FUJITSU SEMICONDUCTOR DATA SHEET DS04-27224-1E ASSP For Power Management Applications 8-ch DC/DC Converter IC with Synchronous Rectifier for Voltage Step-up and Step-down MB3881 ■ DESCRIPTION The MB3881 a step-up/step-down type of 8-channel, DC/DC converter IC. It uses pulse width modulation (PWM) and synchronous rectification, designed for low voltage, high efficiency, and compactness. This IC is ideal for down conversion and up/down conversion (employing a step-up/step-down Zeta system enabling free I/O setting). The MB3881 can use channel 8 as its own power supply to provide a wide range of supply voltages, allowing itself to operate at low voltage. In addition, the MB3881 contains a triangular wave oscillator which can operate in synchronization with an external device, allowing the switching timing to be controlled externally. This contributes to reduction in switching noise, facilitating system configuration. The MB3881 is designed to be compact using the LQFP-64P package whose body size is 7 × 7 mm. The IC is the best for the power supply for advanced portable equipment such as a camera integrated VTR. ■ FEATURES • • • • • • • • Supporting the step-up/step-down Zeta methods (CH1 to CH7) Supporting synchronous rectification (CH1, CH2) Low start-up voltage : 1.8 V (CH8) Power-supply voltage range : 4 V to 13 V (CH1 to CH7) Built-in high-precision reference voltage generator : 2.5 V ± 1% Oscillation frequency range : 100 kHz to 800 kHz Built-in triangular wave oscillator capable of external synchronization Error amplifier output for soft start (CH1 to CH4, CH7) ■ PACKAGE 64-pin plastic LQFP (FPT-64P-M16) 2 22 +IN5 (CH5,CH6) Control block 27 28 29 30 31 32 VCC CTL-2 CTL-3 CTL-4 CS 26 CTL-1 25 GND CSCP 24 21 −IN5 23 20 FB5 VREF 19 −IN5(C) 18 OVP 17 DTC5 −IN6(C) (CH7,CH8) GND(O)-2 1 48 DTC1 RB8 2 47 FB1 DTC8 3 46 −IN1 FB8 4 45 DTC2 −IN8 5 44 FB2 +IN8 6 43 −IN2 −IN8(C) 7 42 DTC3 +IN8(C) 8 41 FB3 DTC7 9 40 −IN3 FB7 10 39 DTC4 −IN7 11 38 FB4 +IN7 12 37 −IN4 DTC6 13 36 VB FB6 14 35 SYNC −IN6 15 34 CT +IN6 16 33 RT (CH1 to CH4) OUT8 VSS(O)-2 OUT7 OUT6 OUT5 VCC(O)-2 VCC(O)-1 OUT4 OUT3 GND(O)-1 OUT2-2 OUT2-1 VDD (O) OUT1-2 OUT1-1 VSS(O)-1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 MB3881 ■ PIN ASSIGNMENT Output block MB3881 ■ PIN DESCRIPTION Pin No. CH1 CH2 CH3 CH4 CH5 CH5, CH6 CH6 CH7 Symbol I/O Descriptions 47 FB1 O Error amplifier output pin. 46 −IN1 I Error amplifier inverted input pin. 48 DTC1 I Dead time control pin. 50 OUT1-1 O Main side output pin. 51 OUT1-2 O Synchronous rectifier side output pin. 44 FB2 O Error amplifier output pin. 43 −IN2 I Error amplifier inverted input pin. 45 DTC2 I Dead time control pin. 53 OUT2-1 O Main side output pin. 54 OUT2-2 O Synchronous rectifier side output pin. 41 FB3 O Error amplifier output pin. 40 −IN3 I Error amplifier inverted input pin. 42 DTC3 I Dead time control pin. 56 OUT3 O Output pin. 38 FB4 O Error amplifier output pin. 37 −IN4 I Error amplifier inverted input pin. 39 DTC4 I Dead time control pin. 57 OUT4 O Output pin. 20 FB5 O Error amplifier output pin. 21 −IN5 I Error amplifier inverted input pin. 22 +IN5 I Error amplifier non-inverted input pin. 23 −IN5 (C) I Short detection comparator input pin. 19 DTC5 I Dead time control pin. 60 OUT5 O Output pin. 18 OVP I Output maximum voltage setting pin. 14 FB6 O Error amplifier output pin. 15 −IN6 I Error amplifier inverted input pin. 16 +IN6 I Error amplifier non-inverted input pin. 17 −IN6 (C) I Short detection comparator input pin. 13 DTC6 I Dead time control pin. 61 OUT6 O Output pin. 10 FB7 O Error amplifier output pin. 11 −IN7 I Error amplifier inverted input pin. 12 +IN7 I Error amplifier non-inverted input pin. 9 DTC7 I Dead time control pin. 62 OUT7 O Output pin. (Continued) 3 MB3881 (Continued) Pin No. CH8 OSC Symbol I/O 4 FB8 O Error amplifier output pin. 5 −IN8 I Error amplifier inverted input pin. 6 +IN8 I Error amplifier non-inverted input pin. 7 −IN8 (C) I Short detection comparator inverted input pin. 8 +IN8 (C) I Short detection comparator non-inverted input pin. 3 DTC8 I Dead time control pin. 2 RB8 Output current setting pin. 64 OUT8 O Output pin. 33 RT Triangular wave frquency setting resistor connection pin. 34 CT Triangular wave frquency setting capacitor connection pin 35 SYNC I External synchronous signal input pin. 28 CTL-1 I Power supply, CH 1, 3, 4, 8 control circuit. “H” level : Power supply operating mode “L”level : Standby mode I CH 2 control circuit. •CTL-1pin = “H” level “H” level : CH2 operating mode “L” level : CH2 OFF mode I CH5, 6 control circuit. •CTL-1pin = “H” level “H” level : CH5, CH6 operating mode “L” level : CH5, CH6 OFF mode CH7 control circuit. •CTL-1pin = “H” level “H” level : CH7 operating mode “L” level : CH7 OFF mode 29 Control Power 4 30 CTL-2 CTL-3 Descriptions 31 CTL-4 I 26 CSCP Short protection circuit capacitor connection pin. 32 CS CH1, 2, 3, 4, 7 soft start circuit capacitor connection pin. 27 VCC Reference voltage and control circuit power supply pin. 58 VCC (O) -1 CH1, 2, 3, 4 output circuit power supply pin. 59 VCC (O) -2 CH5, 6, 7, 8 output circuit power supply pin. 49 VSS (O) -1 