%
ACPR @ 4 MHz Offset — - 62 dBc @ 4 kHz Bandwidth
• Typical Broadband Two - Tone Performance: VDD = 50 Volts, IDQ = 1400 mA,
Pout = 450 Watts PEP, f = 470 - 860 MHz
Power Gain — 22 dB
Drain Efficiency — 44%
IM3 — - 29 dBc
• Capable of Handling 10:1 VSWR, All Phase Angles, @ 50 Vdc, 860 MHz,
90 Watts Avg. (DVB - T OFDM Signal, 10 dB PAR, 7.61 MHz Channel
Bandwidth)
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Input Matched for Ease of Use
• Qualified Up to a Maximum of 50 VDD Operation
• Integrated ESD Protection
• Excellent Thermal Stability
• Designed for Push - Pull Operation
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.
R5 Suffix = 50 Units per 56 mm, 13 inch Reel.
860 MHz, 450 W, 50 V
LATERAL N - CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 375D - 05, STYLE 1
NI - 1230
MRF6VP3450HR6(HR5)
CASE 375E - 04, STYLE 1
NI - 1230S
MRF6VP3450HSR6(HSR5)
PARTS ARE PUSH - PULL
RFinA/VGSA 3
1 RFoutA/VDSA
RFinB/VGSB 4
2 RFoutB/VDSB
(Top View)
Figure 1. Pin Connections
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDSS
- 0.5, +110
Vdc
Gate - Source Voltage
VGS
- 6.0, +10
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature
TJ
200
°C
© Freescale Semiconductor, Inc., 2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
1
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 90 W CW
Case Temperature 62°C, 450 W Pulsed, 50 μsec Pulse Width, 2.5% Duty Cycle
Symbol
Value (1,2)
Unit
RθJC
0.27
0.04
°C/W
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
B (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
μAdc
V(BR)DSS
110
—
—
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Gate Threshold Voltage (3)
(VDS = 10 Vdc, ID = 320 μAdc)
VGS(th)
1
1.6
2.5
Vdc
Gate Quiescent Voltage (4)
(VDD = 50 Vdc, ID = 1400 mAdc, Measured in Functional Test)
VGS(Q)
2
2.6
3.5
Vdc
Drain - Source On - Voltage (3)
(VGS = 10 Vdc, ID = 1.58 Adc)
VDS(on)
—
0.25
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.92
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
54.5
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
373
—
pF
Off Characteristics
(3)
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain - Source Breakdown Voltage
(ID = 50 mA, VGS = 0 Vdc)
On Characteristics
Dynamic Characteristics (3,5)
Functional Tests (4) (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1400 mA, Pout = 90 W Avg., f = 860 MHz,
DVB - T OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset @ 4 kHz Bandwidth.
