FUJITSU SEMICONDUCTOR DATA SHEET DS04-27802-1E ASSP For Power Management Applications (Mobile Phones) Power Management IC for Mobile Phone MB3892 ■ DESCRIPTION MB3892 is a low-saturation voltage type series regulator contains 3 channels for the baseband regulator, 1 channel for the backup regulator, 6 channels for the RF regulator, and 1 channel for the variable regulator. MB3892 is built in reset circuit, serial control circuit, operation Amp. for charge control of Lithium ion battery, LED drive circuit, receiver Amp., loudspeaker drive Amp., sounder circuit, vibrator drive circuit, and 4-ch D/A converter and the devices is miniaturized by systematization of built-in power supply for mobile phone. ■ FEATURES • Power supply voltage range • • • • • • : VB = 2.85 V to 5.5 V : EXTVCC = 3.0 V to 6.5 V : 100 µA (Max.) Low power consumption current during standby Built-in low-saturation voltage type series regulator Built-in power-on reset function Built-in serial control function Built-in operation Amp. for charge control of Lithium ion battery Special power off function (To prevent battery discharge, this function controls the power consumption current of main IC under 11 µA (typ.) on the shipment.) ■ PACKAGE 80-pin plastic LQFP (FPT-80P-M17) MB3892 ■ PIN ASSIGNMENT (TOP VIEW) D/A 60 : D/AOUT4 59 : IPOFF 58 : VB4 57 : VBDET 56 : 3VDET 55 : GND6 54 : EXTS 53 : VA 52 : EXTVCC 51 : CHGDET 50 : CHGOUT 49 : CHGV 48 : BATT 47 : CHGI 46 : VBH 45 : VB3 44 : CHGBAT 43 : GND5 42 : RFOUT1 41 : RFCTL1 Power control + Charge control D/AOUT3 : 61 D/AOUT2 : 62 D/AOUT1 : 63 40 : RFOUT2 39 : RFCTL2 38 : RFOUT3 37 : RFCTL3 36 : RFCTL4 35 : RFOUT4 34 : VB2 33 : RFOUT6 32 : RFCTL6 31 : RFCTL5 30 : RFOUT5-1 29 : RFOUT5-2 28 : VB1 27 : VREF 26 : OUTB 25 : OUTA 24 : GND4 23 : SPOUTB 22 : SPOUTA 21 : V30R GND7 : 64 D/AREF : 65 Variable REG BATTREG BBREG3 BBREG2 BBREG1 Reset GND8 : 66 VREGIN : 67 VREGOUT : 68 BATTOUT : 69 VB5 : 70 OUT3 : 71 OUT2-1 : 72 OUT2-2 : 73 VB6 : 74 OUT1 : 75 CTP : 76 RESET : 77 VIBREG-1 : 78 VIBREG-2 : 79 VB7 : 80 Sounder Serial control Reset LED drive LEDR : 1 LEDO1 : 2 GND1 : 3 LEDO2 : 4 RESETIN : 5 DAT : 6 SCLK : 7 STBIN : 8 GND2 : 9 IN1 : 10 IN2 : 11 IN3 : 12 VO3 : 13 VO2 : 14 GND3 : 15 VO1 : 16 N.C. : 17 BP : 18 IN : 19 FB : 20 VIBREG (FPT-80P-M17) 2 RFREG1 to RFREG4, RFREG6 RFREG5 Receiver Amp. Loudspeaker Amp. MB3892 ■ PIN DESCRIPTION Pin No. Symbol I/O Descriptions 1 LEDR O LEDR output pin. (an open collector output) 2 LEDO1 O LED1 output pin. (an open drain output) 3 GND1 Ground pin. 4 LEDO2 O LED2 output pin. (an open drain output) 5 RESETIN I Reset detect comparator input pin. 6 DAT I Serial data input pin. 7 SCLK I Serial clock input pin. 8 STBIN I Strobe input pin. 9 GND2 10 IN1 I Sounder1 control input pin. 11 IN2 I Sounder2 control input pin. 12 IN3 I Sounder3 control input pin. 13 VO3 O Sounder3 control output pin. (an open drain output) 14 VO2 O Sounder2 control output pin. (an open drain output) 15 GND3 Ground pin. 16 VO1 O Sounder1 control output pin. (an open drain output) 17 N.C. No connection pin. 18 BP Bypass pin. 19 IN I Non-inverted input pin. 20 FB I Inverted input pin. 21 V30R Power supply pin for speaker Amp. 22 SPOUTA O Output A pin for loudspeaker Amp. 23 SPOUTB O Output B pin for loudspeaker Amp. 24 GND4 Ground pin. 25 OUTA O Output A pin for receiver Amp. 26 OUTB O Output B pin for receiver Amp. 27 VREF O Reference output voltage pin. 28 VB1 Power supply pin. 29 RFOUT5-2 O RF REG5 output pin2. (Short circuiting to pin 30) 30 RFOUT5-1 O RF REG5 output pin1. (Short circuiting to pin 29) 31 RFCTL5 I RF REG5 control pin. 32 RFCTL6 I RF REG6 control pin. 33 RFOUT6 O RF REG6 output pin. 34 VB2 Power supply pin. Ground pin. (Continued) 3 MB3892 Pin No. Symbol I/O Descriptions 35 RFOUT4 O RF REG4 output pin. 36 RFCTL4 I RF REG4 output pin. 37 RFCTL3 I RF REG3 control pin. 38 RFOUT3 O RF REG3 output pin. 39 RFCTL2 I RF REG2 control pin. 40 RFOUT2 O RF REG2 output pin. 41 RFCTL1 I RF REG1 control pin. 42 RFOUT1 O RF REG1 output pin. 43 GND5 Ground pin. 44 CHGBAT Main charge pin. 45 VB3 Power supply pin. 46 VBH I Main charge pin. 47 CHGI O Main charge pin. 48 BATT O A/D input pin. 49 CHGV I Main charge pin. 50 CHGOUT O Main charge pin. 51 CHGDET O Main charge pin. 52 EXTVCC Power supply pin for charge control. 53 VA I Preliminary charge pin. 54 EXTS O Preliminary charge pin. 55 GND6 Ground pin. 56 3VDET O Power supply detector pin. 57 VBDET I Power supply detector pin. 58 VB4 59 IPOFF I Special power off input pin. 60 D/AOUT4 O 10 bit D/A output pin. 61 D/AOUT3 O 8 bit D/A3 output pin. 62 D/AOUT2 O 8 bit D/A2 output pin. 63 D/AOUT1 O 8 bit D/A1 output pin. 64 GND7 Ground pin. 65 D/AREF I 66 GND8 67 VREGIN I Variable REG reference voltage input pin. 68 VREGOUT O Variable REG output pin. Power supply pin. D/A reference voltage input pin. Ground pin. (Continued) 4 MB3892 (Continued) Pin No. Symbol I/O Descriptions 69 BATTOUT O Backup REG output pin. 70 VB5 Power supply pin. 71 OUT3 O Baseband REG3 output pin. 72 OUT2-1 O Baseband REG2 output pin. (Short circuiting to pin 73) 73 OUT2-2 O Baseband REG2 output pin. (Short circuiting to pin 72) 74 VB6 Power supply pin. 75 OUT1 O Baseband REG1output pin. 76 CTP I Setting pin for power-on reset hold time. 77 RESET O Reset output pin. 78 VIBREG-1 O Vibrator REG output pin. (Short circuiting to pin 79) 79 VIBREG-2 O Vibrator REG output