FUJITSU MB3892

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-27802-1E
ASSP For Power Management Applications (Mobile Phones)
Power Management IC for Mobile
Phone
MB3892
■ DESCRIPTION
MB3892 is a low-saturation voltage type series regulator contains 3 channels for the baseband regulator, 1 channel
for the backup regulator, 6 channels for the RF regulator, and 1 channel for the variable regulator. MB3892 is built
in reset circuit, serial control circuit, operation Amp. for charge control of Lithium ion battery, LED drive circuit,
receiver Amp., loudspeaker drive Amp., sounder circuit, vibrator drive circuit, and 4-ch D/A converter and the
devices is miniaturized by systematization of built-in power supply for mobile phone.
■ FEATURES
• Power supply voltage range
•
•
•
•
•
•
: VB = 2.85 V to 5.5 V
: EXTVCC = 3.0 V to 6.5 V
: 100 µA (Max.)
Low power consumption current during standby
Built-in low-saturation voltage type series regulator
Built-in power-on reset function
Built-in serial control function
Built-in operation Amp. for charge control of Lithium ion battery
Special power off function
(To prevent battery discharge, this function controls the power consumption current of main IC under 11 µA
(typ.) on the shipment.)
■ PACKAGE
80-pin plastic LQFP
(FPT-80P-M17)
MB3892
■ PIN ASSIGNMENT
(TOP VIEW)
D/A
60 : D/AOUT4
59 : IPOFF
58 : VB4
57 : VBDET
56 : 3VDET
55 : GND6
54 : EXTS
53 : VA
52 : EXTVCC
51 : CHGDET
50 : CHGOUT
49 : CHGV
48 : BATT
47 : CHGI
46 : VBH
45 : VB3
44 : CHGBAT
43 : GND5
42 : RFOUT1
41 : RFCTL1
Power control + Charge control
D/AOUT3 : 61
D/AOUT2 : 62
D/AOUT1 : 63
40 : RFOUT2
39 : RFCTL2
38 : RFOUT3
37 : RFCTL3
36 : RFCTL4
35 : RFOUT4
34 : VB2
33 : RFOUT6
32 : RFCTL6
31 : RFCTL5
30 : RFOUT5-1
29 : RFOUT5-2
28 : VB1
27 : VREF
26 : OUTB
25 : OUTA
24 : GND4
23 : SPOUTB
22 : SPOUTA
21 : V30R
GND7 : 64
D/AREF : 65
Variable
REG
BATTREG
BBREG3
BBREG2
BBREG1
Reset
GND8 : 66
VREGIN : 67
VREGOUT : 68
BATTOUT : 69
VB5 : 70
OUT3 : 71
OUT2-1 : 72
OUT2-2 : 73
VB6 : 74
OUT1 : 75
CTP : 76
RESET : 77
VIBREG-1 : 78
VIBREG-2 : 79
VB7 : 80
Sounder
Serial
control
Reset
LED drive
LEDR : 1
LEDO1 : 2
GND1 : 3
LEDO2 : 4
RESETIN : 5
DAT : 6
SCLK : 7
STBIN : 8
GND2 : 9
IN1 : 10
IN2 : 11
IN3 : 12
VO3 : 13
VO2 : 14
GND3 : 15
VO1 : 16
N.C. : 17
BP : 18
IN : 19
FB : 20
VIBREG
(FPT-80P-M17)
2
RFREG1 to
RFREG4, RFREG6
RFREG5
Receiver Amp.
Loudspeaker Amp.
MB3892
■ PIN DESCRIPTION
Pin No.
Symbol
I/O
Descriptions
1
LEDR
O
LEDR output pin. (an open collector output)
2
LEDO1
O
LED1 output pin. (an open drain output)
3
GND1

Ground pin.
4
LEDO2
O
LED2 output pin. (an open drain output)
5
RESETIN
I
Reset detect comparator input pin.
6
DAT
I
Serial data input pin.
7
SCLK
I
Serial clock input pin.
8
STBIN
I
Strobe input pin.
9
GND2

10
IN1
I
Sounder1 control input pin.
11
IN2
I
Sounder2 control input pin.
12
IN3
I
Sounder3 control input pin.
13
VO3
O
Sounder3 control output pin. (an open drain output)
14
VO2
O
Sounder2 control output pin. (an open drain output)
15
GND3

Ground pin.
16
VO1
O
Sounder1 control output pin. (an open drain output)
17
N.C.

No connection pin.
18
BP

Bypass pin.
19
IN
I
Non-inverted input pin.
20
FB
I
Inverted input pin.
21
V30R

Power supply pin for speaker Amp.
22
SPOUTA
O
Output A pin for loudspeaker Amp.
23
SPOUTB
O
Output B pin for loudspeaker Amp.
24
GND4

Ground pin.
25
OUTA
O
Output A pin for receiver Amp.
26
OUTB
O
Output B pin for receiver Amp.
27
VREF
O
Reference output voltage pin.
28
VB1

Power supply pin.
29
RFOUT5-2
O
RF REG5 output pin2. (Short circuiting to pin 30)
30
RFOUT5-1
O
RF REG5 output pin1. (Short circuiting to pin 29)
31
RFCTL5
I
RF REG5 control pin.
32
RFCTL6
I
RF REG6 control pin.
33
RFOUT6
O
RF REG6 output pin.
34
VB2

Power supply pin.
Ground pin.
(Continued)
3
MB3892
Pin No.
Symbol
I/O
Descriptions
35
RFOUT4
O
RF REG4 output pin.
36
RFCTL4
I
RF REG4 output pin.
37
RFCTL3
I
RF REG3 control pin.
38
RFOUT3
O
RF REG3 output pin.
39
RFCTL2
I
RF REG2 control pin.
40
RFOUT2
O
RF REG2 output pin.
41
RFCTL1
I
RF REG1 control pin.
42
RFOUT1
O
RF REG1 output pin.
43
GND5

Ground pin.
44
CHGBAT

Main charge pin.
45
VB3

Power supply pin.
46
VBH
I
Main charge pin.
47
CHGI
O
Main charge pin.
48
BATT
O
A/D input pin.
49
CHGV
I
Main charge pin.
50
CHGOUT
O
Main charge pin.
51
CHGDET
O
Main charge pin.
52
EXTVCC

Power supply pin for charge control.
53
VA
I
Preliminary charge pin.
54
EXTS
O
Preliminary charge pin.
55
GND6

Ground pin.
56
3VDET
O
Power supply detector pin.
57
VBDET
I
Power supply detector pin.
58
VB4

59
IPOFF
I
Special power off input pin.
60
D/AOUT4
O
10 bit D/A output pin.
61
D/AOUT3
O
8 bit D/A3 output pin.
62
D/AOUT2
O
8 bit D/A2 output pin.
63
D/AOUT1
O
8 bit D/A1 output pin.
64
GND7

Ground pin.
65
D/AREF
I
66
GND8

67
VREGIN
I
Variable REG reference voltage input pin.
68
VREGOUT
O
Variable REG output pin.
Power supply pin.
D/A reference voltage input pin.
Ground pin.
(Continued)
4
MB3892
(Continued)
Pin No.
Symbol
I/O
Descriptions
69
BATTOUT
O
Backup REG output pin.
70
VB5

Power supply pin.
71
OUT3
O
Baseband REG3 output pin.
72
OUT2-1
O
Baseband REG2 output pin. (Short circuiting to pin 73)
73
OUT2-2
O
Baseband REG2 output pin. (Short circuiting to pin 72)
74
VB6

Power supply pin.
75
OUT1
O
Baseband REG1output pin.
76
CTP
I
Setting pin for power-on reset hold time.
77
RESET
O
Reset output pin.
78
VIBREG-1
O
Vibrator REG output pin. (Short circuiting to pin 79)
79
VIBREG-2
O
Vibrator REG output pin. (Short circuiting to pin 78)
80
VB7