CH1, 2, 3, 4 output circuit power supply pin. 63 VSS (O) -2 CH5, 6, 7 output circuit power supply pin. 52 VDD (O) CH1, 2 synchronous rectifier side output circuit power supply pin. 24 VREF O Refernce voltage output pin. 36 VB O Triangular wave oscillator regulator output pin. 25 GND Ground pin. 55 GND (O) -1 CH1, 2, 3, 4 output circuit ground pin. 1 GND (O) -2 CH5, 6, 7, 8 output circuit ground pin. MB3881 ■ BLOCK DIAGRAM • General view PWM Comp.1-1 + + − FB1 47 Error − Amp.1 + + −IN1 46 58 VCC(O)-1 CH1 Drive 1-1 50 OUT1-1 49 VSS(O)-1 PWM VB1 Comp.1-2 + 1.25 V SCP Comp.1 − 52 VDD(O) Drive 1-2 − + + 51 OUT1-2 1.0 V DTC1 48 PWM Comp.2-1 + + − FB2 44 Error − Amp.2 + + −IN2 43 CH2 Drive 2-1 53 OUT2-1 Drive 2-2 54 OUT2-2 PWM VB2 Comp.2-2 + 1.25 V SCP Comp.2 − + + − 1.0 V DTC2 45 Error − Amp.3 + + −IN3 40 A CH3 PWM Comp.3 + + − FB3 41 Drive 3 56 OUT3 1.25 V SCP Comp.3 − + + 1.0 V DTC3 42 Error − Amp.4 + + −IN4 37 CH4 PWM Comp.4 + + − FB4 38 Drive 4 57 OUT4 1.25 V SCP Comp.4 − + + 1.0 V DTC4 39 55 GND(O)-1 FB5 20 Error − Amp.5 + + −IN5 21 59 VCC(O)-2 CH5 PWM Comp.5 + + − Drive 5 60 OUT5 63 VSS(O)-2 0.6 V SCP Comp.5 − −IN5(C) 23 +IN5 22 + DTC5 19 Error − Amp.6 + + −IN6 15 CH6 PWM Comp.6 + + − FB6 14 Drive 6 61 OUT6 B 0.6 V SCP Comp.6 − −IN6(C) 17 +IN6 16 + OVP 18 DTC6 13 Error − Amp.7 + + + −IN7 11 +IN7 12 CH7 PWM Comp.7 + + − FB7 10 Drive 7 62 OUT7 1.25 V SCP Comp.7 − + + + 20 kΩ 80 kΩ 1.0 V DTC7 9 CH8 FB8 4 Error Amp.8 − −IN8 5 PWM Comp.8 − − + + Drive 8 64 OUT8 +IN8 6 2 RB8 −IN8(C) 7 − +IN8(C) 8 + SCP Comp.8 DTC8 3 1 GND(O)-2 C CTL-2 29 CTL-3 30 CTL 1, 3, 4 CS CTL Logic CTL-4 31 CT1 1.73 V 1.0 V CT2 1.73 V 1.0 V CT 0.8 V 0.3 V Buff Buff ×0.8 CS 32 27 VCC UVLO VB 36 OSC SCP 2V 35 33 34 26 SYNC RT CT CSCP Power Ref ON/OFF CTL 2.5 V 24 VREF 25 GND 28 CTL-1 H : ON (Power/CH1, 3, 4, 8) L : OFF (Standby mode) (64 pin) 5 MB3881 • Enlarged view of A PWM Comp.1-1 + + − FB1 47 −IN1 46 Error − Amp.1 + + CH1 Drive 1-1 58 VCC(O)-1 50 OUT1-1 49 VSS(O)-1 VB1 1.25 V SCP Comp.1 − PWM Comp.1-2 + − + + 52 VDD(O) Drive 1-2 51 OUT1-2 1.0 V DTC1 48 PWM Comp.2-1 + + − FB2 44 −IN2 43 Error − Amp.2 + + 1.25 V SCP Comp.2 − + + VB2 CH2 Drive 2-1 53 OUT2-1 Drive 2-2 54 OUT2-2 PWM Comp.2-2 + − 1.0 V DTC2 45 FB3 41 −IN3 40 Error − Amp.3 + + PWM Comp.3 + + − CH3 Drive 3 56 OUT3 1.25 V SCP Comp.3 − + + 1.0 V DTC3 42 FB4 38 −IN4 37 Error − Amp.4 + + PWM Comp.4 + + − CH4 Drive 4 57 OUT4 1.25 V SCP Comp.4 − + + 1.0 V DTC4 39 55 GND(O)-1 6 MB3881 • Enlarged view of B FB5 20 −IN5 21 −IN5(C) 23 +IN5 22 Error − Amp.5 + + PWM Comp.5 + + − CH5 Drive 5 59 VCC(O)-2 60 OUT5 63 VSS(O)-2 0.6 V SCP Comp.5 − + DTC5 19 FB6 14 −IN6 15 −IN6(C) 17 +IN6 16 Error − Amp.6 + + PWM Comp.6 + + − CH6 Drive 6 61 OUT6 0.6 V SCP Comp.6 − + OVP 18 DTC6 13 FB7 10 −IN7 11 +IN7 12 20 kΩ 80 kΩ Error − Amp.7 + + + PWM Comp.7 + + − CH7 Drive 7 62 OUT7 1.25 V SCP Comp.7 − + + + 1.0 V DTC7 9 7 MB3881 • Enlarged view of C CH8 FB8 4 Error Amp.8 − −IN8 5 PWM Comp.8 − − + + Drive 8 64 OUT8 +IN8 6 2 RB8 −IN8(C) 7 − +IN8(C) 8 + SCP Comp.8 DTC8 3 1 GND(O)-2 CTL-2 29 CTL-3 30 CTL 1, 3, 4 CS CTL Logic CTL-4 31 CT1 1.73 V 1.0 V CT2 1.73 V 1.0 V CT 0.8 V 0.3 V Buff Buff ×0.8 CS 32 27 VCC UVLO VB 36 OSC Ref 2V 35 8 SCP 33 34 26 SYNC RT CT CSCP 2.5 V 24 VREF Power ON/OFF CTL 25 GND 28 H : ON (Power/CH1, 3, 4, 8) L : OFF (Standby mode) CTL-1 (64 pin) MB3881 ■ ABSOLUTE MAXIMUM RATINGS Parameter Symbol Condition VCC VDD Power supply voltage Rating Unit Min. Max. 17 V 17 V Output current IO OUT pin 20 mA Output peak current IO OUT pin, Duty ≤ 5% 200 mA Power dissipation PD Ta ≤ +25 °C 800* mW Storage temperature Tstg −55 +125 °C * : The packages are mounted on the epoxy board (10 cm × 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Condition CH8 Power supply voltage VCC CH1 to CH7, 4 V ≤ VCC(O)−VSS(O) ≤ 9 V Value Unit Min. Typ. Max. 1.8 9 13 V 4 9 13 V VDD CH1 4 5 9 V Reference voltage output current IOR VREF pin −1 0 mA Reference voltage output current IB VB pin −0.5 0 mA +IN5, +IN6, −IN1 to −IN7, −IN5 (C) , −IN6 (C) , OVP pin 0 VCC − 1.8 V +IN8, −IN8, −IN8 (C) , +IN8 (C) pin 0 VCC − 0.9 V +IN7 pin 0.1 VCC − 1.8 V Input voltage VIN Control input voltage VCTL CTL pin 0 VCC V SYNC input voltage VSYNC SYNC pin 0 VCC V Output current IO OUT pin 1 2 15 mA Output current setting resister RB RB8 pin 2.4 24 51 kΩ Oscillator frequency fOSC 100 500 800 kHz Timing capacitor CT 47 100 680 pF Timing resistor RT 6.8 11 51 kΩ VB pin capacitor CVB 0.22 0.39 µF Soft-start capacitor CS 0.1 1.0 µF CSCP 0.1 1.0 µF Short detection capacitor Operating ambient temperature Ta −30 +25 +85 °C WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 9 MB3881 CH1 to CH7 CH8 Triangular wave oscillator block (OSC) Short circuit detection block (SCP) Soft-start block (CS) Under voltage lockout protection circuit block(U.V.L.O) Reference voltage block ■ ELECTRICAL CHARACTERISTICS (Ta = +25 °C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Value Conditions Unit Min. Typ. Max. Parameter Symbol Pin No. Reference voltage VREF 24 ∆VREF/ VREF 24 Ta = −30 °C to +85 °C Input stability Line 24 Load stability Load Short-circuit output current 2.475 2.5 2.525 V 