pin. (Short circuiting to pin 78) 80 VB7 Power supply pin. 5 D/AREF VREGIN 6 BGR 21 18 20 19 13 14 16 15 10 11 12 IN3 8 STBIN 7 SCLK 6 To each REG Temperature protection To each REG DAT GND2 RESETIN VO2 OUT2 4.7 µF 100 kΩ Receiver Amp. 1 kΩ RFREG6 100 kΩ RFREG5 100 kΩ RFREG4 100 kΩ RFREG3 100 kΩ RFREG2 100 kΩ RFREG1 Loudspeaker Amp. Charge control (Power by EXTVCC) GND3 9 Power control EXBGR VO1 5 Serial control Power by REG1 Reset at reset circuit/ Temperature protection Sounder To each REG Special power OFF IN FB 17 N.C. GND1 3 LEDO2 4 LEDO1 2 D/AOUT1 LED drive D/AOUT2 VIBREG D/AOUT3 VB7 80 VIBREG (1.5 V/200 mA) VIBREG-1 78 10 µF 79 VIBREG-2 LEDR 1 D/AOUT4 2.2 µF GND7 BBREG1 IPOFF 75 VB4 OUT1 (2.85 V/110 mA) GND6 VB6 74 VBDET Reset circuit Power by BBREG1 EXTS BBREG2 3VDET VB5 70 OUT2 (2.85 V/150 mA) OUT2-1 72 10 µF 73 OUT2-2 76 CTP 0.1 µF RESET 77 VA 2.2 µF EXTVCC BBREG3 CHGDET 71 CHGOUT OUT3 (2.85 V/60 mA) BATT 10 µF CHGV BATTREG VBH 69 CHGI 1 kΩ VB3 BATTOUT (3.1 V) CHGBAT D/A × 4 ch Power by BBREG1 VB2 59 58 55 57 56 54 53 52 51 50 49 48 47 46 44 45 43 34 28 GND5 63 62 61 60 64 VB1 67 65 100 kΩ GND8 66 VREGOUT (10 mA) 68 Variable REG 10 µF VREF 15 kΩ 4.7 kΩ 15 kΩ VREF (1.23 V) 27 1 µF OUTB 26 0.1 µF OUTA 25 GND4 0.1 µF 24 SPOUTB 23 0.1 µF SPOUTA 22 0.1 µF RFOUT6 (2.85 V/50 mA) 33 4.7 µF 32 RFCTL6 RFOUT5-1 30 RFOUT5 (2.85 V/200 mA) 29 RFOUT5-2 3.3 µF 31 RFCTL5 RFOUT4 (2.85 V/60 mA) 35 3.3 µF 36 RFCTL4 RFOUT3 (2.85 V/20 mA) 38 2.2 µF 37 RFCTL3 RFOUT2 (2.85 V/20 mA) 40 2.2 µF 39 RFCTL2 RFOUT1 (2.85 V/10 mA) 42 2.2 µF 41 RFCTL1 MB3892 ■ BLOCK DIAGRAM (General) BP V30R VO3 IN2 IN1 Serial signal data + − 100 kΩ VBDET 3VDET 57 56 3VDET Other condition VREF VB4 H : OFF Special power off : OFF L : ON No EXTVCC : OFF H : OFF Special power off : OFF L : ON H : ON L : OFF SW3 SW4 BIASSW SW5 SW6 BIASSW SW7 CHGISEL SW1 H : OFF Special power off : OFF PRCHGOFF SW2 L : ON VB 4 V detector : OFF SW SW Condition chart 490 kΩ 725 kΩ 58 − + 54 VREF + − EXTS − + SW1 53 100 kΩ 6.2 kΩ LEDR VA − + 4.7 kΩ 47 kΩ + − 49 + − 44 SW6 SW3 7.5 kΩ 33 kΩ 50 kΩ 33 kΩ 50 kΩ CHGBAT SW7 12.5 kΩ CHGV CPU SW4 20 kΩ 2.5 kΩ SW5 2.5 kΩ 490 kΩ 546 kΩ SW2 200 kΩ + − CHGDET CHGOUT 51 50 100 kΩ EXTVCC 47 kΩ 52 ADP CHGI 47 VBH 46 VB3 45 BATT 48 A/D A/D MB3892 • Charge control 7 MB3892 • Speaker Amp. ON/ OFF PDSP PDRCV BIAS PDSP L CHOISE H L H 18 kΩ BP 18 5 kΩ 4.7 µF + − 24 kΩ 30 kΩ + − OUTB 26 10 kΩ + − 10 kΩ + − SPOUTB 23 10 kΩ 30 kΩ PDSP Receiver Amp. 32 Ω 25 OUTA L IN 19 5 kΩ H 30 kΩ 30 kΩ L FB 20 Loudspeaker Amp. + − 22 SPOUTA H Rfb BUZZSEL Rfb Rin PDRCV 8 PDSP CHOISE BUZZSEL Operating Amp. 8Ω 10 kΩ Cin Operation mode L L × × H L H L Receiver Amp. Receiver (BTL drive) H L L L Receiver Amp. Earphone mode (single drive) L H H L Loudspeaker Amp. Loudspeaker Amp. (BTL drive) L H L H Loudspeaker Amp. Short wave form output (open collector) H H × L When both of PDRCV/PDSP is “H” level, Loudspeaker Amp. the operation of loudspeaker Amp. has priority. Standby MB3892 ■ ABSOLUTE MAXIMUM RATINGS Parameter Power supply voltage Baseband regulator output current Symbol Conditions VB EXTVCC Rating Unit Min. Max. 7 V 7 V IO BBREG1 −110 mA IO BBREG2 −150 mA IO BBREG3 −60 mA Receiver Amp. output current IO 150 mA Loudspeaker Amp. output current IO 400 mA Vibrator regulator output current IO −200 mA RF regulator output current IO RFREG1 −10 mA IO RFREG2 −20 mA IO RFREG3 −20 mA IO RFREG4 −60 mA IO RFREG5 −200 mA IO RFREG6 −50 mA −15 mA 1420 * mW −55 +125 °C Variable regulator output current IO Power dissipation PD Storage temperature Tstg Ta ≤ +25 °C *: The packages are mounted on the dual-sided epoxy board(10 cm × 10 cm) WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 9 MB3892 ■ RECOMMENDED OPERATING CONDITIONS Parameter Power supply voltage REG capacitor ESR guarantee value Operating ambient temperature Symbol Conditions VB Value Unit Min. Typ. Max. 2.85 5.5 V EXTVCC Under 4.5 V preliminary charge circuit is not operated normally 3.0 6.5 V RESR 0.4 7 Ω Ta −30 +25 +80 °C WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 10 MB3892 ■ ELECTRICAL CHARACTERISTICS • Power control Parameter Reference voltage Symbol Pin No. VREF 27 VREF = 0 mA 1.19 1.23 1.27 V VO1 75 OUT1 = 0 mA 2.79 2.85 2.91 V VOLD1 75 OUT1 = −110 mA 2.79 2.85 2.91 V Line 75 VB = 3.1 to 4.8 V, OUT1 = −10 mA 20 mV Load 75 OUT1 = 0 to −110 mA −30 0 mV R.R 75 Vin = 0.2 Vrms, f = 1 kHz, OUT1 = −10 mA −50* dB Reverse current IREV 75 VB = 0 to 5 V or VB = Open 30 43 µA Rise time TR 75 OUT1 = 2.2 µF, OUT1 = 27 Ω 60 µs VO2 72, 73 OUT2 = 0 mA 2.79 2.85 2.91 V VOLD2 72, 73 OUT2 = −150 mA 2.79 2.85 2.91 V Line 72, 73 VB = 3.1 to 4.8 V, OUT2 = −10 mA 20 mV Load 72, 73 OUT2 = 0 to −150 mA −30 0 mV R.R 72, 73 Vin = 0.2 Vrms, f = 1 kHz, OUT2 = −10 mA −50* dB TR 72, 73 OUT2 = 10 µF, OUT2 = 20 Ω 190 µs VO3 71 OUT3 = 0 mA 2.79 2.85 2.91 V VOLD3 71 OUT3 = −60 mA 2.79 2.85 2.91 V Line 71 VB = 3.1 to 4.8 V, OUT3 = −10 mA 20 mV Load 71 OUT3 = 0 to −60 mA −30 0 mV R.R 71 Vin = 0.2 Vrms, f = 1 kHz, OUT3 = −10 mA −50* dB Reverse current IREV 71 VB = 0 to 5 V or VB = Open 0 1 µA Rise time TR 71 OUT3 = 2.2 µF, OUT3 = 47 Ω 105 µs Reference voltage Output voltage Line regulation Load regulation Baseband regulator [BBREG1] Ripple rejection Output voltage Line regulation Baseband regulator Load regulation [BBREG2] Ripple rejection Rise time Output voltage Line regulation Load regulation Baseband regulator [BBREG3] Ripple rejection Conditions (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. * : Standard design value (Continued) 11 MB3892 Parameter Symbol Pin No. Conditions Output voltage Backup Output current regulator [BATTREG] Reverse current VBATT 69 BATTOUT = 0 mA IBATT 69 IREV Vibrator drive circuit Output voltage [VIBREG] (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. 