Power supply pin.
5
D/AREF
VREGIN
6
BGR
21 18 20 19
13 14 16
15
10 11 12
IN3
8
STBIN
7
SCLK
6
To each
REG
Temperature
protection
To each REG
DAT
GND2
RESETIN
VO2
OUT2
4.7 µF
100 kΩ
Receiver
Amp.
1 kΩ
RFREG6
100 kΩ
RFREG5
100 kΩ
RFREG4
100 kΩ
RFREG3
100 kΩ
RFREG2
100 kΩ
RFREG1
Loudspeaker
Amp.
Charge control
(Power by EXTVCC)
GND3
9
Power control
EXBGR
VO1
5
Serial control
Power by REG1
Reset at reset circuit/
Temperature protection
Sounder
To each
REG
Special power
OFF
IN
FB
17
N.C.
GND1 3
LEDO2 4
LEDO1 2
D/AOUT1
LED drive
D/AOUT2
VIBREG
D/AOUT3
VB7 80
VIBREG (1.5 V/200 mA) VIBREG-1
78
10 µF
79
VIBREG-2
LEDR 1
D/AOUT4
2.2 µF
GND7
BBREG1
IPOFF
75
VB4
OUT1 (2.85 V/110 mA)
GND6
VB6 74
VBDET
Reset circuit
Power by BBREG1
EXTS
BBREG2
3VDET
VB5 70
OUT2 (2.85 V/150 mA) OUT2-1
72
10 µF
73
OUT2-2
76
CTP
0.1 µF
RESET 77
VA
2.2 µF
EXTVCC
BBREG3
CHGDET
71
CHGOUT
OUT3 (2.85 V/60 mA)
BATT
10 µF
CHGV
BATTREG
VBH
69
CHGI
1 kΩ
VB3
BATTOUT (3.1 V)
CHGBAT
D/A × 4 ch
Power by
BBREG1
VB2
59 58 55 57 56 54 53 52 51 50 49 48 47 46 44 45 43 34 28
GND5
63 62 61 60 64
VB1
67
65
100 kΩ
GND8 66
VREGOUT (10 mA)
68 Variable REG
10 µF
VREF
15 kΩ
4.7 kΩ
15 kΩ
VREF (1.23 V)
27
1 µF
OUTB
26
0.1 µF
OUTA
25
GND4
0.1 µF
24
SPOUTB
23
0.1 µF
SPOUTA
22
0.1 µF
RFOUT6 (2.85 V/50 mA)
33
4.7 µF
32 RFCTL6
RFOUT5-1
30
RFOUT5 (2.85 V/200 mA)
29
RFOUT5-2 3.3 µF
31 RFCTL5
RFOUT4 (2.85 V/60 mA)
35
3.3 µF
36 RFCTL4
RFOUT3 (2.85 V/20 mA)
38
2.2 µF
37 RFCTL3
RFOUT2 (2.85 V/20 mA)
40
2.2 µF
39 RFCTL2
RFOUT1 (2.85 V/10 mA)
42
2.2 µF
41 RFCTL1
MB3892
■ BLOCK DIAGRAM (General)
BP
V30R
VO3
IN2
IN1
Serial signal data
+
−
100 kΩ
VBDET
3VDET
57
56
3VDET
Other condition
VREF
VB4
H : OFF Special power off : OFF
L : ON No EXTVCC : OFF
H : OFF
Special power off : OFF
L : ON
H : ON
L : OFF
SW3
SW4 BIASSW
SW5
SW6 BIASSW
SW7 CHGISEL
SW1
H : OFF Special power off : OFF
PRCHGOFF
SW2
L : ON VB 4 V detector : OFF
SW
SW Condition chart
490
kΩ
725
kΩ
58
−
+
54
VREF
+
−
EXTS
−
+
SW1
53
100
kΩ
6.2 kΩ
LEDR
VA
−
+
4.7 kΩ
47 kΩ
+
−
49
+
−
44
SW6
SW3
7.5 kΩ
33
kΩ
50
kΩ
33
kΩ
50
kΩ
CHGBAT
SW7
12.5 kΩ
CHGV
CPU
SW4
20 kΩ
2.5 kΩ
SW5 2.5 kΩ
490
kΩ
546
kΩ
SW2
200 kΩ
+
−
CHGDET
CHGOUT
51
50
100 kΩ
EXTVCC
47 kΩ
52
ADP
CHGI
47
VBH
46
VB3
45
BATT
48
A/D
A/D
MB3892
• Charge control
7
MB3892
• Speaker Amp.
ON/
OFF
PDSP
PDRCV
BIAS
PDSP
L
CHOISE
H L
H
18 kΩ
BP
18
5 kΩ
4.7 µF +
−
24 kΩ
30
kΩ
+
−
OUTB
26
10 kΩ
+
−
10 kΩ
+
−
SPOUTB
23
10 kΩ
30 kΩ
PDSP
Receiver Amp.
32 Ω
25
OUTA
L
IN
19
5 kΩ
H
30
kΩ
30 kΩ
L
FB
20
Loudspeaker Amp.
+
−
22
SPOUTA
H
Rfb
BUZZSEL
Rfb
Rin
PDRCV
8
PDSP CHOISE BUZZSEL
Operating Amp.

8Ω
10 kΩ
Cin
Operation mode
L
L
×
×
H
L
H
L
Receiver Amp.
Receiver (BTL drive)
H
L
L
L
Receiver Amp.
Earphone mode (single drive)
L
H
H
L
Loudspeaker Amp. Loudspeaker Amp. (BTL drive)
L
H
L
H
Loudspeaker Amp. Short wave form output (open collector)
H
H
×
L
When both of PDRCV/PDSP is “H” level,
Loudspeaker Amp. the operation of loudspeaker Amp. has
priority.
Standby
MB3892
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Power supply voltage
Baseband regulator output current
Symbol
Conditions
VB
EXTVCC
Rating
Unit
Min.
Max.


7
V


7
V
IO
BBREG1

−110
mA
IO
BBREG2

−150
mA
IO
BBREG3

−60
mA
Receiver Amp. output current
IO


150
mA
Loudspeaker Amp. output current
IO


400
mA
Vibrator regulator output current
IO


−200
mA
RF regulator output current
IO
RFREG1

−10
mA
IO
RFREG2

−20
mA
IO
RFREG3

−20
mA
IO
RFREG4

−60
mA
IO
RFREG5

−200
mA
IO
RFREG6

−50
mA

−15
mA

1420 *
mW
−55
+125
°C
Variable regulator output current
IO
Power dissipation
PD
Storage temperature
Tstg

Ta ≤ +25 °C

*: The packages are mounted on the dual-sided epoxy board(10 cm × 10 cm)
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
9
MB3892
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Power supply voltage
REG capacitor
ESR guarantee value
Operating ambient
temperature
Symbol
Conditions
VB
Value
Unit
Min.
Typ.
Max.