0.5* % VCC = 4 V to 13 V −10 10 mV 24 VREF = 0 mA to −1 mA −10 10 mV Ios 24 VREF = 2 V −20 −5 −1 mA Threshold voltage VTH 50 VCC = 2.6 2.8 3.0 V Hysteresis width VH 50 0.2 V Reset voltage VRST 50 VCC = 1.20 1.30 1.40 V Threshold voltage VTH 64 VCC = 1.25 1.45 1.65 V Input standby voltage VSTB 32 50 100 mV Charge current ICS 32 −1.4 −1.0 −0.6 µA Threshold voltage VTH 26 0.65 0.70 0.75 V Input standby voltage VSTB 26 50 100 mV VI 26 50 100 mV Input source current ICSCP 26 −1.4 −1.0 −0.6 µA Oscillator frequency fOSC 50, 53, 56, 57, 60, CT = 100 pF, RT = 11 kΩ 450 61, 62, 64, 51, 54 VB = 2 V 500 550 kHz Frequency stability for voltage ∆f/fdv 50, 53, 56, 57, 60, VCC = 4 V to 13 V 61, 62, 64, 51, 54 1 10 % Frequency stability for temperature ∆f/fdt 50, 53, 56, 57, 60, Ta = −30 °C to +85 °C 61, 62, 64, 51, 54 1* % Output voltage temperature stability Input latch voltage Output voltage SYNC input condition Input current *: Standard design value. VB 36 VIH 50 Input “H” level VIL 50 ISYNC 35 1.980 2.000 2.020 V 2.0 V Input “L” level 0 0.8 V SYNC = 5 V 50 100 µA (Continued) 10 MB3881 (Continued) (Ta = +25 °C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Symbol Pin No. Threshold voltage VTH 47, 44, 41, 38, 10 FB = 1.35 V VT temperature stability ∆VT/ VT 47, 44, 41, 38, 10 IB 46, 43, 40, 37, 11 Parameter Input bias current Error amplifier block (CH1 to CH4, CH7) 12 Value Unit Min. Typ. Max. 1.23 1.25 1.27 V Ta = −30 °C to +85 °C 0.5* % −IN = 0 V (CH1 to CH4, CH7) −320 −60 nA +IN = 1 V (CH7) 8 10 15 µA Voltage gain AV 47, 44, 41, 38, 10 DC 60 100 dB Frequency bandwidth BW 47, 44, 41, 38, 10 AV = 0 dB 1.2* MHz VOH 47, 44, 41, 38, 10 2.2 2.4 V VOL 47, 44, 41, 38, 10 50 200 mV ISOURCE 47, 44, 41, 38, 10 FB = 1.35 V −2.0 −1.0 mA Output sink current ISINK 47, 44, 41, 38, 10 FB = 1.35 V 70 140 µA Input offset voltage VIO 20, 21, 14, 15 FB = 1.35 V 10 mV 20, 21, 14, 15 Ta = −30 °C to +85 °C 0.5* % Output voltage Output source current VT temperature stability Error amplifier bolck (CH5, CH6) Conditions Input bias current ∆VT/ VT IB 22, 16 FB = 1.35 V −260 −40 nA 21, 15 −IN = 0 V −120 −30 nA FB = 1.35 V −120 −30 nA 0 VCC − 1.8 V 18 Common mode input voltage range VCM 20, 14 Voltage gain AV 20, 14 DC 60 100 dB Frequency bandwidth BW 20, 14 AV = 0 dB 1.2* MHz VOH 20, 14 2.2 2.4 V VOL 20, 14 50 200 mV ISOURCE 20, 14 FB = 1.35 V −2.0 −1.0 mA ISINK 20, 14 FB = 1.35 V 70 140 µA Output voltage Output source current Output sink current *: Standard design value. (Continued) 11 MB3881 (Continued) Parameter Error amplifier bolck (CH8) Input offset voltage Input bias current SCP Comp. block (CH1 to CH4, SCP) SCP Comp. block (CH5,CH6 SCP) VIO 4, 5 IB FB = 0.55 V −15 0 15 mV 6 +IN = 0 V −100 −20 nA 5 FB = 0.55 V −50 −10 nA 0 VCC − 0.9 V VCM 4 Voltage gain AV 4 DC 60 75 dB Frequency bandwidth BW 4 AV = 0 dB 1.2* MHz VOH 4 1.1 1.3 V VOL 4 5 200 mV ISOURCE 4 FB = 0.55 V −2.0 −1.0 mA ISINK 4 FB = 0.55 V 60 140 µA 0.97 1.00 1.03 V +IN = 1 V (CH7) 0.77 0.80 0.83 V −IN = 0 V −320 −60 nA 0.55 0.60 0.65 V −200 −40 nA Output voltage Output sink current SCP Comp. block (CH8 SCP) Pin No. Common mode input voltage range Output source current PWM Comp. block (CH1 to CH7) Symbol (Ta = +25 °C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Value Conditions Unit Min. Typ. Max. 50, 53, 56, 57 CH1 to CH4 Threshold voltage VTH 62 IB 46, 43, 40, 11, 37 VIO 60, 61 IB 23, 17 Common mode input voltage range VCM 60, 61 0 VCC − 1.8 V Input offset voltage VIO 64 −15 0 15 mV IB 7 −50 −10 nA VCM 64 0 VCC − 0.9 V VT0 50 Duty cycle = 0% 0.9 1.0 V VT100 50 Duty cycle = 100% 1.73 1.83 V −1.0 −0.3 µA Input bias current Input offset voltage Input bias current Input bias current Common mode input voltage range Threshold voltage Input bias current IDTC −IN (C) = 0 V FB = 0.55 V 48, 45, 42, 39, DTC = 0.4 V 19, 13, 9 (CH1 to CH7) *: Standard design value. (Continued) 12 MB3881 (Continued) Output block (CH1 to CH7) (Drive-1) PWM Comp. block(CH8) Parameter Symbol Pin No. VT0 64 Duty cycle = 0% 0.2 0.3 V VT100 64 Duty cycle = 100% 0.8 0.9 V Threshold voltage Output source current ISOURCE 50, 53, 56, 57, Duty ≤ 5%, 60, 61, 62 OUT = 4.4 V −100 mA Output sink current ISINK 50, 53, 56, 57, Duty ≤ 5%, 60, 61, 62 OUT = 9 V 80 mA ROH 50, 53, 56, 57, OUT = −15 mA 60, 61, 62 22 35 Ω ROL 50, 53, 56, 57, OUT = 15 mA 60, 61, 62 17 26 Ω Output block (CH1, CH2) (Drive-2) Output ON resistor Output source current ISOURCE 51, 54 Duty ≤ 5%, OUT = 0 V −110 mA Output sink current ISINK 51, 54 Duty ≤ 5%, OUT = 5 V 100 mA ROH 51, 54 OUT = −15 mA 20 32 Ω ROL 51, 54 OUT = 15 mA 16 25 Ω Output source current ISOURCE 64 RB = 24 kΩ, OUT = 0.7 V −2.6 −2.0 −1.4 mA Output sink current 64 Duty ≤ 5%, OUT = 0 V 40 mA 1.5 13 V Output block (CTL-1 to CTL-4) (CTL) Output block (CH8) (Drive) Output ON resistor ISINK VIH 28, 29, 30, 31 Active mode VIL 28, 29, 30, 31 Standby mode 0 0.5 V ICTL 28, 29, 30, 31 CTL = 5 V 100 200 µA CTL input condition Input current Standby current General (Ta = +25 °C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Value Conditions Unit Min. Typ. Max. ICCS 27 CTL-1 = 0 V 10 µA ICCS (O) 58, 59 CTL-1 = 0 V 10 µA IDDS 52 CTL-1 = 0 V 10 µA ICC 27, 58, 59 CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V 7 11 mA IDD 52 CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V 10 µA Power supply current *: Standard design value. 