Power Gain
Gps
21.5
22.5
24.5
dB
Drain Efficiency
ηD
26
28
—
%
ACPR
—
- 62
- 59
dBc
IRL
—
-4
-2
dB
Adjacent Channel Power Ratio
Input Return Loss
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
3. Each side of device measured separately.
4. Measurement made with device in push - pull configuration.
5. Part internally input matched.
(continued)
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Pulsed Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1200 mA, Pout = 520 W,
f = 470 - 860 MHz, 50 μsec Pulse Width, 2.5% Duty Cycle
Power Gain
Gps
—
20.5
—
dB
Drain Efficiency
ηD
—
50
—
%
Input Return Loss
IRL
—
-3
—
dB
P1dB
—
520
—
W
Pout @ 1 dB Compression Point, Pulsed CW
(f = 470 - 860 MHz)
Typical Two - Tone Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1400 mA, Pout = 450 W PEP,
f = 470 - 860 MHz, 100 kHz Tone Spacing
Gps
—
Drain Efficiency
ηD
Intermodulation Distortion
IM3
Input Return Loss
IRL
Power Gain
22
—
dB
—
44
—
%
—
- 29
—
dBc
—
-2
—
dB
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
3
B1
VBIAS
+
R1
Z19
C24
C34
C44
C36
C38
R3
Z2
Printed
Balun
Input
TOP
Z6
Z8
Z10
Z9
Z11
Z12
Z14
C1
C3
Z3
Z7
Z5
Z13
C4
Z15
C2
BOTTOM
Z16
Z3 Z2
Z5 Z7 Z6 Z4
RF
INPUT Z1
Printed Balun Input
Z18
Z4
Z1
Z17
Z20
R4
B2
Z21
VBIAS
+
R2
C25
C35
C45
C37
C39
Z25
+
C22
C40
Z30
C13
Z32
C28
VSUPPLY
C26
Z24
Printed Balun Output
TOP
Z22
Z28
Z40
Z34
Z36
BOTTOM
Z38
Z42
C8
Z41 Z39 Z38Z40
Z43 Z42
C7
DUT
Z44
C5
Z23
Z29
Z31
C6
Printed
Balun
Output
C11 C12
Z33
Z35
Z37
Z39
Z44
RF
OUTPUT
Z43
C9
C14
Z26
C10
Z41
Z27
+
C23
Z1
Z2, Z3
Z4, Z5
Z6, Z7
Z8, Z9
Z10, Z11
Z12, Z13
Z14, Z15
0.343″
0.039″
1.400″
0.059″
0.059″
0.150″
0.359″
0.308″
x 0.065″ Microstrip
x 0.200″ Microstrip
x 0.590″ Microstrip
x 0.118″ Microstrip
x 0.118″ Microstrip
x 0.394″ Microstrip
x 0.394″ Microstrip
x 0.394″ Microstrip
Z16, Z17
Z18, Z20
Z19, Z21
Z22, Z23
Z24, Z26
Z25, Z27
Z28, Z29
Z30, Z31
0.172″
0.397″
0.800″
0.276″
0.070″
1.000″
0.103″
0.084″
C41
x 0.465″
x 0.059″
x 0.059″
x 0.465″
x 0.157″
x 0.157″
x 0.392″
x 0.392″
C29
VSUPPLY
C27
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z32, Z33
Z34, Z35
Z36, Z37
Z38, Z39
Z40, Z41
Z42, Z43
Z44
PCB
0.108″ x 0.392″ Microstrip
0.212″ x 0.388″ Microstrip
0.103″ x 0.388″ Microstrip
0.075″ x 0.157″ Microstrip
1.412″ x 0.071″ Microstrip
0.024″ x 0.087″ Microstrip
0.550″ x 0.065″ Microstrip
Taconic RF35, 0.031”, εr = 3.5
Figure 2. MRF6VP3450HR6(HSR6) Test Circuit Schematic
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
4
RF Device Data
Freescale Semiconductor
Table 5. MRF6VP3450HR6(HSR6) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1, B2
Short Ferrite Beads
2743019447
Fair - Rite
C1, C2
12 pF Chip Capacitors
ATC100B120GT500XT
ATC
C3
6.8 pF Chip Capacitor
ATC100B6R8BT500XT
ATC
C4
10 pF Chip Capacitor
ATC100B100GT500XT
ATC
C5, C6, C8, C9
6.8 pF Chip Capacitors
ATC800B6R8BT500XT
ATC
C7, C10, C13, C14
