TOSHIBA TB62501F TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MOLITHIC TB62501F Power Management IC for Notebook PC ■Application This IC will be used in Notebook PC and control power supply lines. ■Outline TB62501F accepts the multiple power supply input and control each RAMP drivers. Multiple Power Supply --- VREGIN16(6∼16V Variable),VCC3M(3.3V), VCC5M(5V), VDD15(15V) Ramp Drivers are divided by 6 parts as follows. 1 --- 5B_DRV,3A_DRV,3B_DRV 2 --- 3P_DRV 3 --- VBL16_DRV 4 --- DCIN_DRV,BAT_DRV,M1_DRV,S1_DRV ( L Q F P 6 4 -P - 1 0 1 0 -0 . 5 A ) 5 --- RD1_DRV,RD2_DRV, 6 --- RD3_DRV,RD4_DRV W e i g h t: 0 . 3 4 g ( T y p i c a l) Regarding Number 4,5,6, it will be named as NDRV due to difference of circuitry. This IC performs power on, monitoring and power off by connecting N-Ch MOS-FET to these NDRV terminals. And also , the excess current into the power supplies controlled the external MOS-FET(VCC5B,VCC3A,VCC3B,VCC3P,RD3,RD4) are monitored, the shut down signal is given whenever the abnormal state is observed. The voltage of the other 5 power supply (VCC5M,VCC3M,VCC5B,VCC3A,VCC3B) are also monitored.(PGS Circuit) In addition, there are two PDRV circuit (M2_DRV,S2_DRV) , it is effective to control the power supply system that have different power supply. ■Features ・Package : 64 pin thinner and compact flat package (LQFP64) ・Process : BiCD 0.8um – 40V process ・System Structure 1. Constant Current Driver for N-Ch Power MOS-FET Gates (RAMP DRIVER) 2. Integrated PGS Circuit +/- 8% (Typical) Tolerance 3. Integrated 3.3V Regulators (+4%/-3%) 4. Integrated driver for the Charge Pump 5. All Logic Input --- CMOS input (Compatible with TTL input Level) 6. Low power Dissipation (Shut Down --- 20uA, Battery Off --- 80uA) TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. The products described in the document may include products subject to foreign exchange and foreign trade control laws. The Toshiba products listed in this document are intended for usage in general electronics applications ( computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer’s own risk. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patens or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. The information contained herein is subject to change without notice. 14-Jan-03 (Rev.2.0)TB62501F (Page. 1) TOSHIBA TB62501F Explanation of Pin PIN No. 1 2 3 4 5 6 PIN NAME I/O FUNCTION DISCHARGE -EXTPWR S1GATEON S2GATEON DGND M1GATEON I I I I G I "DISCHARGE" = "L" "-EXTPWR" = "L" DCIN_DRV : CHARGE , BAT_DRV : DISCHARGE "DISCHARGE" = "H" or "-EXTPWR" = "H" DCIN_DRV : DISCHARGE , BAT_DRV : CHARGE ON/OFF Control Signal of S1_DRV Switch. "H" = CHARGE , "L" = DISCHARGE ON/OFF Control Signal of S2_DRV Switch. "H" = DISCHARGE , "L" = OFF (Hi- Impedance) Ground for Logic circuit (connect to system Ground) ON/OFF Control Signal of M1_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 7 8 M2GATEON 5B_ON I I ON/OFF Control Signal of M2_DRV Switch. "H" = DISCHARGE , "L" = OFF (Hi- Impedance) ON/OFF Control Signal of 5B_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 9 3A_ON I ON/OFF Control Signal of 3A_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 10 CLKIN I Hysteresis Comparator Input for Oscillator 11 12 CLKOUT 3B_ON O I 13 VCC_RD3 I 14 RD3_ON I Hysteresis Comparator Output for Oscillator ON/OFF Control Signal of 3B_DRV Switch. "H" = CHARGE , "L" = DISCHARGE Voltage Supply Pin for "RD3_DRV" Overload Detector This Pin performs relatively Overload Detector to use supply voltage. ON/OFF Control Signal of RD3_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 15 RD4_ON I ON/OFF Control Signal of RD4_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 16 VBL16_ON I ON/OFF Control Signal of VBL16_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 17 18 RD1_DRV 5B_DRV O O Gate Drive Power Output For Nch-MOSFET(RD1) Gate Drive Power Output For Nch-MOSFET(VCC5B) 19 5B I Input Pin for B_PGS and VCC5B Voltage Drop Protection 20 PGND1 G Ground for Drivers (connect to system Ground) 21 