13 MB3881 ■ TYPICAL CHARACTERISTICS 10 5 Ta = +25 °C CTL−1 = CTL−2 = CTL−3 = CTL−4 = 5 V 8 6 4 2 0 0 2 4 6 8 10 12 14 Reference voltage vs. power supply voltage Reference voltage VREF (V) Power supply current ICC (mA) Power supply current vs. power supply voltage 16 Ta = +25 °C CTL−1 = CTL−2 = CTL−3 = CTL−4 = 5 V VREF = 0 mA 4 3 2 1 0 0 2 Power supply voltage VCC (V) 4 6 8 10 12 14 16 Power supply voltage VCC (V) Reference voltage vs. ambient temperature Reference voltage VREF (V) 2.56 VCC = 9 V CTL−1 = CTL−2 = CTL−3 = CTL−4 = 5 V 2.54 2.52 2.5 2.48 2.46 2.44 −40 −20 0 20 40 60 80 100 Ambient temperature Ta (°C) Control current vs. control voltage 500 5 Ta = +25 °C VCC = 9 V VREF = 0 mA 4 Control current (µA) Reference voltage VREF (V) Reference voltage vs. control voltage 3 2 1 0 Ta = +25 °C VCC = 9 V 400 300 200 100 0 0 1 2 3 4 Control voltage VCTL-1 (V) 5 0 2 4 6 8 10 12 14 16 Control voltage VCTL-1 (V) (Continued) 14 MB3881 (Continued) Triangular wave upper and lower limit voltage vs.triangular wave oscillator frequency Ta = +25 °C VCC = 9 V CT = 100 pF 0.9 0.8 Triangular wave upper and lower limit voltage VCT (V) Triangular wave upper and lower limit voltage VCT (V) 1 Triangular wave upper and lower limit voltage vs. ambient temperature Upper 0.7 0.6 0.5 0.4 0.3 Lower 0.2 0.1 0 0 1 VCC = 9 V RT = 11 kΩ CT = 100 pF 0.9 0.8 Upper 0.7 0.6 0.5 0.4 0.3 Lower 0.2 0.1 0 −40 100 200 300 400 500 600 700 800 900 1000 −20 Triangular wave oscillator frequency fOSC (kHz) Triangular wave oscillator frequency fOSC (kHz) 60 80 100 Ta = +25 °C VCC = 9 V 1000 RT = 6.8 kΩ 100 RT = 11 kΩ RT = 51 kΩ 1 10 100 1000 10000 CT = 220 pF CT = 470 pF CT = 680 pF 10 1k 10 k Timing capacitor CT (pF) Power dissipation vs. ambient temperature VCC = 9 V CTL−1 = CTL−2 = CTL−3 = CTL−4 = 5 V RT = 11 kΩ CT = 100 pF 540 520 500 480 460 −20 0 20 40 60 Ambient temperature Ta ( °C) 100 k Timing resistor RT (Ω) 80 100 Power dissipation PD (mW) 560 440 −40 CT = 47 pF CT = 100 pF 100 Triangular wave oscillator frequency vs. ambient temperature Triangular wave oscillator frequency fOSC (kHz) 40 10000 Ta = +25 °C VCC = 9 V 1000 10 20 Triangular wave oscillator frequency vs. timing resistor Triangular wave oscillator frequency vs. timing capacitor 10000 0 Ambient temperature Ta ( °C) Triangular wave oscillator frequency fOSC (kHz) 1000 800 600 400 200 0 −40 −20 0 20 40 60 80 100 Ambient temperature Ta ( °C) (Continued) 15 MB3881 (Continued) Error amplifier gain and phase vs. frequency (CH1) Gain AV (dB) 20 90 φ 0 0 AV −90 −20 VCC = 9 V 180 Phase φ (deg) Ta = +25 °C 40 240 kΩ 10 kΩ IN − + 2.4 kΩ 10 µF − + + 46 10 kΩ 1.4 V 47 OUT 1.26 V −180 −40 1k 10 k 100 k 1M 10 M Frequency f (Hz) Error amplifier gain and phase vs. frequency (CH5) Gain AV (dB) 20 90 φ 0 0 VCC = 9 V 180 AV Phase φ (deg) Ta = +25 °C 40 −20 −90 −40 −180 1k 10 k 100 k 1M 2.5 V 240 kΩ 10 kΩ IN − + 10 kΩ 2.4 kΩ 10 µF 10 kΩ − + + 21 22 18 1.4 V 20 OUT 10 kΩ 10 M Frequency f (Hz) Error amplifier gain and phase vs. frequency (CH8) Gain AV (dB) 20 φ 90 0 0 AV −20 −90 −40 −180 1k 10 k 100 k 1M Frequency f (Hz) 16 VCC = 9 V 180 10 M 1V Phase φ (deg) Ta = +25 °C 40 240 kΩ 10 kΩ IN 10 kΩ − + 2.4 kΩ 5 − 6 + 10 µF 10 kΩ 4 10 kΩ OUT MB3881 ■ FUNCTIONS 1. DC-DC Converter Functions (1) Reference voltage generator The reference voltage generator generates a temperature-compensated reference voltage (typically =: 2.5 V) from the voltage supplied from the power supply terminal (pin 27). The voltage is used as the reference voltage for the IC’s internal circuitry. The reference voltage can supply a load current of up to 1 mA to an external device through the VREF terminal (pin 24). (2) Triangular-wave oscillator circuit The triangular wave oscillator incorporates a timing capacitor and a timing resistor connected respectively to the CT terminal (pin 34) and RT terminal (pin 33) to generate triangular oscillation waveform CT (amplitude of 0.3 to 0.8 V), CT1 (amplitude 1.0 to 1.73 V in phase with CT), or CT2 (amplitude 1.0 to 1.73 V in inverse phase with CT). CT1 and CT2 are input to the PWM comparator in the IC. (3) Error amplifier (Error Amp.) The error amplifier detects the DC/DC converter output voltage and outputs PWM control signals. It supports a wide range of in-phase input voltages from 0 V to “VCC - 1.8 V” (channels 1 to 7), allowing easy setting from the external power supply. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output pin to inverted input pin of the error amplifier, enabling stable phase compensation to the system. (4) PWM comparator (PWM Comp.) The PWM comparator is a voltage-to-pulse width converter for controlling the output duty depending on the input voltage. Channels 1, 2 main sides, channel 3 to 8 : The comparator keeps the output transistor on while the error amplifier output voltage and DTC voltage remain higher than the triangular wave voltage. Channels 1, 2 synchronous rectification sides:The comparator keeps the output transistor on while the error amplifier output voltage remain lower than the triangular wave voltage. (5) Output circuits The output circuits on the main side and on the synchronous rectification side are both in the totem pole configuration, capable of driving an external PNP transistor (channels 1,2 main sides, channels 3 to 7), NPN transistor (channel 8), and N-channel MOSFET (channels 1,2 synchronous rectification sides). 