2.85

5.5
V
EXTVCC
Under 4.5 V preliminary charge
circuit is not operated normally
3.0

6.5
V
RESR

0.4

7
Ω
Ta

−30
+25
+80
°C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
10
MB3892
■ ELECTRICAL CHARACTERISTICS
• Power control
Parameter
Reference
voltage
Symbol
Pin No.
VREF
27
VREF = 0 mA
1.19
1.23
1.27
V
VO1
75
OUT1 = 0 mA
2.79
2.85
2.91
V
VOLD1
75
OUT1 = −110 mA
2.79
2.85
2.91
V
Line
75
VB = 3.1 to 4.8 V,
OUT1 = −10 mA


20
mV
Load
75
OUT1 = 0 to −110 mA
−30

0
mV
R.R
75
Vin = 0.2 Vrms,
f = 1 kHz,
OUT1 = −10 mA

−50*

dB
Reverse current
IREV
75
VB = 0 to 5 V or
VB = Open

30
43
µA
Rise time
TR
75
OUT1 = 2.2 µF,
OUT1 = 27 Ω


60
µs
VO2
72, 73
OUT2 = 0 mA
2.79
2.85
2.91
V
VOLD2
72, 73
OUT2 = −150 mA
2.79
2.85
2.91
V
Line
72, 73
VB = 3.1 to 4.8 V,
OUT2 = −10 mA


20
mV
Load
72, 73
OUT2 = 0 to −150 mA
−30

0
mV
R.R
72, 73
Vin = 0.2 Vrms,
f = 1 kHz,
OUT2 = −10 mA

−50*

dB
TR
72, 73
OUT2 = 10 µF,
OUT2 = 20 Ω


190
µs
VO3
71
OUT3 = 0 mA
2.79
2.85
2.91
V
VOLD3
71
OUT3 = −60 mA
2.79
2.85
2.91
V
Line
71
VB = 3.1 to 4.8 V,
OUT3 = −10 mA


20
mV
Load
71
OUT3 = 0 to −60 mA
−30

0
mV
R.R
71
Vin = 0.2 Vrms,
f = 1 kHz,
OUT3 = −10 mA

−50*

dB
Reverse current
IREV
71
VB = 0 to 5 V or
VB = Open

0
1
µA
Rise time
TR
71
OUT3 = 2.2 µF,
OUT3 = 47 Ω


105
µs
Reference
voltage
Output voltage
Line regulation
Load regulation
Baseband
regulator
[BBREG1] Ripple rejection
Output voltage
Line regulation
Baseband
regulator Load regulation
[BBREG2]
Ripple rejection
Rise time
Output voltage
Line regulation
Load regulation
Baseband
regulator
[BBREG3] Ripple rejection
Conditions
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
* : Standard design value
(Continued)
11
MB3892
Parameter
Symbol Pin No.
Conditions
Output voltage
Backup
Output current
regulator
[BATTREG]
Reverse current
VBATT
69
BATTOUT = 0 mA
IBATT
69
IREV
Vibrator
drive circuit Output voltage
[VIBREG]
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
3.00
3.10
3.20
V
BATTOUT = 0 V

−3.1

mA
69
VB = 0 to 5 V or
VB = Open

0
1
µA
VO
78, 79
VIBREG = 0 mA
1.44
1.50
1.56
V
VOLD
78, 79
VIBREG = −200 mA
1.38
1.50
1.56
V
VO1
42
RFOUT1 = 0 mA
2.79
2.85
2.91
V
VOLD1
42
RFOUT1 = −10 mA
2.79
2.85
2.91
V
Line
42
VB = 3.1 to 4.8 V,
RFOUT1 = −10 mA


20
mV
RF regulator Load regulation
[RFREG1]
Load
42
RFOUT1 = 0 to −10 mA
−30

0
mV
Ripple rejection
R.R
42
Vin = 0.2 Vrms,
f = 1 kHz,
RFOUT1 = −10 mA

−55*

dB
TR
42
RFOUT1 = 2.2 µF,
RFOUT1 = 300 Ω


630
µs
VO2
40
RFOUT2 = 0 mA
2.79
2.85
2.91
V
VOLD2
40
RFOUT2 = −20 mA
2.79
2.85
2.91
V
Line
40
VB = 3.1 to 4.8 V,
RFOUT2 = −10 mA


20
mV
RF regulator Load regulation
[RFREG2]
Load
40
RFOUT2 = 0 to −20 mA
−30

0
mV
Ripple rejection
R.R
40
Vin = 0.2 Vrms,
f = 1 kHz,
RFOUT2 = −10 mA

−55*

dB
TR
40
RFOUT2 = 2.2 µF,
RFOUT2 = 150 Ω


315
µs
VO3
38
RFOUT3 = 0 mA
2.79
2.85
2.91
V
VOLD3
38
RFOUT3 = −20 mA
2.79
2.85
2.91
V
Line
38
VB = 3.1 to 4.8 V,
RFOUT3 = −10 mA


20
mV
RF regulator Load regulation
[RFREG3]
Load
38
RFOUT3 = 0 to −20 mA
−30

0
mV
Ripple rejection
R.R
38
Vin = 0.2 Vrms,
f = 1 kHz,
RFOUT3 = −10 mA

−55*

dB
TR
38
RFOUT3 = 2.2 µF,
RFOUT3 = 150 Ω


315
µs
Output voltage
Line regulation
Rise time
Output voltage
Line regulation
Rise time
Output voltage
Line regulation
Rise time
* : Standard design value
(Continued)
12
MB3892
(Ta = +25 °C, VB = 3.6 V)
Parameter
Symbol Pin No.
Conditions
Value
Min.
Typ.
Max.
Unit
VO4
35
RFOUT4 = 0 mA
2.79
2.85
2.91
V
VOLD4
35
RFOUT4 = −60 mA
2.79
2.85
2.91
V
Line
35
VB = 3.1 to 4.8 V,
RFOUT4 = −10 mA


20
mV
RF regulator Load regulation
[RFREG4]
Load
35
RFOUT4 = 0 to −60 mA
−30

0
mV
Ripple rejection
R.R
35
Vin = 0.2 Vrms,
f = 1 kHz,
RFOUT4 = −10 mA

−55*

dB
TR
35
RFOUT4 = 3.1 µF,
RFOUT4 = 51 Ω


160
µs
VO5
29, 30
RFOUT5 = 0 mA
2.79
2.85
2.91
V
VOLD5
29, 30
RFOUT5 = −200 mA
2.79
2.85
2.91
V
Line
29, 30
VB = 3.1 to 4.8 V,
RFOUT5 = −10 mA


20
mV
RF regulator Load regulation
[RFREG5]
Load
29, 30
RFOUT5 = 0 to −200 mA
−30

0
mV
Ripple rejection
R.R
29, 30
Vin = 0.2 Vrms,
f = 1 kHz,
RFOUT5 = −10 mA

−55*

dB
TR
29, 30
RFOUT5 = 3.3 µF,
RFOUT5 = 15 Ω


50
µs
VO6
33
RFOUT6 = 0 mA
2.79
2.85
2.91
V
VOLD6
33
RFOUT6 = −50 mA
2.79
2.85
2.91
V
Line
33
VB = 3.1 to 4.8 V,
RFOUT6 = −10 mA


20
mV
RF regulator Load regulation
[RFREG6]
Load
33
RFOUT6 = 0 to −50 mA
−30

0
mV
Ripple rejection
R.R
33
Vin = 0.2 Vrms,
f = 1 kHz,
RFOUT6 = −10 mA

−55*

dB
TR
33
RFOUT6 = 4.7 µF,
RFOUT6 = 62 Ω


270
µs
Output voltage
Line regulation
Rise time
Output voltage
Line regulation
Rise time
Output voltage
Line regulation
Rise time
* : Standard design value
(Continued)
13
MB3892
(Continued)
Parameter
Symbol
Pin No.
Conditions
VIL
41, 39, 37,
36, 31, 32

0

OUT1 ×
0.3
V
VIH
41, 39, 37,
36, 31, 32

OUT1 ×
0.7

OUT1
V
IIL
41, 39, 37, RFCTL1 to RFCTL6
36, 31, 32 = 0 V
−1

1
µA
IIH
41, 39, 37, RFCTL1 to RFCTL6
36, 31, 32 = 2.85 V
22
28.5
41
µA
Input voltage
RF regulator
control
Input current
Input voltage
range
VIN
67

1.67

2.38
V
Output voltage
range
VO
68

2.00

2.85
V
VOP
68

−2.5

2.5
%
IO
68

−10


mA
IIL
67
VREGIN = 0 V
−1

1
µA
IIH
67
VREGIN = 2.85 V
22
28.5
41
µA


8
bit


10
bit
Variable bias
Output voltage
regulator
[VARREG] precision
Output current
Input current
System
resolution
D/A
converter
Differential
non-linear type
linearity error