10 pF Chip Capacitors
ATC800B100J500XT
ATC
C11
4.7 pF Chip Capacitor
ATC800B4R7J500XT
ATC
C12
3.9 pF Chip Capacitor
ATC800B3R9J500XT
ATC
C22, C23
330 pF Chip Capacitors
ATC100B331GT500XT
ATC
C24, C25
22 μF Electrolytic Capacitors
UUD1V220MCL1GS
Nichicon
C26, C27
220 μF, 100 V Electrolytic Capacitors
EEVFK2A221M
Panasonic
C28, C29
10 μF, 50 V Chip Capacitors
C5750X5R1H106MT
TDK
C34, C35
39 nF Chip Capacitors
ATC200B393KT50XT
ATC
C36, C37
1000 pF Chip Capacitors
ATC100B102JT500XT
ATC
C38, C39
470 pF Chip Capacitors
ATC100B471JT500XT
ATC
C40, C41
2.2 μF, 100 V Chip Capacitors
HMK432BJ225KM - T
Taiyo Yuden
C44, C45
2.2 μF, 50 V Chip Capacitors
C3225X7R1H225MT
TDK
R1, R2
10 Ω, 1/8 W Chip Resistors
CRCW120610R0FKEA
Vishay
R3, R4
1.5 Ω, 1/8 W Chip Resistors
CRCW12061R50FKEA
Vishay
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
5
B1
MRF6VP3450H
R1
C34
C24
C28
C36
C44
C26
C40
R3
C38
C22
CUT OUT AREA
C13
C1
C3
C4
C2
C5 C6
C7
C8
C11 C12
C9
C10
C14
C23
C45
R4
B2
C35
C41
C27
C29
C25
C37 C39
Rev. 4
R2
CUT OUT AREA
Figure 3. MRF6VP3450HR6(HSR6) Test Circuit Component Layout — Top
Figure 3a. MRF6VP3450HR6(HSR6) Test Circuit Component Layout — Bottom
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
1000
100
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Ciss
Coss
100
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
Crss
10
TJ = 150_C
TJ = 175_C
10
TJ = 200_C
TC = 25_C
1
1
10
20
30
40
50
100
Note: Each side of device measured separately.
Note: Each side of device measured separately.
Figure 4. Capacitance versus Drain - Source Voltage
Figure 5. DC Safe Operating Area
35
Gps
21
20.5
20
19.5
19
18.5
18
10
30
25
20
15
10
ηD
Pout, OUTPUT POWER (dBm)
50
45
40
ηD, DRAIN EFFICIENCY (%)
22.5
22
21.5
60
55
5
0
1000
100
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
30
Ideal
P3dB = 57.85 dBm (610 W)
P2dB = 57.65 dBm
(582 W)
P1dB = 57.15 dBm
(519 W)
Actual
VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz
Pulse Width = 12 μsec, Duty Cycle = 1%
31
32
33
34
35
36
37
38
39
40
41
Pout, OUTPUT POWER (WATTS) PULSED
Pin, INPUT POWER (dBm)
Figure 6. Pulsed Power Gain and Drain Efficiency
versus Output Power
Figure 7. Pulsed CW Output Power versus
Input Power
24
25
23
VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz
24 Pulse Width = 50 μsec, Duty Cycle = 2.5%
42
70
25_C
60
−30_C
85_C
22
21
50 V
20
45 V
19
VDD = 40 V
18
VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz
Pulse Width = 50 μsec, Duty Cycle = 2.5%
17
100
200
300
400
23
50
Gps
TC = −30_C
22
40
21
30
ηD
25_C
20
85_C
19
16
0
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
10
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
24
23.5 VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz
23 Pulse Width = 50 μsec, Duty Cycle = 2.5%
Gps, POWER GAIN (dB)
1
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
500
600
700
20
ηD, DRAIN EFFICIENCY (%)