3.00 3.10 3.20 V BATTOUT = 0 V −3.1 mA 69 VB = 0 to 5 V or VB = Open 0 1 µA VO 78, 79 VIBREG = 0 mA 1.44 1.50 1.56 V VOLD 78, 79 VIBREG = −200 mA 1.38 1.50 1.56 V VO1 42 RFOUT1 = 0 mA 2.79 2.85 2.91 V VOLD1 42 RFOUT1 = −10 mA 2.79 2.85 2.91 V Line 42 VB = 3.1 to 4.8 V, RFOUT1 = −10 mA 20 mV RF regulator Load regulation [RFREG1] Load 42 RFOUT1 = 0 to −10 mA −30 0 mV Ripple rejection R.R 42 Vin = 0.2 Vrms, f = 1 kHz, RFOUT1 = −10 mA −55* dB TR 42 RFOUT1 = 2.2 µF, RFOUT1 = 300 Ω 630 µs VO2 40 RFOUT2 = 0 mA 2.79 2.85 2.91 V VOLD2 40 RFOUT2 = −20 mA 2.79 2.85 2.91 V Line 40 VB = 3.1 to 4.8 V, RFOUT2 = −10 mA 20 mV RF regulator Load regulation [RFREG2] Load 40 RFOUT2 = 0 to −20 mA −30 0 mV Ripple rejection R.R 40 Vin = 0.2 Vrms, f = 1 kHz, RFOUT2 = −10 mA −55* dB TR 40 RFOUT2 = 2.2 µF, RFOUT2 = 150 Ω 315 µs VO3 38 RFOUT3 = 0 mA 2.79 2.85 2.91 V VOLD3 38 RFOUT3 = −20 mA 2.79 2.85 2.91 V Line 38 VB = 3.1 to 4.8 V, RFOUT3 = −10 mA 20 mV RF regulator Load regulation [RFREG3] Load 38 RFOUT3 = 0 to −20 mA −30 0 mV Ripple rejection R.R 38 Vin = 0.2 Vrms, f = 1 kHz, RFOUT3 = −10 mA −55* dB TR 38 RFOUT3 = 2.2 µF, RFOUT3 = 150 Ω 315 µs Output voltage Line regulation Rise time Output voltage Line regulation Rise time Output voltage Line regulation Rise time * : Standard design value (Continued) 12 MB3892 (Ta = +25 °C, VB = 3.6 V) Parameter Symbol Pin No. Conditions Value Min. Typ. Max. Unit VO4 35 RFOUT4 = 0 mA 2.79 2.85 2.91 V VOLD4 35 RFOUT4 = −60 mA 2.79 2.85 2.91 V Line 35 VB = 3.1 to 4.8 V, RFOUT4 = −10 mA 20 mV RF regulator Load regulation [RFREG4] Load 35 RFOUT4 = 0 to −60 mA −30 0 mV Ripple rejection R.R 35 Vin = 0.2 Vrms, f = 1 kHz, RFOUT4 = −10 mA −55* dB TR 35 RFOUT4 = 3.1 µF, RFOUT4 = 51 Ω 160 µs VO5 29, 30 RFOUT5 = 0 mA 2.79 2.85 2.91 V VOLD5 29, 30 RFOUT5 = −200 mA 2.79 2.85 2.91 V Line 29, 30 VB = 3.1 to 4.8 V, RFOUT5 = −10 mA 20 mV RF regulator Load regulation [RFREG5] Load 29, 30 RFOUT5 = 0 to −200 mA −30 0 mV Ripple rejection R.R 29, 30 Vin = 0.2 Vrms, f = 1 kHz, RFOUT5 = −10 mA −55* dB TR 29, 30 RFOUT5 = 3.3 µF, RFOUT5 = 15 Ω 50 µs VO6 33 RFOUT6 = 0 mA 2.79 2.85 2.91 V VOLD6 33 RFOUT6 = −50 mA 2.79 2.85 2.91 V Line 33 VB = 3.1 to 4.8 V, RFOUT6 = −10 mA 20 mV RF regulator Load regulation [RFREG6] Load 33 RFOUT6 = 0 to −50 mA −30 0 mV Ripple rejection R.R 33 Vin = 0.2 Vrms, f = 1 kHz, RFOUT6 = −10 mA −55* dB TR 33 RFOUT6 = 4.7 µF, RFOUT6 = 62 Ω 270 µs Output voltage Line regulation Rise time Output voltage Line regulation Rise time Output voltage Line regulation Rise time * : Standard design value (Continued) 13 MB3892 (Continued) Parameter Symbol Pin No. Conditions VIL 41, 39, 37, 36, 31, 32 0 OUT1 × 0.3 V VIH 41, 39, 37, 36, 31, 32 OUT1 × 0.7 OUT1 V IIL 41, 39, 37, RFCTL1 to RFCTL6 36, 31, 32 = 0 V −1 1 µA IIH 41, 39, 37, RFCTL1 to RFCTL6 36, 31, 32 = 2.85 V 22 28.5 41 µA Input voltage RF regulator control Input current Input voltage range VIN 67 1.67 2.38 V Output voltage range VO 68 2.00 2.85 V VOP 68 −2.5 2.5 % IO 68 −10 mA IIL 67 VREGIN = 0 V −1 1 µA IIH 67 VREGIN = 2.85 V 22 28.5 41 µA 8 bit 10 bit Variable bias Output voltage regulator [VARREG] precision Output current Input current System resolution D/A converter Differential non-linear type linearity error 63, 62, 61 D/A1 to D/A3 60 D/A4 60 D/A4 (Input code is 200) −12 +12 LSB 60 D/A4 (Input code is 100, and 300) −9 +9 LSB 60 D/A4 (Input code is 080, 180, 280, and 380) −7 +7 LSB −4 +4 LSB 63, 62, 61, Other input code 60 −1.0 +1.0 LSB LE D/A1 to D/A3 (Input 63, 62, 61 code is 040, 080, and 0C0) Output voltage range VOC 63, 62, 61, D/AOUT1 to D/AOUT4 60 = −330 µA to 1 mA 0.5 2.5 V Rise time TR 63, 62, 61, D/AOUT1 to D/AOUT4 60 = 100 pF 20 µs 63, 62, 61, 60 −77.8 dBm Output Noise 14 (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. VNOVL MB3892 (Continued) Parameter Symbol Pin No. Conditions VSL1 75 2.63 2.685 2.74 V VSH1 75 2.695 2.75 2.805 V VOH 77 RESET = −200 µA OUT1 − 0.3 OUT1 V VOH 77 RESET = 200 µA 0.01 0.4 V POR hold time TPR 77 CTP ≤ 0.1 µF 25 70 115 ms Rise time TR 77 RESET = 50 pF 500 ns Fall time TF 77 RESET = 50 pF 500 ns V3VDH 56 2.99 3.05 3.11 V V3VDL 56 2.79 2.85 2.907 V Detected voltage Power-on reset Supply voltage detector Power control (General) (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. Output voltage Detected voltage Power consumption current IB1 28, 34, 45, 58, 70, 74, Special power off 80 11 20 µA IB2 28, 34, 45, 58, 70, 74, Standby 80 50 70 100 µA IB3 28, 34, 45, Power on 58, 70, 74, (waiting) intermittent 80 50 70 100 µA IB4 28, 34, 45, Power on (waiting) 58, 70, 74, receiving 80 190 250 360 µA IB5 28, 34, 45, Power on (conversa58, 70, 74, tion) transmission 80 170 220 315 µA IB6 28, 34, 45, Power on (conversa58, 70, 74, tion) receiving 80 190 250 360 µA * : Standard design value Note: IB1 to IB6 of general power control means the total current at VB1 to VB7 terminals the load current is not included. As for the condition of each regulators at the measurement of power consumption current , please refer to “■ CONDITIONS of EACH REGURATORS at MEASUREMENT of CONSUMPTION CURRENT”. 