63, 62, 61 D/A1 to D/A3
60
D/A4
60
D/A4 (Input code is 200)
−12

+12
LSB
60
D/A4 (Input code is 100,
and 300)
−9

+9
LSB
60
D/A4 (Input code is 080,
180, 280, and 380)
−7

+7
LSB
−4

+4
LSB
63, 62, 61,
Other input code
60
−1.0

+1.0
LSB
LE
D/A1 to D/A3 (Input
63, 62, 61 code is 040, 080, and
0C0)
Output voltage
range
VOC
63, 62, 61, D/AOUT1 to D/AOUT4
60
= −330 µA to 1 mA
0.5

2.5
V
Rise time
TR
63, 62, 61, D/AOUT1 to D/AOUT4
60
= 100 pF


20
µs
63, 62, 61,
60


−77.8
dBm
Output Noise
14
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
VNOVL

MB3892
(Continued)
Parameter
Symbol
Pin No.
Conditions
VSL1
75

2.63
2.685
2.74
V
VSH1
75

2.695
2.75
2.805
V
VOH
77
RESET = −200 µA
OUT1 −
0.3
OUT1

V
VOH
77
RESET = 200 µA

0.01
0.4
V
POR hold time
TPR
77
CTP ≤ 0.1 µF
25
70
115
ms
Rise time
TR
77
RESET = 50 pF


500
ns
Fall time
TF
77
RESET = 50 pF


500
ns
V3VDH
56

2.99
3.05
3.11
V
V3VDL
56

2.79
2.85
2.907
V
Detected
voltage
Power-on
reset
Supply
voltage
detector
Power
control
(General)
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
Output voltage
Detected
voltage
Power
consumption
current
IB1
28, 34, 45,
58, 70, 74, Special power off
80

11
20
µA
IB2
28, 34, 45,
58, 70, 74, Standby
80
50
70
100
µA
IB3
28, 34, 45,
Power on
58, 70, 74,
(waiting) intermittent
80
50
70
100
µA
IB4
28, 34, 45,
Power on (waiting)
58, 70, 74,
receiving
80
190
250
360
µA
IB5
28, 34, 45,
Power on (conversa58, 70, 74,
tion) transmission
80
170
220
315
µA
IB6
28, 34, 45,
Power on (conversa58, 70, 74,
tion) receiving
80
190
250
360
µA
* : Standard design value
Note: IB1 to IB6 of general power control means the total current at VB1 to VB7 terminals the load current is not
included. As for the condition of each regulators at the measurement of power consumption current , please
refer to “■ CONDITIONS of EACH REGURATORS at MEASUREMENT of CONSUMPTION CURRENT”.
15
MB3892
• Speaker Amp.
Parameter
Symbol Pin No.
AV1
Voltage gain
10.1
12.1
dB
14.1
16.1
18.1
dB
AVO
25, 26 f ≤ 100 Hz

80*

dB
PO1
V30R = 3.6 V,
25, 26 OUTA to OUTB = 32 Ω,
THD = 10%
60
90

mW
PO2
V30R = 2.85 V,
25, 26 OUTA to OUTB = 32 Ω,
THD = 10%
30
45

mW
Output voltage
VO
25, 26 OUTA to OUTB = no load
3.8
5.5

V
Offset voltage
between output
VOO
25, 26
−50

50
mV
Total harmonic
distorition rate
THD
25, 26 PO = 25 mW

0.5
1.0
%
Ripple rejection
R.R
25, 26

−45*

dB


0.1
s
14.1
16.1
18.1
dB

80*

dB
Output power


Rise time
TR
25, 26 BP = 1 V, BP = 4.7 µF
Voltage gain
AV
BTL drive, INV input
22, 23 FB = 4.7 kΩ,
FB to SPOUTA = 15 kΩ
Open-ended
voltage gain
AVO
22, 23 f ≤ 100 Hz
PO1
22, 23
V30R = 3.6 V, SPOUTA to
SPOUTB = 8 Ω, THD = 10%
160
260

mW
PO2
V30R = 2.85 V, SPOUTA to
22, 23 SPOUTB = 8 Ω,
THD = 10%
50
110

mW
Output voltage
VO
22, 23 SPOUTA to SPOUTB
= no load
3.8
5.5

V
Offset voltage
between output
VOO
22, 23
−50

50
mV
Overall harmonic
distorition rate
THD
22, 23 PO = 60 mW

0.5
1.0
%
Ripple rejection
R.R
22, 23

−45*

dB


0.1
s
Output power


Rise time
TR
22, 23 BP = 1 V, BP = 4.7 µF
Input impedance
RIN
19, 20

20
30
50
kΩ
Standby supply
current
ICC1
21


0
10
µA
* : Standard design value
16
8.1
BTL drive, INV input
25, 26 FB = 4.7 kΩ,
FB to OUTA = 15 kΩ
Loud
speaker
Amp.
Speaker
Amp.
Single drive, INV input
FB = 4.7 kΩ,
FB to OUTA = 15 kΩ
AV2
Open-ended
voltage gain
Receiver
Amp.
25
(Ta = +25 °C, VB = V30R = 3.6 V, f = 1 kHz)
Value
Conditions
Unit
Min.
Typ.
Max.
MB3892
• Sounder
Parameter
Output voltage
Output leakage
current
Sounder
Conditions for
input ON
Input current
Conditions
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
Symbol
Pin No.
VO1
16
VO1 = 200 mA

0.3
0.5
V
VO2
14
VO2 = 100 mA

0.3
0.5
V
VO3
13
VO3 = 50 mA

0.3
0.5
V


10
µA
ILEAK
16, 14, 13 VB = VO1 to VO3 = 6 V
VON
10, 11, 12

VB ×
0.7

VB
V
VOFF
10, 11, 12

0.0

VB ×
0.3
V
IIH
10, 11, 12 IN1 to IN3 = 3 V
−1

1
µA
IIL
10, 11, 12 IN1 to IN3 = 0.4V
−1

1
µA
• LED drive
Parameter
Output voltage
LED drive
Output leakage
current
Conditions
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
Symbol
Pin No.
VLE1
2
LEDO1 = 25 mA

0.2
0.4
V
VLE2
4
LEDO2 = 25 mA

0.2
0.4
V
VLER
1
LEDR = 25 mA

0.2
0.4
V
ILEAK
2, 4, 1
VB = VO1 to VO3 = 6 V


10
µA
17
MB3892
• Charge control
Parameter
Symbol
Pin No.
Conditions
∆VCHG
49

Control output
minimum voltage
VCOL
50
Control output
maximum
voltage
VCOH
Control input
current
Control input
range
Charge
control
0.8

2.5
V
EXTVCC = 6 V


0.1
V
50
EXTVCC = 6 V
EXTVCC
− 0.5


V
ICHGV
49
CHGV = 4 V


5
µA
VGG1
50
VB = 4 V,
CHGV = 1.59 V
0.85
1.44
2.15
V
VGG2
50
VB = 4 V,
CHGV = 1.69 V
1.85
2.44
3.15
V
VGG
50
20 log{ (VGG2 − VGG1)
/ 0.1}
18.8
20.8
22.8
dB
VBATT
48
VB = 3.6 V
1.35
1.43
1.52
V
VCHGBAT
44
VB = 3.6 V
1.35
1.43
1.52
V
VBH input
voltage range
VBH
46
EXTVCC = 6 V
1.0