0
10
18
10
100
0
1000
Pout, OUTPUT POWER (WATTS) PULSED
Pout, OUTPUT POWER (WATTS) PULSED
Figure 8. Pulsed Power Gain versus
Output Power
Figure 9. Pulsed Power Gain and Drain Efficiency
versus Output Power
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
7
−20
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS — TWO - TONE
VDD = 50 Vdc, IDQ = 1400 mA, f1 = 854 MHz
f2 = 860 MHz, Two−Tone Measurements
−30
−40
3rd Order
−50
5th Order
−60
7th Order
−70
−80
5
10
100
VDD = 50 Vdc, Pout = 450 W (PEP), IDQ = 1400 mA
Two−Tone Measurements
−20
3rd Order
−30
−40
5th Order
−50
7th Order
−60
−70
0.1
1000
Figure 10. Intermodulation Distortion
Products versus Output Power
Figure 11. Intermodulation Distortion
Products versus Tone Spacing
22.6
IDQ = 1400 mA
22.2
1075 mA
21.8
1250 mA
975 mA
21.6
700 mA
21.4
VDD = 50 Vdc, f1 = 859.9 MHz, f2 = 860 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
21.2
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−20
22
10
TWO−TONE SPACING (MHz)
23
22.4
1
Pout, OUTPUT POWER (WATTS) PEP
22.8
Gps, POWER GAIN (dB)
−10
60
VDD = 50 Vdc, f1 = 859.9 MHz, f2 = 860 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−25
IDQ = 700 mA
−30
975 mA
−35 1075 mA
−40 1250 mA
1400 mA
−45
−50
21
50
500
50
500
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 12. Two - Tone Power Gain versus
Output Power
Figure 13. Third Order Intermodulation
Distortion versus Output Power
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — OFDM
100
−20
7.61 MHz
−30
10
−50
4 kHz BW
4 kHz BW
−60
0.1
(dB)
PROBABILITY (%)
−40
1
8K Mode DVB−T OFDM
64 QAM Data Carrier Modulation
5 Symbols
0.01
ACPR Measured at 4 MHz Offset
from Center Frequency
−70
−80
−90
0.001
−110
0.0001
0
2
4
6
8
10
12
−2
−1
0
1
2
3
5
4
Figure 15. 8K Mode DVB - T OFDM Spectrum
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
975 mA
1250 mA
1075 mA
700 mA
VDD = 50 Vdc, f = 860 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
20.5
20
20
100
200
−50
VDD = 50 Vdc, f = 860 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
−60
IDQ = 700 mA
975 mA
1400 mA
1250 mA
1075 mA
−70
20
100
200
Pout, OUTPUT POWER (WATTS) AVG.
Figure 17. Single - Carrier DVB - T OFDM ACPR
versus Output Power
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 16. Single - Carrier DVB - T OFDM Power
Gain versus Output Power
65
60
55
50
45
40
35
30
25
20
15
10
5
0
VDD = 50 Vdc, IDQ = 1400 mA
f = 860 MHz, 8K Mode OFDM
64 QAM Data Carrier Modulation
5 Symbols
25_C
−30_C
85_C
ACPR
ηD
TC = −30_C
25_C
10
Gps
85_C
100
−46
−48
−50
−52
−54
−56
−58
−60
−62
−64
−66
−68
−70
−72
300
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
Gps, POWER GAIN (dB)
−3
Figure 14. Single - Carrier DVB - T OFDM
22
21
−4
f, FREQUENCY (MHz)
IDQ = 1400 mA
21.5
−5
PEAK−TO−AVERAGE (dB)
23
22.5
8K Mode DVB−T OFDM
64 QAM Data Carrier Modulation, 5 Symbols
−100
Pout, OUTPUT POWER (WATTS) AVG.