15 MB3892 • Speaker Amp. Parameter Symbol Pin No. AV1 Voltage gain 10.1 12.1 dB 14.1 16.1 18.1 dB AVO 25, 26 f ≤ 100 Hz 80* dB PO1 V30R = 3.6 V, 25, 26 OUTA to OUTB = 32 Ω, THD = 10% 60 90 mW PO2 V30R = 2.85 V, 25, 26 OUTA to OUTB = 32 Ω, THD = 10% 30 45 mW Output voltage VO 25, 26 OUTA to OUTB = no load 3.8 5.5 V Offset voltage between output VOO 25, 26 −50 50 mV Total harmonic distorition rate THD 25, 26 PO = 25 mW 0.5 1.0 % Ripple rejection R.R 25, 26 −45* dB 0.1 s 14.1 16.1 18.1 dB 80* dB Output power Rise time TR 25, 26 BP = 1 V, BP = 4.7 µF Voltage gain AV BTL drive, INV input 22, 23 FB = 4.7 kΩ, FB to SPOUTA = 15 kΩ Open-ended voltage gain AVO 22, 23 f ≤ 100 Hz PO1 22, 23 V30R = 3.6 V, SPOUTA to SPOUTB = 8 Ω, THD = 10% 160 260 mW PO2 V30R = 2.85 V, SPOUTA to 22, 23 SPOUTB = 8 Ω, THD = 10% 50 110 mW Output voltage VO 22, 23 SPOUTA to SPOUTB = no load 3.8 5.5 V Offset voltage between output VOO 22, 23 −50 50 mV Overall harmonic distorition rate THD 22, 23 PO = 60 mW 0.5 1.0 % Ripple rejection R.R 22, 23 −45* dB 0.1 s Output power Rise time TR 22, 23 BP = 1 V, BP = 4.7 µF Input impedance RIN 19, 20 20 30 50 kΩ Standby supply current ICC1 21 0 10 µA * : Standard design value 16 8.1 BTL drive, INV input 25, 26 FB = 4.7 kΩ, FB to OUTA = 15 kΩ Loud speaker Amp. Speaker Amp. Single drive, INV input FB = 4.7 kΩ, FB to OUTA = 15 kΩ AV2 Open-ended voltage gain Receiver Amp. 25 (Ta = +25 °C, VB = V30R = 3.6 V, f = 1 kHz) Value Conditions Unit Min. Typ. Max. MB3892 • Sounder Parameter Output voltage Output leakage current Sounder Conditions for input ON Input current Conditions (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. Symbol Pin No. VO1 16 VO1 = 200 mA 0.3 0.5 V VO2 14 VO2 = 100 mA 0.3 0.5 V VO3 13 VO3 = 50 mA 0.3 0.5 V 10 µA ILEAK 16, 14, 13 VB = VO1 to VO3 = 6 V VON 10, 11, 12 VB × 0.7 VB V VOFF 10, 11, 12 0.0 VB × 0.3 V IIH 10, 11, 12 IN1 to IN3 = 3 V −1 1 µA IIL 10, 11, 12 IN1 to IN3 = 0.4V −1 1 µA • LED drive Parameter Output voltage LED drive Output leakage current Conditions (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. Symbol Pin No. VLE1 2 LEDO1 = 25 mA 0.2 0.4 V VLE2 4 LEDO2 = 25 mA 0.2 0.4 V VLER 1 LEDR = 25 mA 0.2 0.4 V ILEAK 2, 4, 1 VB = VO1 to VO3 = 6 V 10 µA 17 MB3892 • Charge control Parameter Symbol Pin No. Conditions ∆VCHG 49 Control output minimum voltage VCOL 50 Control output maximum voltage VCOH Control input current Control input range Charge control 0.8 2.5 V EXTVCC = 6 V 0.1 V 50 EXTVCC = 6 V EXTVCC − 0.5 V ICHGV 49 CHGV = 4 V 5 µA VGG1 50 VB = 4 V, CHGV = 1.59 V 0.85 1.44 2.15 V VGG2 50 VB = 4 V, CHGV = 1.69 V 1.85 2.44 3.15 V VGG 50 20 log{ (VGG2 − VGG1) / 0.1} 18.8 20.8 22.8 dB VBATT 48 VB = 3.6 V 1.35 1.43 1.52 V VCHGBAT 44 VB = 3.6 V 1.35 1.43 1.52 V VBH input voltage range VBH 46 EXTVCC = 6 V 1.0 5.0 V VBH input leakage current ILBH 46 VB = VBH = 4 V, EXTVCC = 0 V 10 µA VCUR1 47 Low precision VB = VBH = 3.6 V 1.8 2.0 2.2 V VCUR2 47 Low precision VB = 3.6 V, VBH = 3.75 V 1.05 1.25 1.45 V VCUR3 47 High precision VB = VBH = 3.6 V 1.8 2.0 2.2 V VCUR4 47 High precision VB = 3.6 V, VBH = 3.75 V 0.48 0.8 1.12 V VCURG1 47 20 log{ (VCUR1 − VCUR2) / 0.15} 12 14 16 dB VCURG2 47 20 log{ (VCUR3 − VCUR4) / 0.15} 16 18 20 dB Control output voltage Control gain BATT detected voltage Charge current detector (Ta = +25 °C, EXTVCC = 5.2 V) Value Unit Min. Typ. Max. Chage control output voltage Current detected sensitivity (Continued) 18 MB3892 (Continued) Parameter Symbol Pin No. Conditions VB1 28, 34, 45, 58, 70, 74, 80 2.5 2.6 2.7 V VB2 28, 34, 45, 58, 70, 74, 80 3.8 4.0 4.2 V IB1 54 40 50 60 mA IB2 54 80 100 120 mA VCDL 51 EXTVCC = 2 V, CHGDET = 0 A 0.3 V VCDH 51 EXTVCC = 0.6 V, CHGDET = 0 A OUT1 − 0.2 OUT1 V Switching voltage Preliminary of charge current charge circuit Charge current Exterenal power supply detector (Ta = +25 °C, EXTVCC = 5.2 V) Value Unit Min. Typ. Max. CHGDET output voltage • Serial control Parameter (Ta = +25 °C, VB = 3.6 V) Value Unit Min. Typ. Max. Symbol Pin No. Conditions VIL 6, 7, 8 0 OUT1 × 0.3 V VIH 6, 7, 8 OUT1 × 0.7 OUT1 V IIL 6, 7, 8 DAT = SCLK = STBIN = 0 V −1 1 µA IIH 6, 7, 8 DAT = SCLK = STBIN = 2.85 V −1 1 µA Input voltage Serial control Input current • Special power off Parameter Special power off Output voltage Symbol Pin No. VIPOFF 59 IPOFF = 0 A 59 IPOFFmode VRELEASE release voltage Conditions Min. (Ta = +25 °C, VB = 3.6 V) Value Unit Typ. Max. VB − 0.1 VB V VB × 0.3 V 19 MB3892 ■ TYPICAL CHARACTERISTICS 250 Ta = + 25 °C 200 150 100 50 0 0 1 2 3 4 5 Reference voltage vs. power supply voltage Reference voltage VREF (V) Power supply current IB (µA) Power supply current vs. power supply voltage 1.4 Ta = +25 °C VREF = 1 µF 1.2 1 0.8 0.6 0.4 0.2 0 0 6 Reference voltage VREF (V) 1.24 1.23 1.22 1.21 1.2 −25 0 25 50 75 2.85 2.83 2.81 0 2 3 4 5 Power supply voltage VB (V) −25 0 25 50 75 100 Output voltage vs. power supply voltage (BBREG2) Output voltage VO2 (V) Output voltage VO1 (V) 1 0.5 1 VB = 3.6 V Ambient temperature Ta ( °C) Ta = +25 °C OUT1 = 10 µF 0 6 2.87 2.79 −50 100 Output voltage vs. power supply voltage (BBREG1) 4 3.5 3 2.5 2 1.5 5 2.89 Ambient temperature Ta ( °C) 5 4.5 4 2.91 Output voltage VO2 (V) VB = 3.6 V VREF = 1 µF 1.25 1.19 −50 3 Output voltage vs. ambient temperature (BBREG2) Reference voltage vs. ambient temperature 1.26 2 Power