5.0
V
VBH input
leakage current
ILBH
46
VB = VBH = 4 V,
EXTVCC = 0 V


10
µA
VCUR1
47
Low precision
VB = VBH = 3.6 V
1.8
2.0
2.2
V
VCUR2
47
Low precision
VB = 3.6 V,
VBH = 3.75 V
1.05
1.25
1.45
V
VCUR3
47
High precision
VB = VBH = 3.6 V
1.8
2.0
2.2
V
VCUR4
47
High precision
VB = 3.6 V,
VBH = 3.75 V
0.48
0.8
1.12
V
VCURG1
47
20 log{ (VCUR1 − VCUR2)
/ 0.15}
12
14
16
dB
VCURG2
47
20 log{ (VCUR3 − VCUR4)
/ 0.15}
16
18
20
dB
Control output
voltage
Control gain
BATT detected
voltage
Charge
current
detector
(Ta = +25 °C, EXTVCC = 5.2 V)
Value
Unit
Min.
Typ.
Max.
Chage control
output voltage
Current detected
sensitivity
(Continued)
18
MB3892
(Continued)
Parameter
Symbol
Pin No.
Conditions
VB1
28, 34, 45,
58, 70, 74,
80

2.5
2.6
2.7
V
VB2
28, 34, 45,
58, 70, 74,
80

3.8
4.0
4.2
V
IB1
54

40
50
60
mA
IB2
54

80
100
120
mA
VCDL
51
EXTVCC = 2 V,
CHGDET = 0 A


0.3
V
VCDH
51
EXTVCC = 0.6 V,
CHGDET = 0 A
OUT1 −
0.2
OUT1

V
Switching voltage
Preliminary of charge current
charge
circuit
Charge current
Exterenal
power
supply
detector
(Ta = +25 °C, EXTVCC = 5.2 V)
Value
Unit
Min.
Typ.
Max.
CHGDET output
voltage
• Serial control
Parameter
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Min.
Typ.
Max.
Symbol
Pin No.
Conditions
VIL
6, 7, 8

0

OUT1
× 0.3
V
VIH
6, 7, 8

OUT1
× 0.7

OUT1
V
IIL
6, 7, 8
DAT = SCLK = STBIN = 0 V
−1

1
µA
IIH
6, 7, 8
DAT = SCLK = STBIN = 2.85 V
−1

1
µA
Input voltage
Serial
control
Input current
• Special power off
Parameter
Special
power off
Output voltage
Symbol
Pin No.
VIPOFF
59
IPOFF = 0 A
59

IPOFFmode
VRELEASE
release voltage
Conditions
Min.
(Ta = +25 °C, VB = 3.6 V)
Value
Unit
Typ.
Max.
VB − 0.1
VB