Figure 18. Single - Carrier DVB - T OFDM ACPR Power
Gain and Drain Efficiency versus Output Power
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
9
TYPICAL CHARACTERISTICS — 470 - 860 MHz
60
Gps
50
860 MHz
21.5
21
40
20.5
20
665 MHz
860 MHz
470 MHz
19.5
19
30
665 MHz
470 MHz
20
ηD
18.5
18
17.5
17
10
VDD = 50 Vdc, IDQ = 1200 mA
Pulse Width = 50 μsec, Duty Cycle = 2.5%
10
100
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
23
22.5
22
0
1000
Pout, OUTPUT POWER (WATTS) PULSED
Figure 19. Broadband Pulsed Power Gain and Drain
Efficiency versus Output Power — 470 - 860 MHz
27
70
Gps, POWER GAIN (dB)
ηD
24
23
50
22
Gps
21
40
20
19
30
P1dB
18
700
650
600
550
500
P1dB (WATTS)
60
25
ηD, DRAIN EFFICIENCY (%)
VDD = 50 Vdc, Pout = P1dB, IDQ = 1200 mA
Pulse Width = 50 μsec, Duty Cycle = 2.5%
26
450
20
17
470 500 530 560 590 620 650 680 710 740 770 800 830 860
f, FREQUENCY (MHz)
50
−50
VDD = 50 Vdc, IDQ = 1400 mA, 8K Mode OFDM
64 QAM Data Carrier Modulation, 5 Symbols
45
860 MHz
−55
40
35 665 MHz
30
470 MHz
470 MHz
25
860 MHz
Gps
−65
20
665 MHz
15
10
−60
ACPR
−70
ηD
5
0
3
10
100
−75
300
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Figure 20. Pulsed Power Gain and Drain Efficiency
versus Frequency at P1dB — 470 - 860 MHz
Pout, OUTPUT POWER (WATTS) AVG.
Figure 21. Single - Carrier DVB - T OFDM ACPR, Power Gain
and Drain Efficiency versus Output Power — 470 - 860 MHz
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
10
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 470 - 860 MHz
24
36
Gps, POWER GAIN (dB)
22
32
21
30
ηD
20
28
26
19
24
IRL
VDD = 50 Vdc, IDQ = 1400 mA
17 P = 90 W Avg., 8K Mode OFDM
22
out
64 QAM Data Carrier Modulation, 5 Symbols
20
16
470 500 530 560 590 620 650 680 710 740 770 800 830 860
18
0
−2
−4
−6
−8
IRL, INPUT RETURN LOSS (dB)
34
Gps
ηD, DRAIN EFFICIENCY (%)
23
f, FREQUENCY (MHz)
Figure 22. Single - Carrier DVB - T OFDM Power Gain, Drain Efficiency
and IRL versus Frequency — 470 - 860 MHz
TYPICAL CHARACTERISTICS
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 90 W Avg., and ηD = 28%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 23. MTTF versus Junction Temperature
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
11
Zo = 10 Ω
f = 860 MHz
Zload
f = 470 MHz
f = 860 MHz
Zsource
f = 470 MHz
VDD = 50 Vdc, IDQ = 1400 mA, Pout = 90 W Avg.
f
MHz
Zsource
W
Zload
W
470
2.81 - j1.88
5.52 + j2.34
650
6.46 + j1.21
7.46 + j2.26
860
3.90 + j2.09
2.60 + j3.73
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
−
−
Z
source
Output
Matching
Network
+
Z
load
Figure 24. Series Equivalent Source and Load Impedance
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
12
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
13
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
14
RF Device Data
Freescale Semiconductor
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
15
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
16
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
July 2008
• Initial Release of Data Sheet
1
Aug. 2008
• Corrected component designation part number for C34, 35 in Table 5. Test Circuit Component Designation
and Values, p. 5
• Added Note to Fig. 4, Capacitance versus Drain - Source Voltage and Fig. 5, DC Safe Operating Area to
denote that each side of device is measured separately, p. 7
• Adjusted imaginary component signs in Fig. 24, Series Equivalent Source and Load Impedance data table
and replotted data, p. 12
2
Sept. 2008
• Fig. 24, Series Equivalent Source and Load Impedance, corrected Zsource copy to read ”Test circuit
impedance as measured from gate to gate, balanced configuration” and Zload copy to read ”Test circuit
impedance as measured from gate to gate, balanced configuration”, p. 12
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
RF Device Data
Freescale Semiconductor
17
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.
MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5
Document Number: MRF6VP3450H
Rev. 2, 9/2008
18
RF Device Data
Freescale Semiconductor