17 MB3881 2. Channel Control Function Channels are turned on and off depending on the voltage levels at the CTL-1 terminal (pin 28), CTL-2 terminal (pin 29), CTL-3 terminal (pin 30),and CTL-4 terminal (pin 31). Voltage level at CTL pin Channel On/Off Setting Conditions Channel on/off state CTL-1 CTL-2 CTL-3 CTL-4 L × × × L L H H L H H Power CH8 CH1, 3, 4 CH2 OFF H OFF L L H L H CH7 OFF (Standby state) L H CH5, 6 ON ON OFF ON ON OFF ON OFF ON OFF ON OFF ON × : Undefined 3. Protective Functions (1) Timer-latch short-circuit protection circuit The short-circuit detection comparator in each channel detects the output voltage level and, if any channel output voltage falls below the short-circuit detection voltage, the timer circuits is actuated to start charging the external capacitor CSCP connected to the CSCP terminal (pin 26). When the capacitor voltage reaches about 0.70 V, the circuit is turned off the output transistor and sets the dead time to 100%. To reset the actuated protection circuit, turn the power supply on back. (See “SETTING TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT”.) (2) Undervoltage lockout protection circuit The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned on, may cause the IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, the undervoltage lockout protection circuit detects a decrease in internal reference voltage with respect to the power supply voltage, turns off the output transistor, and sets the dead time to 100% while holding the CSCP terminal (pin 26) at the “L” level. The circuit restores the output transistor to normal when the supply voltage reaches the threshold voltage of the undervoltage lockout protection circuit. 18 MB3881 4. Soft Start Operation (1) Description • When the CTL-1 to CTL-4 pins are driven high (“H” level) The channel-8 output voltage is soft-started by the capacitor (C+IN8) connected to the +IN8 terminal (pin 6). The capacitor (Cs) connected to the CS terminal (pin 32) starts being charged and the output voltages of channels 1 to 4 and channel 8 are soft-started by the error amplifier in proportion to the CS pin voltage. Input CTL-1 ( pin 28 ) CTL-2 ( pin 29 ) CTL-3 ( pin 30 ) CTL-4 ( pin 31 ) Output 2V VB ( pin 36) FB8 ( pin 4) 0.3 V CH8 output voltage VO8 2.5 V VREF ( pin 24) 1.25 V CS ( pin 32) CH1 to CH4, CH7 output voltage VO1 to VO4, VO7 CH5, CH6 output voltage VO5, VO6 t (1) (2) (3) (4) (1) to (4) : CH1 to CH4, CH7 soft start interval (2) to (3) : CH8 soft start interval 19 MB3881 • When the CTL-2 (CTL-4) terminal is driven low (“L” level) after channels 1, 3, 4, and 8 have been soft-started The capacitor (Cs) connected to the CS terminal (pin 32) starts being charged. The channel-2 (channel-7) output voltage is soft-started by the error amplifier in proportion to the CS pin voltage. Input CTL-1 ( pin 28) CTL-2 ( pin 29) (CTL-4 ( pin 31) ) CTL-3 ( pin 30) Output 2V VB ( pin 36) FB8 ( pin 4) 0.3 V CH8 output voltage VO8 2.5 V VREF ( pin 24) 1.25 V 1.25 V CS ( pin 32) CH1, CH3, CH4 output voltage VO1, VO3, VO4 CH2 (CH7) output voltage VO2 (VO7) CH5, CH6 output voltage VO5, VO6 t (1) (2) (3) (5) (1) to (4) (2) to (3) (5) to (6) (5)’ to (6)’ 20 (4) (5) (6) : Channel-1, 3, 4 soft start interval : Channel-8 soft start interval : Channel-2 (channel-7) soft start interval : Channel-2 (channel-7) soft start interval (waveform) as CTL-2 (CTL-4) goes “H” from “L” during channel-1, 3, 4 soft start interval (6) MB3881 (2) Setting Soft Start • Channel-8 soft start Channel 8 can be soft-started by connecting a capacitor between the DTC8 terminal (pin 3) and GND. The soft start time depends on the input voltage and load current. • Channel 1 to 4 and channel 7 soft start Soft start time ts[s] =: 1.25 × Cs[µF] Note : The short-circuit detection function remains working even during soft start operation of channels 1 to 4 and 7. • Channel-5, 6 soft start Channel 5 can be soft-started by connecting a capacitor between the +IN5 terminal (pin 22) and GND. Channel 6, like channel 5, can be soft-started by connecting a capacitor between the +IN6 terminal (pin 16) and GND. ■ SETTING THE OSCILLATION FREQUENCY The oscillation frequency can be set by connecting the timing capacitor (CT) to the CT terminal (pin 34) and the timing resistor (RT) to the RT terminal (pin 33). Oscillation frequency fOSC (kHz) =: 550000 CT (pF) × RT (kΩ) 21 MB3881 ■ SETTING THE OUTPUT VOLTAGE • CH1 to CH4 VO FB1 47 R1 − + + 46 −IN1 R2 VO = 1.25 V R2 (R1 + R2) VO = bV R2 (R1 + R2) Error Amp.1 1.25 V − + + SCP Comp.1 1.0 V • CH5, CH6 VO (aV > bV) R1 − + + 21 −IN5 R2 Error Amp.5 aV 0.6 V − 23 −IN5(C) + 22 +IN5 OVP 22 bV 18 SCP Comp.5 MB3881 • CH7 VO • +IN7 ≥ 