V


VB × 0.3
V
19
MB3892
■ TYPICAL CHARACTERISTICS
250
Ta = + 25 °C
200
150
100
50
0
0
1
2
3
4
5
Reference voltage vs. power supply voltage
Reference voltage VREF (V)
Power supply current IB (µA)
Power supply current vs. power supply voltage
1.4
Ta = +25 °C
VREF = 1 µF
1.2
1
0.8
0.6
0.4
0.2
0
0
6
Reference voltage
VREF (V)
1.24
1.23
1.22
1.21
1.2
−25
0
25
50
75
2.85
2.83
2.81
0
2
3
4
5
Power supply voltage VB (V)
−25
0
25
50
75
100
Output voltage vs. power supply voltage (BBREG2)
Output voltage VO2 (V)
Output voltage VO1 (V)
1
0.5
1
VB = 3.6 V
Ambient temperature Ta ( °C)
Ta = +25 °C
OUT1 = 10 µF
0
6
2.87
2.79
−50
100
Output voltage vs. power supply voltage (BBREG1)
4
3.5
3
2.5
2
1.5
5
2.89
Ambient temperature Ta ( °C)
5
4.5
4
2.91
Output voltage VO2 (V)
VB = 3.6 V
VREF = 1 µF
1.25
1.19
−50
3
Output voltage vs. ambient temperature
(BBREG2)
Reference voltage vs. ambient temperature
1.26
2
Power supply voltage VB (V)
Power supply voltage VB (V)
1.27
1
6
5
4.5
4
3.5
3
Ta = +25 °C
OUT2 = 10 µF
2.5
2
1.5
1
0.5
0
0
1
2
3
4
5
6
Power supply voltage VB (V)
(Continued)
20
MB3892
Output voltage VO3 (V)
5
Ta = +25 °C
OUT3 = 2.2 µF
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
1
2
3
4
5
Output voltage vs. power supply voltage (BATTREG)
Output voltage VBATT (V)
Output voltage vs. power supply voltage (BBREG3)
5
4.5
Ta = +25 °C
BATTOUT = 10 µF
4
3.5
3
2.5
2
1.5
1
0.5
0
6
0
Power supply voltage VB (V)
1
4
3
2
6
5
2
3
Input voltage VIN (V)
4
6
Ta = +25 °C
VB = 3.6 V
RFOUT1 = 2.2 µF
0
1
4
3
2
5
6
Input current vs. input voltage (Variable REG)
Input current IIN (µA)
Output voltage VO (V)
Ta = +25 °C
VREGOUT = 10 µF
1
5
Control voltage VRFCTL1 (V)
Output voltage vs. input voltage (Variable REG)
0
4
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
Power supply voltage VB (V)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
3
Output voltage vs. control voltage (RFREG1)
Output voltage VO1 (V)
Output voltage VO1 (V)
Ta = +25 °C
RFOUT1 = 2.2 µF
RFCTL1 = VB
0
2
Power supply voltage VB (V)
Output voltage vs. power supply voltage (RFREG1)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
1
5
200
180
160
140
120
100
80
60
40
20
0
Ta = +25 °C
VREGOUT = 10 µF
0
1
2
3
4
5
Input voltage VIN (V)
(Continued)
21
MB3892
Ta = +25 °C
VB = 3.6 V
D/AREF = VREF
Digital input ALL“L”
0.4
0.8
1.2
1.6
Ta = +25 °C
VB = 3.6 V
D/AREF = VREF
Digital input ALL“H”
−0.2
0
2
Output current IDAOUT1 (mA)
0.4
Output voltage VDAOUT4 (V)
Output voltage VDAOUT4 (V)
0.8
1.2
1.6
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
1.8
1.6
−0.2
0
2
2.7
2.75
2.8
2.85
REG1 Output voltage VO1 (V)
2.9
Power supply voltage
VB (V)
Output voltage
VO1 (V)
Output voltage VRESET (V)
Ta = +25 °C
2.65
−0.4
−0.6
−0.8
−1
Output current IDAOUT4 (mA)
Reset output voltage vs. REG1 output voltage
2.6
−1
Ta = +25 °C
VB = 3.6 V
D/AREF = VREF
Digital input ALL“H”
Output current IDAOUT4 (mA)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
−0.8
DA4 output voltage vs. output current
Ta = +25 °C
VB = 3.6 V
D/AREF = VREF
Digital input ALL“L”
0
−0.6
Output current IDAOUT1 (mA)
DA4 output voltage vs. output current
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
−0.4
Hold time for power-on-reset
4
VB
2
0
Ta = +25 °C
VB = 0 V 3.6 V
OUT1 = 10 µF
VREF = 1 µF
RESET = 50 pF
CTP = 0.1 µF
RESETIN =
1000 pF
2
1
VREF
4
Reference voltage
VREF (V)
0
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
1.8
1.6
0
2
OUT1
4
0
RESET
2
0
0
10 20 30 40
50 60 70 80 90 100
Reset input voltage
VRESET (V)
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
DA1 output voltage vs. output current
Output voltage VDAOUT1 (V)
Output voltage VDAOUT1 (V)
DA1 output voltage vs. output current
t (ms)
(Continued)
22
MB3892
Power supply voltage detected output
voltage vs. power supply voltage
Power supply voltage detected output
voltage vs. power supply voltage
Ta = +25 °C
0
1
2
3
4
5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
2.5 2.6 2.7 2.8 2.9
Output voltage V3VDET (V)
Output voltage V3VDET (V)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
6
100
Ta = +25 °C
V30R = 2.85 V
OUTA to OUTB = 32 Ω
10 f = 1 kHz
1
0.1
0.1
1
100
Ta = +25 °C
V30R = 3.6 V
OUTA to OUTB = 32 Ω
10 f = 1 kHz
1
0.1
0.01
0.001
Total harmonic distortion rate vs. output power
(Loudspeaker Amp.)
1
0.1
Output power PO (W)
1
Total harmonic distortion rate
THD (%)
Total harmonic distortion rate
THD (%)
Ta = +25 °C
V30R = 2.85 V
SPOUTA to SPOUTB = 8 Ω
10 f = 1 kHz
0.1
0.1
1
Total harmonic distortion rate vs. output power
(Loudspeaker Amp.)
100
0.01
0.01
Output power PO (W)
Output power PO (W)
0.01
0.001
3.1 3.2 3.3 3.4 3.5
Total harmonic distortion rate vs. output power
(receiver Amp.)
Total harmonic distortion rate
THD (%)
Total harmonic distortion rate
THD (%)
Total harmonic distortion rate vs. output power
(receiver Amp.)
0.01
3
Power supply voltage VB (V)
Power supply voltage VB (V)
0.01
0.001
Ta = +25 °C
100
Ta = +25 °C
V30R = 3.6 V
SPOUTA to SPOUTB = 8 Ω
10 f = 1 kHz
1
0.1
0.01
0.001
0.01
0.1
1
Output power PO (W)
(Continued)
23
MB3892
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
Ta = +25 °C
VB = 3.6 V
IN1 = IN2 = IN3 = "H"
0
25
50
Sounder2 output voltage vs. output current
Output voltage VO2 (V)
Output voltage VO1 (V)
Sounder1 output voltage vs. output current
75 100 125 150 175 200 225 250
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
Ta = +25 °C
VB = 3.6 V
IN1 = IN2 = IN3 = "H"
0
20
Output current IO1 (mA)
10
20
30
40
50
60
70
80
Output voltage VO3 (V)
Output voltage VLER (V)
90 100
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
Ta = +25 °C
VB = 3.6 V
EXTVCC = 6 V
0
5
Output current IO3 (mA)
5
10
15
20
25
30
35
40
Output current ILE1 (mA)
45
50
Output voltage VLE2 (V)
Output voltage VLE1 (V)
15
20
25
30
35
40
45
50
LED2 output voltage vs. output current
Ta = +25 °C
VB = 3.6 V
0
10
Output current ILER (mA)
LED1 output voltage vs. output current
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
80 100 120 140 160 180 200
LEDR output voltage vs. output current
Ta = +25 °C
VB = 3.6 V
IN1 = IN2 = IN3 = "H"
0
60
Output current IO2 (mA)
Sounder3 output voltage vs. output current
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
40
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
Ta = +25 °C
VB = 3.6 V
0
5
10
15
20
25
30
35
40
45
50
Output current ILE2 (mA)
(Continued)
24
MB3892
6
Ta = +25 °C
5.5 VB = 4 V
5 EXTVCC = 5.2 V
4.5 CHGBAT = OPEN
4
3.5
3
2.5
2
1.5
1
0.5
0
1.2
1.4
1.6
CHGOUT output voltage vs. CHGV input voltage
Output voltage VCHGOUT (V)
Output voltage VCHGOUT (V)
CHGOUT output voltage vs. CHGV input voltage
1.8
2
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
Ta = +25 °C
VB = 4 V
EXTVCC = 5.2 V
CHGBAT = CHGV
0
2.2
1
CHGI output voltage vs. VBH input voltage
Output voltage VCHGI (V)
Output voltage VCHGI (V)
2.5
1.5
Low precision
1
High precision
0.5
0
3.5
3.6
3.7
3.8
3.9
4
4
5
CHGI output voltage vs. VBH input voltage
Ta = +25 °C
VB = 3.6 V
EXTVCC = 5.2 V
2
3
Input voltage VCHGV (V)
Input voltage VCHGV (V)
2.5
2
4.1
Ta = +25 °C
VB = VBH − 0.15 V
EXTVCC = 6 V
2
High precision
1.5
1
0.5
0
4.2
0
1
Input voltage VBH (V)
2
3
4
5
Input voltage VBH (V)
Preliminary charge current vs. VB power supply voltage
Charge current IB (mA)
−150
Ta = +25 °C
EXTVCC = 5.2 V
−125
5.2 V
−100
EXTVCC
VA
−75
6.2 Ω
EXTS
−50
VB
−25
IB
VB
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
VB power supply voltage VB (V)
(Continued)
25
MB3892
(Continued)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
Power dissipation vs. ambient temperature
Ta = +25 °C
VB = 3.6 V
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
Power dissipation PD (mW)
Output voltage VCHGDET (V)
CHGDET output voltage vs.
EXTVCC power supply voltage
5
EXTVCC power supply voltage VEXTVCC (V)
26
1600
1420
1400
1200
1000
800
600
400
200
0
−40
−20
0
20
40
60
80
Ambient temperature Ta ( °C)
100
MB3892
■ FUNCTIONAL DESCRIPTION
1. Power Control
(1) Reference voltage
This circuit uses the voltage generated by VB1 terminal (pin 28) to produce a temperature compensated reference
voltage (1.23 V typ.) for power control and uses this reference voltage on power control.
(2) Baseband regulator (BBREG1)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at OUT1 terminal (pin 75).
Power can be drawn from OUT1 terminal for external use, up to a maximum load current of 110 mA.
(3) Baseband regulator (BBREG2)
This regulator uses the reference voltage to produce an output voltage (2.85 V typ.) at OUT2 terminal (OUT21 terminal (pin 72), OUT2-2 terminal (pin73)).
Power can be drawn from OUT2 terminal for external use, up to a maximum load current of 150 mA.
(4) Baseband regulator (BBREG3)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at OUT3 terminal (pin 71).
Power can be drawn from OUT3 terminal for external use, up to a maximum load current of 60mA.
(5) Battery backup regulator (BATTREG)
This regulator uses the reference voltage to produce an output voltage (3.1V typ.) at BATTOUT terminal (pin 69).
(6) Vibrator drive circuit (VIBREG)
This circuit uses the reference voltage to produce an output voltage (1.5V typ.) at VIBREG terminal (VIBREG1 terminal (pin 78), VIBREG-2 terminal (pin 79)).
Power can be drawn from VIBREG terminal for external use, up to a maximum load current of 200mA.
(7) RF regulator (RFREG1)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT1 terminal (pin
42) when an "H" level signal is input at the RFCTL1 terminal (pin 41).
Power can be drawn from RFOUT1 terminal for external use, up to a maximum load current of 10mA.