supply voltage VB (V) Power supply voltage VB (V) 1.27 1 6 5 4.5 4 3.5 3 Ta = +25 °C OUT2 = 10 µF 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5 6 Power supply voltage VB (V) (Continued) 20 MB3892 Output voltage VO3 (V) 5 Ta = +25 °C OUT3 = 2.2 µF 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5 Output voltage vs. power supply voltage (BATTREG) Output voltage VBATT (V) Output voltage vs. power supply voltage (BBREG3) 5 4.5 Ta = +25 °C BATTOUT = 10 µF 4 3.5 3 2.5 2 1.5 1 0.5 0 6 0 Power supply voltage VB (V) 1 4 3 2 6 5 2 3 Input voltage VIN (V) 4 6 Ta = +25 °C VB = 3.6 V RFOUT1 = 2.2 µF 0 1 4 3 2 5 6 Input current vs. input voltage (Variable REG) Input current IIN (µA) Output voltage VO (V) Ta = +25 °C VREGOUT = 10 µF 1 5 Control voltage VRFCTL1 (V) Output voltage vs. input voltage (Variable REG) 0 4 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Power supply voltage VB (V) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 3 Output voltage vs. control voltage (RFREG1) Output voltage VO1 (V) Output voltage VO1 (V) Ta = +25 °C RFOUT1 = 2.2 µF RFCTL1 = VB 0 2 Power supply voltage VB (V) Output voltage vs. power supply voltage (RFREG1) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 1 5 200 180 160 140 120 100 80 60 40 20 0 Ta = +25 °C VREGOUT = 10 µF 0 1 2 3 4 5 Input voltage VIN (V) (Continued) 21 MB3892 Ta = +25 °C VB = 3.6 V D/AREF = VREF Digital input ALL“L” 0.4 0.8 1.2 1.6 Ta = +25 °C VB = 3.6 V D/AREF = VREF Digital input ALL“H” −0.2 0 2 Output current IDAOUT1 (mA) 0.4 Output voltage VDAOUT4 (V) Output voltage VDAOUT4 (V) 0.8 1.2 1.6 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 −0.2 0 2 2.7 2.75 2.8 2.85 REG1 Output voltage VO1 (V) 2.9 Power supply voltage VB (V) Output voltage VO1 (V) Output voltage VRESET (V) Ta = +25 °C 2.65 −0.4 −0.6 −0.8 −1 Output current IDAOUT4 (mA) Reset output voltage vs. REG1 output voltage 2.6 −1 Ta = +25 °C VB = 3.6 V D/AREF = VREF Digital input ALL“H” Output current IDAOUT4 (mA) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 −0.8 DA4 output voltage vs. output current Ta = +25 °C VB = 3.6 V D/AREF = VREF Digital input ALL“L” 0 −0.6 Output current IDAOUT1 (mA) DA4 output voltage vs. output current 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 −0.4 Hold time for power-on-reset 4 VB 2 0 Ta = +25 °C VB = 0 V 3.6 V OUT1 = 10 µF VREF = 1 µF RESET = 50 pF CTP = 0.1 µF RESETIN = 1000 pF 2 1 VREF 4 Reference voltage VREF (V) 0 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 0 2 OUT1 4 0 RESET 2 0 0 10 20 30 40 50 60 70 80 90 100 Reset input voltage VRESET (V) 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 DA1 output voltage vs. output current Output voltage VDAOUT1 (V) Output voltage VDAOUT1 (V) DA1 output voltage vs. output current t (ms) (Continued) 22 MB3892 Power supply voltage detected output voltage vs. power supply voltage Power supply voltage detected output voltage vs. power supply voltage Ta = +25 °C 0 1 2 3 4 5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 2.5 2.6 2.7 2.8 2.9 Output voltage V3VDET (V) Output voltage V3VDET (V) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 6 100 Ta = +25 °C V30R = 2.85 V OUTA to OUTB = 32 Ω 10 f = 1 kHz 1 0.1 0.1 1 100 Ta = +25 °C V30R = 3.6 V OUTA to OUTB = 32 Ω 10 f = 1 kHz 1 0.1 0.01 0.001 Total harmonic distortion rate vs. output power (Loudspeaker Amp.) 1 0.1 Output power PO (W) 1 Total harmonic distortion rate THD (%) Total harmonic distortion rate THD (%) Ta = +25 °C V30R = 2.85 V SPOUTA to SPOUTB = 8 Ω 10 f = 1 kHz 0.1 0.1 1 Total harmonic distortion rate vs. output power (Loudspeaker Amp.) 100 0.01 0.01 Output power PO (W) Output power PO (W) 0.01 0.001 3.1 3.2 3.3 3.4 3.5 Total harmonic distortion rate vs. output power (receiver Amp.) Total harmonic distortion rate THD (%) Total harmonic distortion rate THD (%) Total harmonic distortion rate vs. output power (receiver Amp.) 0.01 3 Power supply voltage VB (V) Power supply voltage VB (V) 0.01 0.001 Ta = +25 °C 100 Ta = +25 °C V30R = 3.6 V SPOUTA to SPOUTB = 8 Ω 10 f = 1 kHz 1 0.1 0.01 0.001 0.01 0.1 1 Output power PO (W) (Continued) 23 MB3892 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Ta = +25 °C VB = 3.6 V IN1 = IN2 = IN3 = "H" 0 25 50 Sounder2 output voltage vs. output current Output voltage VO2 (V) Output voltage VO1 (V) Sounder1 output voltage vs. output current 75 100 125 150 175 200 225 250 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Ta = +25 °C VB = 3.6 V IN1 = IN2 = IN3 = "H" 0 20 Output current IO1 (mA) 10 20 30 40 50 60 70 80 Output voltage VO3 (V) Output voltage VLER (V) 90 100 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Ta = +25 °C VB = 3.6 V EXTVCC = 6 V 0 5 Output current IO3 (mA) 5 10 15 20 25 30 35 40 Output current ILE1 (mA) 45 50 Output voltage VLE2 (V) Output voltage VLE1 (V) 15 20 25 30 35 40 45 50 LED2 output voltage vs. output current Ta = +25 °C VB = 3.6 V 0 10 Output current ILER (mA) LED1 output voltage vs. output current 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 80 100 120 140 160 180 200 LEDR output voltage vs. output current Ta = +25 °C VB = 3.6 V IN1 = IN2 = IN3 = "H" 0 60 Output current IO2 (mA) Sounder3 output voltage vs. output current 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 40 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Ta = +25 °C VB = 3.6 V 0 5 10 15 20 25 30 35 40 45 50 Output current ILE2 (mA) (Continued) 24 MB3892 6 Ta = +25 °C 5.5 VB = 4 V 5 EXTVCC = 5.2 V 4.5 CHGBAT = OPEN 4 3.5 3 2.5 2 1.5 1 0.5 0 1.2 1.4 1.6 CHGOUT output voltage vs. CHGV input voltage Output voltage VCHGOUT (V) Output voltage VCHGOUT (V) CHGOUT output voltage vs. CHGV input voltage 1.8 2 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Ta = +25 °C VB = 4 V EXTVCC = 5.2 V CHGBAT = CHGV 0 2.2 1 CHGI output voltage vs. VBH input voltage Output voltage VCHGI (V) Output voltage VCHGI (V) 2.5 1.5 Low precision 1 High precision 0.5 0 3.5 3.6 3.7 3.8 3.9 4 4 5 CHGI output voltage vs. VBH input voltage Ta = +25 °C VB = 3.6 V EXTVCC = 5.2 V 2 3 Input voltage VCHGV (V) Input voltage VCHGV (V) 2.5 2 4.1 Ta = +25 °C VB = VBH − 0.15 V EXTVCC = 6 V 2 High precision 1.5 1 0.5 0 4.2 0 1 Input voltage VBH (V) 2 3 4 5 Input voltage VBH (V) Preliminary charge current vs. VB power supply voltage Charge current IB (mA) −150 Ta = +25 °C EXTVCC = 5.2 V −125 5.2 V −100 EXTVCC VA −75 6.2 Ω EXTS −50 VB −25 IB VB 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VB power supply voltage VB (V) (Continued) 25 MB3892 (Continued) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Power dissipation vs. ambient temperature Ta = +25 °C VB = 3.6 V 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Power dissipation PD (mW) Output voltage VCHGDET (V) CHGDET output voltage vs. EXTVCC power supply voltage 5 EXTVCC power supply voltage VEXTVCC (V) 26 1600 1420 1400 1200 1000 800 600 400 200 0 −40 −20 0 20 40 60 80 Ambient temperature Ta ( °C) 100 MB3892 ■ FUNCTIONAL DESCRIPTION 1. Power Control (1) Reference voltage This circuit uses the voltage generated by VB1 terminal (pin 28) to produce a temperature compensated reference voltage (1.23 V typ.) for power control and uses this reference voltage on power control. (2) Baseband regulator (BBREG1) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at OUT1 terminal (pin 75). Power can be drawn from OUT1 terminal for external use, up to a maximum load current of 110 mA. (3) Baseband regulator (BBREG2) This regulator uses the reference voltage to produce an output voltage (2.85 V typ.) at OUT2 terminal (OUT21 terminal (pin 72), OUT2-2 terminal (pin73)). Power can be drawn from OUT2 terminal for external use, up to a maximum load current of 150 mA. (4) Baseband regulator (BBREG3) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at OUT3 terminal (pin 71). Power can be drawn from OUT3 terminal for external use, up to a maximum load current of 60mA. (5) Battery backup regulator (BATTREG) This regulator uses the reference voltage to produce an output voltage (3.1V typ.) at BATTOUT terminal (pin 69). (6) Vibrator drive circuit (VIBREG) This circuit uses the reference voltage to produce an output voltage (1.5V typ.) at VIBREG terminal (VIBREG1 terminal (pin 78), VIBREG-2 terminal (pin 79)). Power can be drawn from VIBREG terminal for external use, up to a maximum load current of 200mA. (7) RF regulator (RFREG1) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT1 terminal (pin 42) when an "H" level signal is input at the RFCTL1 terminal (pin 41). Power can be drawn from RFOUT1 terminal for external use, up to a maximum load current of 10mA. (8) RF regulator (RFREG2) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT2 terminal (pin 40) when an "H" level signal is input at the RFCTL2 terminal (pin 39). Power can be drawn from RFOUT2 terminal for external use, up to a maximum load current of 20mA. (9) RF regulator (RFREG3) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT3 terminal (pin 38) when an "H" level signal is input at the RFCTL3 terminal (pin 37). Power can be drawn from RFOUT3 terminal for external use, up to a maximum load current of 20mA. 27 MB3892 (10) RF regulator (RFREG4) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT4 terminal (pin 35) when an "H" level signal is input at the RFCTL4 terminal (pin 36). Power can be drawn from RFOUT4 terminal for external use, up to a maximum load current of 60mA. (11) RF regulator (RFREG5) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT5 terminal (RFOUT5-1 terminal (pin 30), RFOUT5-2 terminal (pin 29)) when an "H" level signal is input at the RFCTL5 terminal (pin 31). Power can be drawn from RFOUT5 terminal for external use, up to a maximum load current of 200mA. (12) RF regulator (RFREG6) This regulator uses the reference voltage to produce an output voltage (2.85V typ.) at RFOUT6 terminal (pin 33) when an "H" level signal is input at the RFCTL6 terminal (pin 32). Power can be drawn from RFOUT6 terminal for external use, up to a maximum load current of 50mA. (13) Variable bias regulator This regulator uses the voltage generated by VREGIN terminal (pin 67) to produce an amplified output voltage at VREGOUT terminal (pin 68). Power can be drawn from VREGOUT terminal for external use, up to a maximum load current of 10mA. (14) D/A converter D/A1 to D/A3 converter process 8 bit input signal and D/A4 converter processes 10 bit input signal. This converter generates an output voltage (0.5 to 2.5V ) at D/AOUT1 terminal (pin 63) to D/AOUT4 terminal (pin 60) according to the signal from serial control. (15) Power-on reset When the OUT1 terminal (pin 75) voltage exceeds 2.75V(typ.) , after a delay interval set by a capacitor (0.1 µF typ.) connected to the CTP terminal (pin 76) , the RESET terminal (pin 77) voltage becomes "H" level from "L" level and the reset signal is canceled. When the OUT1 terminal voltage falls below 2.685V (typ.), the RESET terminal voltage becomes "L" level from "H" level and the reset signal is dispatched. (refer to "■POWER-ON RESET TIMING DIAGRAM", "■SETTING OF HOLD TIME FOR POWER-ON RESET".) (16) Battery voltage detect This function is to observe the battery voltage. When the VB4 terminal (pin 58) voltage exceeds 3.05V (typ.), the 3VDET terminal (pin 56) voltage goes to "H" level and when the VB4 terminal voltage falls below 2.85V (typ.), the 3VDET terminal goes to "L" level. (refer to ■BATTERY VOLTAGE DETECTOR) 28 MB3892 2. Speaker Amp. (1) Receiver Amp. This is the BTL output type Amp. driving speaker directly. When the output power is 90mW typ. (at 32Ω), the serial control processes the on/off and the earphone switching control. The optional gain can be set by the connection of feedback resistor from FB terminal (pin 20) to OUTA terminal (pin 25) and the connection of input resistor to FB terminal. (2) Loudspeaker Amp. This is the BTL output type Amp. driving speaker directly. When the output power is 260mW typ. (at 8Ω), the serial control processes the on/off control. The optional gain can be set by the connection of feedback resistor from FB terminal (pin 20) to SPOUTA terminal (pin 22) and the connection of input resistor to FB terminal. 3. Sounder Three low-saturation output transistors are built in for buzzer drive. When the signal from serial control is "H" level and IN1 terminal (pin 10) voltage is "H" level, the V01 terminal (pin 16) voltage is 0.3V (typ.). When IN2 terminal (pin 11) voltage and IN3 terminal (pin 12) voltage are "H" level, the V02 terminal (pin 14) voltage and V03 terminal (pin 13) voltage are also 0.3V (typ.). 4. LED drive The LEDO1 terminal (pin 2) voltage and LEDO2 terminal (pin 4) voltage is 0.2V (typ.), when the signal from serial control is "H" level. When the signal from charge control is "H" level, the LEDR terminal (pin 1) voltage is 0.2V (typ.). 5. Charge control (1) Charge control The main charge is started by the signal from serial control indicates preliminary charge is finished. According to the voltage level at CHGV terminal (pin 49) generated by microprocessor on the microprocessor operation, the charge current is controlled by adjusting gate voltage from outside FET. (2) Charge current detector The charge current detector sensitivity (gain) can be switched by the signal from serial control. The VBH terminal (pin 46) voltage and VB4 terminal voltage (pin 58) are detected and CHGI terminal (pin 47) voltage is generated. (3) Preliminary charge circuit When the battery voltage is low, the charge is controlled until the microprocessor starts the operation. Before the battery voltage reaches 2.6V (typ.), 50mA (typ.) is used for the charge and before 4V (typ.), 100mA (typ.) is used. (4) External power supply detector This function is to detect if the case is attached to the battery charger. When the case is attached to the battery charger, EXTVCC terminal (pin 52) voltage is "H" level and generate "L" level voltage at CHGDET terminal (pin 51). When the case is not attached to the battery charger, EXTVCC terminal voltage is "L" level and generate "H" level voltage at CHGDET terminal. 29 MB3892 6. Serial control After the input signal from microprocessor at DAT terminal (pin 6) is captured at the rising edge of SCLK terminal (pin 7), the signal is input in the internal register at the rising edge of STBIN terminal (pin8) and mode is set. 7. Special power off This function can control the power consumption current of main IC under 11µA (typ.) and the battery can be kept for the long period under the conditions that battery package is attached to the mobile phone on the shipment. 30 MB3892 ■ CONDITIONS of EACH REGULATORS at MEASUREMENT of CONSUMPTION CURRENT Each regulators conditions at the measurment of consumption current are as the following table. [BIASSW] siganl of serial control is “H” level (BIASSW OFF) . BBREG1 BBREG2 BBREG3 BATTREG VIBREG VARREG RFREG1 Special power off IB1 OFF OFF OFF OFF OFF OFF OFF Standby IB2 ON OFF ON ON OFF OFF OFF Power on (waiting/intermittent) IB3 ON OFF ON ON OFF OFF OFF Power on (waiting/receiving) IB4 ON ON ON ON OFF OFF ON Power on (conversation/ transmission) IB5 ON ON ON ON OFF OFF ON Power on IB6 (conversation/receiving) ON ON ON ON OFF OFF ON RFREG2 RFREG3 RFREG4 RFREG5 RFREG6 Receiver Loudspeaker Amp. Amp. Special power off IB1 OFF OFF OFF OFF OFF OFF OFF Standby IB2 OFF OFF OFF OFF OFF OFF OFF Power on (waiting/intermittent) IB3 OFF OFF OFF OFF OFF OFF OFF Power on (waiting/receiving) IB4 ON ON ON OFF ON OFF OFF Power on (conversation/ transmission) IB5 ON OFF OFF ON ON ON OFF Power on (conversation/ receiving) IB6 ON ON ON OFF ON ON OFF 31 MB3892 ■ LOGICS (1) Serial Control Setting Table A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 1 1 1 0 D9 D8 D7 PDSP PDRCV CHOISE Operation Loud at data “1” AMPON Receiver AMPON Data D6 BTL drive Operation Loud Receiver Single at data “0” AMPOFF AMPOFF drive Initial value after reset 0 0 OFF OFF ON ON VIB Charge red Variable REGOFF LEDON REGOFF 0 0 0 0 A1 A0 1 1 1 1 1 1 0 1 Operation at data “1” ∗ Initial value after reset 0 ∗: Unused 1 D6 PWOFFCTL Operation REG3OFF REG3ON at data “0” 0 LEDRCTL VREGCTL VIB REGON A2 Special REG3ON REG3OFF power off setting VIBCTL D0 OFF