1.25 V FB7 VO = 11 R1 − + + + 10 −IN7 R2 1.25 V R2 (R1 + R2) Error Amp.7 • +IN7< 1.25 V VO = +IN7 R2 (R1 + R2) 1.25 V 12 +IN7 20 kΩ − + + + 80 kΩ SCP Comp.7 1.0 V • CH8 VO FB8 VO = 4 R1 −IN8 5 − 2Rb (R1 + R2) (Ra + Rb) R2 Error Amp.8 + R2 Ra +IN8 6 Rb 7 − 8 +IN8(C) + SCP Comp.8 −IN8(C) VB = 2 V 23 MB3881 ■ SAMPLE POWER SUPPLY USING CHANNEL 8 AS SELF-POWER SUPPLY Using channel 8 as the self-power supply, the MB3881 can support a wide range of supply voltages and operate at low input voltage (Vin ≥ 1.8 V). The following example shows sample power supply using a transformer. VSS (O) Vin H H FB8 4 −IN8 5 − VO8-1 (15 V) <CCD> VO8-2 (7 V) <LCD> VO8-3 (−7 V) <CCD> VO8-4 (−15 V) <LCD> Error Amp.8 + 64 +IN8 6 OUT8 2 RB8 VCC VCC (O) The following settings are used in “APPLICATION EXAMPLE”. • VSS(O) is set to the number of turnings that produces Vin - 1.8 V. • VCC and VCC(O) are set to the number of turnings that produces Vin + 2.2 V. Note that, because channels 1 to 4 operate at VCC ≥ 4 V, they must be set to the number of turnings that produces Vin + 2.2 V or more so that they operate at Vin ≥ 1.8 V. 24 MB3881 ■ SETTING THE OUTPUT CURRENT The output circuit (drive 8) is structured as illustrated below (in the output circuit diagram). As found in “Output Current Waveform” below, the source current value of the output current waveform has a constant current setting. Note that the source current is set by the following equation: Output source current : (VB / RB) × 80 =: 48 / RB[A] (VB =: 0.6 V) VCC (O)−2 59 80 I Source current External NPN transistor Output source current × 33 64 OUT8 Output sink current I Sink current 70 kΩ × 33 2 RB8 0.6 V RB VB =: 0.6 V 1 GND (O)−2 In the output circuit diagram Output source current (Peak) Output current Output source current 0 Output sink current (Peak) t Output current waveform 25 MB3881 ■ SETTING TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT The short detection comparator (SCP comparator) in each channel monitors the output voltage. While the switching regulator load conditions are stable on all channels, the LOG_SCP output remains at "H" level, transistor Q1 is turned on, and the CSCP terminal (pin 26) is held at “L” level. If the load condition on a channel changes rapidly due to a short of the load, causing the output voltage to drop, the output of the short detection comparator on that channel goes to “H” level. This causes transistor Q1 to be turned off and the external short protection capacitor CSCP connected to the CSCP terminal to be charged at 1.0 µA. When the capacitor CSCP is charged to the threshold voltage (VTH =: 0.70 V), the latch is set and the external FET is turned off (dead time is set to 100%). At this point, the latch input is closed and the CSCP terminal is held at “L” level. Short detection time (tPE) tPE (s) =: 0.70 × CSCP (µF) External PNP transistor VO1 R1 − + + 46 −IN1 R2 SCP Comp.1 Drive 1−1 50 OUT1−1 1.0 V Drive 1−2 −IN8(C) 7 − 8 + +IN8(C) SCP Comp.8 LOG_SCP Drive 8 1 µA CSCP bias Q1 R S Timer-latch short protection circuit UVLO Ref Timer-latch short circuit protection circuit 26 64 OUT8 bias 26 CSCP 51 OUT1−2 Power ON/OFF CTL 28 CTL−1 MB3881 ■ SETTING FOR EXTERNAL SYNCHRONOUS OSCILLATION For external synchronous operation, connect the timing capacitor (CT) to the CT terminal (pin 34) and the timing resistor (RT) to the RT terminal (pin 33). In this case, select the CT and RT so that the oscillation frequency is 5% to 10% lower than the frequency of the external synchronous signal excluding the setting error of the oscillation frequency. The duty cycle (T1/T) of the external synchronous signal must be set within a range from 10% to 90%. Triangular wave oscillator (OSC) equivalent circuit VB Latch1 − S Q + 0.8 V I R CT 34 − CT + 0.3 V “H” level: ON 1.5 I Ι: Proportional to VRT/RT SYNC 35 100 kΩ 1.4 V + Latch2 − S Q R External synchronization circuit Free-run oscillation External synchronous oscillation 0.8 V 0.8 V VCT VCT 0.3 V 0.3 V 5.0 V 5.0 V VSYNC VSYNC 0V 0V t T1 t T Note: If the external synchronous pulse is not input, the device is started with free-run oscillation. For free-run oscillation, set the SYNC terminal (pin 35) to “Lo” or “HiZ” level. The external synchronization circuit starts operation after a VREF rise. The CT pin oscillation frequency at startup is 500 kHz when the voltage at the VB terminal (pin 36) is 2 V with CT = 100 pF and RT = 11 kΩ. If the triangular wave has superimposed noise during external synchronous oscillation, insert a CR filter. 