(8) RF regulator (RFREG2)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT2 terminal (pin
40) when an "H" level signal is input at the RFCTL2 terminal (pin 39).
Power can be drawn from RFOUT2 terminal for external use, up to a maximum load current of 20mA.
(9) RF regulator (RFREG3)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT3 terminal (pin
38) when an "H" level signal is input at the RFCTL3 terminal (pin 37).
Power can be drawn from RFOUT3 terminal for external use, up to a maximum load current of 20mA.
27
MB3892
(10) RF regulator (RFREG4)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT4 terminal (pin
35) when an "H" level signal is input at the RFCTL4 terminal (pin 36).
Power can be drawn from RFOUT4 terminal for external use, up to a maximum load current of 60mA.
(11) RF regulator (RFREG5)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT5 terminal
(RFOUT5-1 terminal (pin 30), RFOUT5-2 terminal (pin 29)) when an "H" level signal is input at the RFCTL5
terminal (pin 31).
Power can be drawn from RFOUT5 terminal for external use, up to a maximum load current of 200mA.
(12) RF regulator (RFREG6)
This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT6 terminal (pin
33) when an "H" level signal is input at the RFCTL6 terminal (pin 32).
Power can be drawn from RFOUT6 terminal for external use, up to a maximum load current of 50mA.
(13) Variable bias regulator
This regulator uses the voltage generated by VREGIN terminal (pin 67) to produce an amplified output voltage
at VREGOUT terminal (pin 68).
Power can be drawn from VREGOUT terminal for external use, up to a maximum load current of 10mA.
(14) D/A converter
D/A1 to D/A3 converter process 8 bit input signal and D/A4 converter processes 10 bit input signal.
This converter generates an output voltage (0.5 to 2.5V ) at D/AOUT1 terminal (pin 63) to D/AOUT4 terminal
(pin 60) according to the signal from serial control.
(15) Power-on reset
When the OUT1 terminal (pin 75) voltage exceeds 2.75V(typ.) , after a delay interval set by a capacitor (0.1 µF
typ.) connected to the CTP terminal (pin 76) , the RESET terminal (pin 77) voltage becomes "H" level from "L"
level and the reset signal is canceled.
When the OUT1 terminal voltage falls below 2.685V (typ.), the RESET terminal voltage becomes "L" level from
"H" level and the reset signal is dispatched. (refer to "■POWER-ON RESET TIMING DIAGRAM", "■SETTING
OF HOLD TIME FOR POWER-ON RESET".)
(16) Battery voltage detect
This function is to observe the battery voltage. When the VB4 terminal (pin 58) voltage exceeds 3.05V (typ.),
the 3VDET terminal (pin 56) voltage goes to "H" level and when the VB4 terminal voltage falls below 2.85V (typ.),
the 3VDET terminal goes to "L" level. (refer to ■BATTERY VOLTAGE DETECTOR)
28
MB3892
2. Speaker Amp.
(1) Receiver Amp.
This is the BTL output type Amp. driving speaker directly. When the output power is 90mW typ. (at 32Ω), the
serial control processes the on/off and the earphone switching control.
The optional gain can be set by the connection of feedback resistor from FB terminal (pin 20) to OUTA terminal
(pin 25) and the connection of input resistor to FB terminal.
(2) Loudspeaker Amp.
This is the BTL output type Amp. driving speaker directly. When the output power is 260mW typ. (at 8Ω), the
serial control processes the on/off control.
The optional gain can be set by the connection of feedback resistor from FB terminal (pin 20) to SPOUTA terminal
(pin 22) and the connection of input resistor to FB terminal.
3. Sounder
Three low-saturation output transistors are built in for buzzer drive. When the signal from serial control is "H"
level and IN1 terminal (pin 10) voltage is "H" level, the V01 terminal (pin 16) voltage is 0.3V (typ.). When IN2
terminal (pin 11) voltage and IN3 terminal (pin 12) voltage are "H" level, the V02 terminal (pin 14) voltage and
V03 terminal (pin 13) voltage are also 0.3V (typ.).
4. LED drive
The LEDO1 terminal (pin 2) voltage and LEDO2 terminal (pin 4) voltage is 0.2V (typ.), when the signal from
serial control is "H" level. When the signal from charge control is "H" level, the LEDR terminal (pin 1) voltage is
0.2V (typ.).
5. Charge control
(1) Charge control
The main charge is started by the signal from serial control indicates preliminary charge is finished.
According to the voltage level at CHGV terminal (pin 49) generated by microprocessor on the microprocessor
operation, the charge current is controlled by adjusting gate voltage from outside FET.
(2) Charge current detector
The charge current detector sensitivity (gain) can be switched by the signal from serial control.
The VBH terminal (pin 46) voltage and VB4 terminal voltage (pin 58) are detected and CHGI terminal (pin 47)
voltage is generated.
(3) Preliminary charge circuit
When the battery voltage is low, the charge is controlled until the microprocessor starts the operation.
Before the battery voltage reaches 2.6V (typ.), 50mA (typ.) is used for the charge and before 4V (typ.), 100mA
(typ.) is used.
(4) External power supply detector
This function is to detect if the case is attached to the battery charger.
When the case is attached to the battery charger, EXTVCC terminal (pin 52) voltage is "H" level and generate
"L" level voltage at CHGDET terminal (pin 51). When the case is not attached to the battery charger, EXTVCC
terminal voltage is "L" level and generate "H" level voltage at CHGDET terminal.
29
MB3892
6. Serial control
After the input signal from microprocessor at DAT terminal (pin 6) is captured at the rising edge of SCLK terminal
(pin 7), the signal is input in the internal register at the rising edge of STBIN terminal (pin8) and mode is set.
7. Special power off
This function can control the power consumption current of main IC under 11µA (typ.) and the battery can be
kept for the long period under the conditions that battery package is attached to the mobile phone on the
shipment.
30
MB3892
■ CONDITIONS of EACH REGULATORS at MEASUREMENT of CONSUMPTION CURRENT
Each regulators conditions at the measurment of consumption current are as the following table.
[BIASSW] siganl of serial control is “H” level (BIASSW OFF) .
BBREG1 BBREG2 BBREG3 BATTREG
VIBREG VARREG RFREG1
Special power off
IB1
OFF
OFF
OFF
OFF
OFF
OFF
OFF
Standby
IB2
ON
OFF
ON
ON
OFF
OFF
OFF
Power on
(waiting/intermittent)
IB3
ON
OFF
ON
ON
OFF
OFF
OFF
Power on
(waiting/receiving)
IB4
ON
ON
ON
ON
OFF
OFF
ON
Power on
(conversation/
transmission)
IB5
ON
ON
ON
ON
OFF
OFF
ON
Power on
IB6
(conversation/receiving)
ON
ON
ON
ON
OFF
OFF
ON
RFREG2 RFREG3 RFREG4 RFREG5 RFREG6
Receiver Loudspeaker
Amp.
Amp.
Special power off
IB1
OFF
OFF
OFF
OFF
OFF
OFF
OFF
Standby
IB2
OFF
OFF
OFF
OFF
OFF
OFF
OFF
Power on
(waiting/intermittent)
IB3
OFF
OFF
OFF
OFF
OFF
OFF
OFF
Power on
(waiting/receiving)
IB4
ON
ON
ON
OFF
ON
OFF
OFF
Power on
(conversation/
transmission)
IB5
ON
OFF
OFF
ON
ON
ON
OFF
Power on
(conversation/
receiving)
IB6
ON
ON
ON
OFF
ON
ON
OFF
31
MB3892
■ LOGICS
(1) Serial Control Setting Table
A7
A6
A5
A4
A3
A2
A1
A0
1
1
1
1
1
1
1
0
D9
D8
D7
PDSP
PDRCV
CHOISE
Operation Loud
at data “1” AMPON
Receiver
AMPON
Data
D6
BTL
drive
Operation Loud
Receiver Single
at data “0” AMPOFF AMPOFF drive
Initial value
after reset
0
0
OFF
OFF
ON
ON
VIB
Charge red Variable
REGOFF LEDON
REGOFF
0
0
0
0
A1
A0
1
1
1
1
1
1
0
1
Operation
at data “1”
∗
Initial value
after reset
0
∗: Unused
1
D6
PWOFFCTL
Operation
REG3OFF REG3ON
at data “0”
0
LEDRCTL VREGCTL
VIB
REGON
A2
Special
REG3ON REG3OFF power off
setting
VIBCTL
D0
OFF
A3
REG3CTL
BIASSW REG2CTL
D1
OFF
A4
Data
D2
ON
A5
D7
D3
ON
A6
D8
D4
LEDC1 LEDC2
(green)
(red)
A7
D9
32
0
D5
∗
D5
D3
0
D2
0
D1
D0
CHGISE
L
PRCHG
BUZZSEL SOUND1 SOUND2 SOUND3
OFF
Low
precision
Loudspeaker
PRCHG
Sounder1 Sounder2 Sounder3
Amp. short
ON
ON
ON
OFF
waveform
output
High
Special
power off precision
( × 8)
setting
1
D4
0
Charge red Variable
LEDOFF
REGON
0
Loudspeaker
PRCHG
Amp.
ON
usual
output
0
0
Sounder1 Sounder2 Sounder3
OFF
OFF
OFF
0
0
0
MB3892
A7
A6
A5
A4
A3
A2
A1
A0
1
1
1
1
1
1
0
0
D9
Data
D8
D7
D6
D5
D4
D3
D2
D1
D0
DAR4_9 DAR4_8 DAR4_7 DAR4_6 DAR4_5 DAR4_4 DAR4_3 DAR4_2 DAR4_1 DAR4_0
Operation
at data “1”
DA4 setting data
Operation
at data “0”
Initial value
after reset
0
0
0
0
A7
A6
A5
A4
A3
A2
A1
A0
1
1
1
1
1
0
1
1
D9
Data
D8
D7
D6
0
0
0
0
0
0
D5
D4
D3
D2
D1
D0
PDNDA4 PDNDA3 DAR3_7 DAR3_6 DAR3_5 DAR3_4 DAR3_3 DAR3_2 DAR3_1 DAR3_0
Operation
at data “1”
DA4ON
DA3ON
DA3 setting data
Operation
DA4OFF DA3OFF
at data “0”
Initial value
after reset
0
0
0
0
A7
A6
A5
A4
A3
A2
A1
A0
1
1
1
1
1
0
1
0
D9
D8
Data
∗
Operation
at data “1”
∗
DA2ON
Operation
at data “0”
∗
DA2OFF
Initial value
after reset
∗
0
D7
D6
0
0
0
0
0
0
D5
D4
D3
D2
D1
D0
PDNDA2 DAR2_7 DAR2_6 DAR2_5 DAR2_4 DAR2_3 DAR2_2 DAR2_1 DAR2_0
DA2 setting data
0
0
0
0
0
0
0
0
∗:Unused
33
MB3892
A7
A6
A5
A4
A3
A2
A1
A0
1
1
1
1
1
0
0
1
D9
Data
∗
Operation
at data “1”
∗
DA1ON
Operation
at data “0”
∗
DA1OFF
Initial value
after reset
∗
0
D7
D6
D4
D3
D2
D1
D0
DA1setting data
0
0
A6
A5
A4
A3
A2
A1
A0
1
1
1
1
1
0
0
0
Operation
at data “1”
D5
PDNDA1 DAR1_7 DAR1_6 DAR1_5 DAR1_4 DAR1_3 DAR1_2 DAR1_1 DAR1_0
A7
Data
0
0
0
0
D9
D8
D7
D6
D5
D4
D3
D2
∗
∗
∗
∗
∗
∗
∗
REG3CTL
∗
∗
∗
∗
∗
∗
∗
REG3ON
0
0
D1
D0
PWOFFCTL
Special
power
off
setting
∗
Operation
at data “0”
∗
∗
∗
∗
∗
∗
∗
REG3OFF
∗
Special
power
off
setting
Initial value
after reset
∗
∗
∗
∗
∗
∗
∗
1
0
1
∗:Unused
34
D8
MB3892
(2) Input Signal Timimg
Parameter
Symbol
Value
Min.
Typ.
Max.
Unit
Data setup time
tsc
100