A3 REG3CTL BIASSW REG2CTL D1 OFF A4 Data D2 ON A5 D7 D3 ON A6 D8 D4 LEDC1 LEDC2 (green) (red) A7 D9 32 0 D5 ∗ D5 D3 0 D2 0 D1 D0 CHGISE L PRCHG BUZZSEL SOUND1 SOUND2 SOUND3 OFF Low precision Loudspeaker PRCHG Sounder1 Sounder2 Sounder3 Amp. short ON ON ON OFF waveform output High Special power off precision ( × 8) setting 1 D4 0 Charge red Variable LEDOFF REGON 0 Loudspeaker PRCHG Amp. ON usual output 0 0 Sounder1 Sounder2 Sounder3 OFF OFF OFF 0 0 0 MB3892 A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 1 1 0 0 D9 Data D8 D7 D6 D5 D4 D3 D2 D1 D0 DAR4_9 DAR4_8 DAR4_7 DAR4_6 DAR4_5 DAR4_4 DAR4_3 DAR4_2 DAR4_1 DAR4_0 Operation at data “1” DA4 setting data Operation at data “0” Initial value after reset 0 0 0 0 A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 1 0 1 1 D9 Data D8 D7 D6 0 0 0 0 0 0 D5 D4 D3 D2 D1 D0 PDNDA4 PDNDA3 DAR3_7 DAR3_6 DAR3_5 DAR3_4 DAR3_3 DAR3_2 DAR3_1 DAR3_0 Operation at data “1” DA4ON DA3ON DA3 setting data Operation DA4OFF DA3OFF at data “0” Initial value after reset 0 0 0 0 A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 1 0 1 0 D9 D8 Data ∗ Operation at data “1” ∗ DA2ON Operation at data “0” ∗ DA2OFF Initial value after reset ∗ 0 D7 D6 0 0 0 0 0 0 D5 D4 D3 D2 D1 D0 PDNDA2 DAR2_7 DAR2_6 DAR2_5 DAR2_4 DAR2_3 DAR2_2 DAR2_1 DAR2_0 DA2 setting data 0 0 0 0 0 0 0 0 ∗:Unused 33 MB3892 A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 1 0 0 1 D9 Data ∗ Operation at data “1” ∗ DA1ON Operation at data “0” ∗ DA1OFF Initial value after reset ∗ 0 D7 D6 D4 D3 D2 D1 D0 DA1setting data 0 0 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 1 0 0 0 Operation at data “1” D5 PDNDA1 DAR1_7 DAR1_6 DAR1_5 DAR1_4 DAR1_3 DAR1_2 DAR1_1 DAR1_0 A7 Data 0 0 0 0 D9 D8 D7 D6 D5 D4 D3 D2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ REG3CTL ∗ ∗ ∗ ∗ ∗ ∗ ∗ REG3ON 0 0 D1 D0 PWOFFCTL Special power off setting ∗ Operation at data “0” ∗ ∗ ∗ ∗ ∗ ∗ ∗ REG3OFF ∗ Special power off setting Initial value after reset ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 1 ∗:Unused 34 D8 MB3892 (2) Input Signal Timimg Parameter Symbol Value Min. Typ. Max. Unit Data setup time tsc 100 ns Data hold time thc 100 ns STB setup time tss 100 ns STB pulse duration tds 100 ns Removal time ths 100 ns Remark (3) Input Signal Timing Diagram (Input voltage “H” level = 2.85 V, “L” level = 0 V) tsc 50 SCLK DAT A7 A6 A5 A4 D1 D0 thc tss ths 50 STBIN tds Note : Data is defined at the rising edge of SCLK and IC mode is set through latching of DAT at rising edge STBIN. 35 MB3892 ■ POWER-ON RESET TIMING DIAGRAM OUT1 2.75 V 2.685 V CTP 1.23 V TPR TPR RESET 90 % tr 10 % (1) 90 % 90 % tr tf 10 % 10 % (2) (3) (4) (5) 90 % tf 10 % (6) (1) When the OUT1 terminal (pin 75) voltage exceeds detected rising voltage (2.75V typ.), the charge for timing capacitor (CTP) for hold time for power-on reset starts . (2) When the CTP terminal (pin 76) voltage exceeds 1.23V (typ.), the reset is canceled. (The RESET terminal voltage becomes "H" level from "L" level.: rising time from 10% to 90% = tr) (3) When OUT1 terminal voltage falls below detected rising voltage (2.685V typ.), the CTP terminal voltage is down and the reset signal is output. (RESET terminal voltage becomes "L" level from "H" level.) (4) When OUT1 terminal voltage exceeds rising voltage detect, charging of CTP is started. (5) When CTP terminal voltage rises above threshold voltage, the reset is canceled. (6) When OUT1 terminal voltage falls below the voltage detect, the reset signal is output. ■ SETTING OF HOLD TIME FOR POWER-ON RESET According to the time constant set by capacitor (CTP) connected to CTP terminal (pin 76), rise time (hold time) of RESET terminal (pin 77) voltage can be set after OUT1 terminal (pin 75) voltage exceeds 2.75V (typ.). POR hold time : TPR (s) =: 36 1.23 (V) × CTP (µF) 1.75 (µA) (tr of RESET is not included) MB3892 ■ RISE TIME FOR SPEAKER Amp. BP = 4.7 µF BP = 4.7 µF TR TR 1.6 V 1.0 V BP 1.0 V BP 1.6 V Speaker output + Speaker output − BTL drive Single drive (Earphone mode) Rise time TR (ms) =: 10.3 (kΩ) × CBP (µF) ■ PRELIMINARY CHARGE CURRENT Charge current (mA) 100 50 0 2.6 4 VB (V) ■ BATTERY VOLTAGE DETECTOR 3VDET (V) 2.85 0 0 2.85 3.05 VB (V) 37 MB3892 ■ USAGE PRECAUTIONS • Printed circuit board ground lines should be set up with consideration for common impedance. • Take appropriate static electricity measures. • • • • Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers. Work platforms, tools, and instruments should be properly grounded. Working personal should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground. • Do not apply negative voltages The use of negative voltages below -0.3V may create parasitic transistors on LSI lines, Which can cause abnormal operation. ■ ORDERING INFORMATION Part number MB3892PFF 38 Package 80-pin plastic LQFP (FPT-80P-M17) Remarks MB3892 ■ PACKAGE DIMENTION 80-pin plastic LQFP (FPT-80P-M17) (1.40(.055)) 12.00±0.20(.472±.008)SQ 10.00±0.10(.394±.004)SQ 60 41 61 40 Details of "A" part (11.00(.433)) 0.10(.004) 0.10±0.05 (.004±.002) 80 21 "A" 0.50±0.10 (.020±.004) 2°±2° 1 20 0.16±0.04 (.006±.002) C 0.40(.016) TYP +0.05 1.50±0.10 (.059±.004) 0.127 –0 +.002 .005 –0 1999 FUJITSU LIMITED F80031SC-1-1 Dimansions in mm (inches) . 39 MB3892 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 F0007 FUJITSU LIMITED Printed in Japan All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.