27 MB3881 ■ TREATMENT WITHOUT USING CSCP When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 26) to GND with the shortest distance CSCP 26 Treatment when not using CSCP ■ TREATMENT FOR KILLING THE SOFT START FEATURE To disable the channel 1 to 4, 7 soft start function, leave the CS terminal (pin 32) open. To disable the channel 8 soft start function, remove the capacitor from the +IN8 terminal (pin 16). “Open” CS 32 VB 6 When no soft start time is set 28 +IN8 MB3881 ■ SETTING THE DEAD TIME When the device is set for step-up inverted output based on the step-up or step-up/down Zeta method or flyback method, the FB pin voltage may reach and exceed the rectangular wave voltage due to load fluctuation. If this is the case, the output transistor is fixed to a full-ON state (ON duty = 100%). To prevent this, set the maximum duty of the output transistor. To set it, set the voltage at the DTC1 terminal (pin 48) by applying a resistive voltage divider to the VREF voltage as shown below. When the voltage at the DTC1 terminal (pin 48) is higher than the triangular wave voltage (CT1), the output transistor is turned on. The maximum duty calculation formula assuming that triangular wave amplitude =: 0.73 V and triangular wave minimum voltage =: 1.0 V is given below. (Same to other channels.) DUTY (ON) max=: Vdt − 1.0 V Rb × 100[%], Vdt = 0.73 V Ra + Rb × VREF When the DTC1 terminal (pin 48) is not used, connect it directly to the VREF terminal (pin 24) as shown below. (Same to other channels.) VREF 24 DTC1 48 Ra Rb Vdt When using DTC to set dead time (Same to other channels.) ( CH1) VREF 24 DTC1 48 When no soft start time is set ( Same to other channels.) ( CH 1) 29 MB3881 ■ APPLICATION EXAMPLE • General view Vo1 (2.0 V) A FB1 47 C21 0.1 µF R9 1 kΩ A R17 12 kΩ 50 49 46 −IN1 R18 20 kΩ CH1 L1 Q1 VCC(O)-1 58 33 µH R1 OUT1-1 240 Ω C13 2200 pF VSS(O)-1 C33 C1 1 µF Q9 D1 2.2 µF 52 VDD(O) 51 DTC1 OUT1-2 48 FB2 44 C22 0.1 µF R10 1 kΩ B R19 20 kΩ 53 DTC2 L2 15 µH C34 C2 1 µF Q10 D2 2.2 µF A CH2 54 R33 24 kΩ 15 µH C14 3900 pF 43 −IN2 R20 16 kΩ Vo2 (2.8 V) B C8 2.2 µF L3 Q2 R2 75 Ω OUT2-1 OUT2-2 Vo3 (5.0 V) 45 R34 47 kΩ C C9 2.2 µF L5 Q3 FB3 41 C23 0.1 µF R11 R21 39 kΩ 1 kΩ C 56 R46 24 kΩ DTC3 L4 6.8 µH C15 3900 pF 40 −IN3 R22 13 kΩ 15 µH R3 75 Ω OUT3 C35 C3 1 µF D3 2.2 µF CH3 42 R47 47 kΩ Vo4 (5.0 V) D C10 2.2 µF L7 Q4 FB4 38 C24 0.1 µF R12 R23 39 kΩ 1 kΩ D 57 R35 24 kΩ DTC4 (3.6 V) GND(O)-1 20 C25 0.1 µF R13 1 kΩ 60 21 −IN5 −IN5(C) +IN5 DTC5 63 CH5 R26 20 kΩ Motor control signal D4 2.2 µF 55 FB5 E C4 1 µF 39 59 R25 5.1 kΩ C36 CH4 R36 47 kΩ Vin L6 6.8 µH C16 3900 pF 37 −IN4 R24 13 kΩ 15 µH R4 75 Ω OUT4 Vo5 (DRUM) E L8 Q5 VCC(O)-2 R5 3 kΩ OUT5 33 µH C17 470 pF C37 C5 1 µF D5 2.2 µF VSS(O)-2 23 B 22 19 Vo6 (CAP) F L9 Q6 FB6 14 C26 0.1 µF R14 R27 15 1 kΩ 15 kΩ −IN6 R28 20 kΩ F −IN6(C) 61 33 µH R6 1 kΩ OUT6 C18 680 pF C38 C6 1 µF D6 2.2 µF CH6 17 Motor control signal 16 +IN6 R43 24 kΩ OVP 18 Over R44 voltage 47 kΩ threshold setting voltage DTC6 13 Vo7 (B.L) G C11 2.2 µF L11 Q7 FB7 G R29 75 kΩ 10 C27 0.1 µF R15 1 kΩ 62 15 µH R7 100 Ω OUT7 C39 L10 15 µH C7 D7 2.2 µF 1 µF C19 2200 pF 11 −IN7 R30 15 kΩ +IN7 CH7 12 Back light luminousity switching signal R37 24 kΩ DTC7 9 R38 47 kΩ H FB8 4 C28 R31 0.1 µF 130 kΩ 1R16 kΩ 5 −IN8 R32 10 kΩ VCC(0) (5.8 V) R39 30 kΩ +IN8 R40 10 kΩ H VSS(0) (1.8 V) 6 C46 1 µF 64 CH8 T1 D10 C42 1 µF Vo8-1 (15 V) <CCD> Vo8-2 (7 V) C43 <LCD> 1 µF Vo8-3 (−7 V) <CCD> C44 1 µF Vo8-4 (−15 V) D13 C45 <LCD> 1 µF D11 D12 2 RB8 R8 12 kΩ 8 +IN8(C) R41 C41 1 µF D9 Q8 C20 100 pF 7 −IN8(C) R48 68 kΩ R49 10 kΩ OUT8 C40 1 µF D8 DTC8 GND(O)-2 3 1 36 kΩ R42 20 kΩ 27 C VCC CTL-2 29 28 CTL-1 CTL-3 30 CTL-4 31 CS H : ON (Power/CH1, 3, 4, 8) L : OFF (Standby mode) 32 C30 0.1 µF VB 36 C32 0.1 µF 35 Synchronous signal 3V∼5V 0V 30 SYNC RT R45 12 kΩ 33 34 CT C31 100 pF 26 CSCP 24 VREF C29 0.1 µF 25 GND (64 pin) MB3881 • Enlarged view of A Vo1 (2.0 V) A VCC(O)-1 58 FB1 A R17 12 kΩ R18 20 kΩ 47 C21 0.1 µF R9 1 kΩ 50 49 46 −IN1 CH1 33 µH R1 OUT1-1 240 Ω C13 2200 pF VSS(O)-1 C33 C1 1 µF Q9 D1 2.2 µF 52 VDD(O) 51 DTC1 L1 Q1 OUT1-2 48 B C8 2.2 µF L3 Q2 FB2 B R19 20 kΩ R20 16 kΩ 44 C22 0.1 µF R10 1 kΩ 53 43 −IN2 DTC2 L2 15 µH C34 C2 1 µF Q10 D2 2.2 µF CH2 54 R33 24 kΩ 15 µH R2 75 Ω OUT2-1 C14 3900 pF OUT2-2 Vo3 (5.0 V) 45 R34 47 kΩ C C9 2.2 µF L5 Q3 FB3 C R21 39 kΩ R22 13 kΩ R46 24 kΩ 41 C23 0.1 µF R11 1 kΩ 56 40 −IN3 DTC3 15 µH R3 75 Ω OUT3 C15 3900 pF L4 6.8 µH C35 C3 1 µF D3 2.2 µF CH3 42 R47 47 kΩ Q4 FB4 D R23 39 kΩ R24 13 kΩ R35 24 kΩ 38 C24 0.1 µF R12 1 kΩ 57 37 −IN4 DTC4 R36 47 kΩ Vo2 (2.8 V) 15 µH R4 75 Ω OUT4 C16 3900 pF Vo4 (5.0 V) D C10 2.2 µF L7 L6 6.8 µH C36 C4 1 µF D4 2.2 µF CH4 39 GND(O)-1 55 31 MB3881 • Enlarged view of B Vo5 (DRUM) E 59 FB5 E Vin (3.6 V) R25 5.1 kΩ 20 C25 0.1 µF R13 1 kΩ 60 21 −IN5 R26 20 kΩ −IN5(C) Motor control signal +IN5 DTC5 63 L8 Q5 VCC(O)-2 R5 3 kΩ OUT5 C17 470 pF 33 µH C37 C5 1 µF D5 2.2 µF VSS(O)-2 CH5 23 22 19 Vo6 (CAP) F L9 Q6 FB6 F R27 15 kΩ 14 C26 0.1 µF R14 1 kΩ 61 R6 1 kΩ OUT6 C18 680 pF 15 −IN6 33 µH C38 C6 1 µF D6 2.2 µF R28 20 kΩ −IN6(C) CH6 17 Motor control signal 16 +IN6 R43 24 kΩ OVP 18 R44 Overvoltage 47 kΩ threshold setting voltage DTC6 13 Vo7 (B.L) G C11 2.2 µF L11 Q7 FB7 G R29 75 kΩ 10 C27 0.1 µF R15 1 kΩ 62 R30 15 kΩ CH7 +IN7 12 Back light luminousity switching signal R37 24 kΩ DTC7 R38 47 kΩ 32 9 C39 C19 2200 pF 11 −IN7 15 µH R7 100 Ω OUT7 1 µF L10 15 µH C7 D7 2.2 µF MB3881 • Enlarged view of C H FB8 4 C28 0.1 µF R31 R16 130 kΩ 1 kΩ 5 −IN8 R32 10 kΩ R39 30 kΩ VSS(0) (1.8 V) VCC(0) (5.8 V) +IN8 R40 10 kΩ H 6 CH8 C46 1 µF 64 C20 100 pF T1 D10 C42 1 µF D11 D12 C43 1 µF C44 1 µF D13 C45 1 µF Vo8-1 (15 V) <CCD> Vo8-2 (7 V) <LCD> Vo8-3 (−7 V) <CCD> Vo8-4 (−15 V) <LCD> 2 RB8 R8 12 kΩ 8 R49 +IN8(C) 10 kΩ DTC8 GND(O)-2 3 1 36 kΩ R42 