ns
Data hold time
thc
100


ns
STB setup time
tss
100


ns
STB pulse duration
tds
100


ns
Removal time
ths
100


ns
Remark
(3) Input Signal Timing Diagram
(Input voltage “H” level = 2.85 V, “L” level = 0 V)
tsc
50
SCLK
DAT
A7
A6
A5
A4
D1
D0
thc
tss
ths
50
STBIN
tds
Note : Data is defined at the rising edge of SCLK and IC mode is set through latching of DAT at rising edge STBIN.
35
MB3892
■ POWER-ON RESET TIMING DIAGRAM
OUT1
2.75 V
2.685 V
CTP
1.23 V
TPR
TPR
RESET
90 %
tr
10 %
(1)
90 %
90 %
tr
tf
10 %
10 %
(2)
(3)
(4)
(5)
90 %
tf
10 %
(6)
(1) When the OUT1 terminal (pin 75) voltage exceeds detected rising voltage (2.75V typ.), the charge for
timing capacitor (CTP) for hold time for power-on reset starts .
(2) When the CTP terminal (pin 76) voltage exceeds 1.23V (typ.), the reset is canceled. (The RESET terminal voltage becomes "H" level from "L" level.: rising time from 10% to 90% = tr)
(3) When OUT1 terminal voltage falls below detected rising voltage (2.685V typ.), the CTP terminal voltage
is down and the reset signal is output. (RESET terminal voltage becomes "L" level from "H" level.)
(4) When OUT1 terminal voltage exceeds rising voltage detect, charging of CTP is started.
(5) When CTP terminal voltage rises above threshold voltage, the reset is canceled.
(6) When OUT1 terminal voltage falls below the voltage detect, the reset signal is output.
■ SETTING OF HOLD TIME FOR POWER-ON RESET
According to the time constant set by capacitor (CTP) connected to CTP terminal (pin 76), rise time (hold time)
of RESET terminal (pin 77) voltage can be set after OUT1 terminal (pin 75) voltage exceeds 2.75V (typ.).
POR hold time : TPR (s) =:
36
1.23 (V) × CTP (µF)
1.75 (µA)
(tr of RESET is not included)
MB3892
■ RISE TIME FOR SPEAKER Amp.
BP = 4.7 µF
BP = 4.7 µF
TR
TR
1.6 V
1.0 V
BP
1.0 V
BP
1.6 V
Speaker output
+
Speaker output
−
BTL drive
Single drive (Earphone mode)
Rise time TR (ms) =: 10.3 (kΩ) × CBP (µF)
■ PRELIMINARY CHARGE CURRENT
Charge current (mA)
100
50
0
2.6
4
VB (V)
■ BATTERY VOLTAGE DETECTOR
3VDET (V)
2.85
0
0
2.85
3.05
VB (V)
37
MB3892
■ USAGE PRECAUTIONS
• Printed circuit board ground lines should be set up with consideration for common impedance.
• Take appropriate static electricity measures.
•
•
•
•
Containers for semiconductor materials should have anti-static protection or be made of conductive material.
After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers.
Work platforms, tools, and instruments should be properly grounded.
Working personal should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.
• Do not apply negative voltages
The use of negative voltages below -0.3V may create parasitic transistors on LSI lines, Which can cause abnormal
operation.
■ ORDERING INFORMATION
Part number
MB3892PFF
38
Package
80-pin plastic LQFP
(FPT-80P-M17)
Remarks
MB3892
■ PACKAGE DIMENTION
80-pin plastic LQFP
(FPT-80P-M17)
(1.40(.055))
12.00±0.20(.472±.008)SQ
10.00±0.10(.394±.004)SQ
60
41
61
40
Details of "A" part
(11.00(.433))
0.10(.004)
0.10±0.05
(.004±.002)
80
21
"A"
0.50±0.10
(.020±.004)
2°±2°
1
20
0.16±0.04
(.006±.002)
C
0.40(.016)
TYP
+0.05
1.50±0.10
(.059±.004)
0.127 –0
+.002
.005 –0
1999 FUJITSU LIMITED F80031SC-1-1
Dimansions in mm (inches) .
39
MB3892
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0007
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The contents of this document may not be reproduced or copied
without the permission of FUJITSU LIMITED.
FUJITSU semiconductor devices are intended for use in standard
applications (computers, office automation and other office
equipments, industrial, communications, and measurement
equipments, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or
where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters,
vehicle operating controls, medical devices for life support, etc.)
are requested to consult with FUJITSU sales representatives before
such use. The company will not be responsible for damages arising
from such use without prior approval.
Any semiconductor devices have inherently a certain rate of failure.
You must protect against injury, damage or loss from such failures
by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required for
export of those products from Japan.