20 kΩ 27 VCC CTL-2 29 28 CTL-1 CTL-3 30 CTL-4 31 CS C41 1 µF D9 Q8 7 −IN8(C) R48 68 kΩ R41 OUT8 C40 1 µF D8 H : ON (Power/CH1, 3, 4, 8) L : OFF ( Standby mode ) 32 (64 pin) C30 0.1 µF VB 36 C32 0.1 µF 35 Synchronous signal SYNC 3V∼5V 0V RT R45 12 kΩ 33 34 CT 26 C31 100 pF CSCP 24 VREF C29 0.1 µF 25 GND 33 MB3881 ■ PARTS LIST COMPONENT ITEM SPECIFICATION VENDOR PARTS No. Q1 to Q7 Q8 Q9, Q10 PNP Tr NPN Tr FET VCEO = −12 V VCEO = 15 V VDSS = 30 V SANYO SANYO Fairchild CPH3106 CPH3206 NDS355AN D1 to D9 D10 to D13 Diode Diode VF = 0.42 V (max.) , IR = 1 mA VF = 0.77 V, IR = 10 µA (max.) ORIGIN ORIGIN F1J2H F02J9 L1 L2, L3 L4 L5 L6 L7 L8, L9 L10, L11 Coil Coil Coil Coil Coil Coil Coil Coil TDK TDK TDK TDK TDK TDK TDK TDK SLF6028T-330MR69 SLF6028T-150M1R0 SLF6028T-6R8M1R5 SLF6028T-150M1R0 SLF6028T-6R8M1R5 SLF6028T-150M1R0 SLF6028T-330MR69 SLF6028T-150M1R0 T1 Transformer SUMIDA CLQ72B C1 to C11 C13 C14 to C16 C17 C18 C19 C20 C21 to C30 C31 C32 C33 to C46 Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor 2.2 µF 2200 pF 3900 pF 470 pF 680 pF 2200 pF 100 pF 0.1 µF 100 pF 0.1 µF 1 µF 16 V 50 V 50 V 50 V 50 V 50 V 50 V 16 V 50 V 16 V 25 V R1 R2 to R4 R5 R6 R7 R8 R9 to R16 R17 R18, R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor 240 Ω 75 Ω 3 kΩ 1 kΩ 100 Ω 12 kΩ 1 kΩ 12 kΩ 20 kΩ 16 kΩ 39 kΩ 13 kΩ 39 kΩ 13 kΩ 5.1 kΩ 20 kΩ 15 kΩ 20 kΩ 75 kΩ 15 kΩ 130 kΩ 10 kΩ 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 33 µH 15 µH 6.8 µH 15 µH 6.8 µH 15 µH 33 µH 15 µH 0.69 A, 148 mΩ 1 A, 74.5 mΩ 1.5 A, 35.4 mΩ 1A, 74.5 mΩ 1.5 A, 35.4 mΩ 1 A, 74.5 mΩ 0.69 A, 148 mΩ 1 A, 74.5 mΩ (Continued) 34 MB3881 (Continued) COMPONENT ITEM R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor SPECIFICATION 24 kΩ 47 kΩ 24 kΩ 47 kΩ 24 kΩ 47 kΩ 30 kΩ 10 kΩ 36 kΩ 20 kΩ 24 kΩ 47 kΩ 12 kΩ 24 kΩ 47 kΩ 68 kΩ 10 kΩ VENDOR PARTS No. 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W Note : SANYO : SANYO Electric Co., Ltd. Fairchild : Fairchild Semiconductor Corporation ORIGIN : Origin Electric Co., Ltd. TDK : TDK Corporation SUMIDA : Sumida Electric Co., Ltd. 35 MB3881 ■ REFERENCE DATA Conversion efficiency vs. load current (CH1 : Down conversion method with synchronous rectification) 95 Iin Conversion efficiency η (%) 94 93 To OUT1-1 92 L2 33 µH Vin R1 240 Ω IL C1 C37 91 1 µF C15 2200 pF 90 VO1 (2.0 V) A Q1 Q9 D1 2.2 µF To OUT1-2 η= 89 88 Ta = +25 °C 2 V output VCC (O) = Vin + 2.2 V VSS (O) = Vin − 1.8 V 87 86 85 0 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V Vin = 6 V VO1 × IL Vin × Iin × 100 (%) 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) Conversion efficiency vs. load current (CH2 : Zeta method with synchronous rectification) 90 Iin Conversion efficiency η (%) 88 Q2 C10 15 µH Vin 86 84 To OUT2-1 82 R2 75 Ω L3 C38 C16 3900 pF VO2 (2.8 V) B 2.2 µF L4 1 µF IL 15 µH C2 Q10 D2 2.2 µF 80 To OUT2-2 78 76 Ta = +25 °C 2.8 V output VCC (O) = Vin + 2.2 V VSS (O) = Vin − 1.8 V 74 72 70 0 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V Vin = 6 V η= VO2 × IL Vin × Iin × 100 (%) 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) (Continued) 36 MB3881 (Continued) Conversion efficiency vs. load current (CH3 : Zeta method ) To VDD (O) 90 Conversion efficiency η (%) 88 Iin 86 Q3 C11 2.2 µF To OUT3 R3 75 Ω L5 C39 6.8 µH 82 C17 3900 pF 80 1 µF Ta = +25 °C 5 V ouputt VCC (O) = Vin + 2.2 V VSS (O) = Vin − 1.8 V 74 72 70 0 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V Vin = 6 V IL C3 D3 2.2 µF 78 76 L6 15 µH Vin 84 VO3 (5.0 V) C η= VO3 × IL Vin × Iin × 100 (%) 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) 37 MB3881 ■ USAGE PRECAUTION 1. Never use setting exceeding maximum rated conditions. Exceeding maximum rated conditions may cause permanent damage to the LSI. Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding recommended operating conditions may adversely affect LSI reliability. 2. Use this device within recommended operating conditions. Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed conditions for each parameter. 3. Printed circuit board ground lines should be set up with consideration for common impedance. 4. Take appropriate static electricity measures. • • • • Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. Work platforms, tools, and instruments should be properly grounded. Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground. 5. Do not apply negative voltages. The use of negative voltages below –0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation. ■ ORDERING INFORMATION Part number MB3881PFF 38 Package 64-pin plastic LQFP (FPT-64P-M16) Remarks MB3881 ■ PACKAGE DIMENSION 64-pin plastic LQFP (FPT-64P-M16) 9.00±0.20(.354±.008)SQ 1.70(.067)MAX 7.00±0.20(.276±.008)SQ 1.40±0.10 (.055±.004) 0.10±0.10 (.004±.004) 48 33 49 32 Details of "A" part 0.10(.004) (1.00(.039)) INDEX 64 17 1 16 0.40(.016) C 0.18±0.03 (.007±.001) 0.50±0.25 (.020±.010) "A" 3.5°±3.5° +0.10 0.15 –0.05 .006 +.004 –.002 1999 FUJITSU LIMITED F64027SC-2-1 Dimensions in: mm (inches) 39 MB3881 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ F0004 FUJITSU LIMITED Printed in Japan All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.