3A_DRV O Gate Drive Power Output For Nch-MOSFET(VCC3A) 22 23 3A 3B_DRV I O Input Pin for A_PGS and VCC3A Voltage Drop Protection Gate Drive Power Output For Nch-MOSFET(VCC3B) 24 3B I Input Pin for B_PGS and VCC3B Voltage Drop Protection 25 VDD15 P Power Input for Gate Drive (12 -17 VDC) 26 3P_DRV O Gate Drive Power Output For Nch-MOSFET(VCC3P) 27 28 3P PGND2 I G Input Pin for VCC3P Voltage Drop Protection Ground for Drivers (connect to system Ground) 29 RD3_DRV O Gate Drive Power Output For Nch-MOSFET(RD3) 30 31 32 RD3 I Input Pin for RD3 Voltage Drop Protection RD4_DRV O Gate Drive Power Output For Nch-MOSFET(RD4) RD4 I Input Pin for RD4 Voltage Drop Protection Explanation of I/O : I= Input Terminal, O = Output Terminal, P = Power Lines 14-Jan-03 (Rev.2.0)TB62501F (Page. 2) TOSHIBA TB62501F PIN No. 33 34 35 PIN NAME I/O VBL16_DRV VBL16 RD2_DRV O I O Gate Drive Power Output For Nch-MOSFET(VBL16) Input Pin for VBL16 Voltage Drop Protection Gate Drive Power Output For Nch-MOSFET(RD2) 36 CPOUT1 O Output for first charge Pump Driver. It has switched using the power supply of VCC3M. 37 38 CPOUT2 VCPIN24 O P Output for second charge Pump Driver. It has switched using the power supply of VCC5M. Power Input for Gate Drive (24 VDC) 39 S1_DRV O Gate Drive Power Output For Nch-MOSFET(S1) 40 M1_DRV O Gate Drive Power Output For Nch-MOSFET(M1) 41 BAT_DRV O Gate Drive Power Output For Nch-MOSFET(BAT) 42 DCIN_DRV O 43 VCC_RD4 I 44 45 FIX_R VCC3M O P Gate Drive Power Output For Nch-MOSFET(DCIN) Voltage Supply Pin for "RD4_DRV" Overload Detector This Pin performs relatively Overload Detector to use supply voltage. Terminal for Reference Current Setting Resistance Power Input for Analog Circuit (3.3V +/-5% VDC) 46 M2_DRV O Gate Drive Power Output for Pch-MOSFET "M2" (Open-Drain) 47 S2_DRV O Gate Drive Power Output for Pch-MOSFET "S2" (Open-Drain) 48 VCC5M P Power Input for Analog Circuit (5V +/-5% VDC) 49 50 A_PGS B_PGS O O Output for VCC3A Power Good Signal (Open-Drain) Output for VCC5B/VCC3B Power Good Signal (Open-Drain) 51 M_PGS O Output for VCC3M/VCC5M Power Good Signal (Open-Drain) 52 -SHDN O Output for System Shutdown Signal (Open-Drain) 53 AGND G Ground for Analog circuit (connect to system Ground) 54 55 BAT_VOLT TH_DET I O Setting Pin for Low-Battery Protection Connect pin for Thermal Resistance 56 TEST G TEST mode signal input pin (connect to system Ground) 57 VREGIN16 P Battery and AC Adapter Power Input (5.5 - 17 VDC) 58 -RESET I Input Pin for Reset Signal 59 3SW O 3SW output pin made from the internal regulator. 60 RD2_ON I ON/OFF Control Signal of RD2_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 61 3P_ON I ON/OFF Control Signal of 3P_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 62 RD1_ON I ON/OFF Control Signal of RD1_DRV Switch. "H" = CHARGE , "L" = DISCHARGE 63 5M_ON I 5M_ON Signal Input 64 3M_ON I 3M_ON Signal Input FUNCTION Explanation of I/O : I= Input Terminal, O = Output Terminal, P = Power Lines 14-Jan-03 (Rev.2.0)TB62501F (Page. 3) TOSHIBA TB62501F Block Diagram -RESET VDD15 Over Current Protection VCPIN24 VREGIN16 BAT_VOLT Low-Battery Protection Charge Pump Regulator CPOUT2 CPOUT1 3SW CLKOUT OSC Low Voltage Protection TH_DET CLKIN VCCRD3M VCCRD4M RD3 SHUTDOWN -SHDN Over Load Detector LOGIC TEST Over Load Detector Comp. RD4 3P VBL16 3B 3M_ON 5B 5M_ON 3A B_PGS BPGS A_PGS APGS M_PGS MPGS PGS Comp. VCC3M VCC5M S2GATEON M2GATEON DISCHARGE LOGIC -EXTPWR RD2_ON RD1_ON S1GATEON M1GATEON VBL16_ON RD4_ON RD3_ON 3P_ON 3B_ON 3A_ON 5B_ON PDRV(S2) S2_DRV PDRV(M2) M2_DRV NDRV(BAT) BAT_DRV NDRV(DCIN) DCIN_DRV NDRV(RD2) RD2_DRV NDRV(RD1) RD1_DRV NDRV(S1) S1_DRV NDRV(M1) M1_DRV RAMP(VBL16) VBL16_DRV RAMP(RD4) RD4_DRV RAMP(RD3) RD3_DRV RAMP(3P) 3P_DRV RAMP(3B) 3B_DRV RAMP(3A) 3A_DRV RAMP(5B) 5B_DRV Reference Current DGND AGND PGND1 FIX_R PGND2 14-Jan-03 (Rev.2.0)TB62501F (Page. 4) TOSHIBA TB62501F Operation State of each power on stage VREGIN16 VCC5M VCC3M VDD15 Battery Detector Regulator (3SW) RAMP DRIVER NDRV PDRV Charge Pump State1 ○ ○ ○ ○ Operate Operate All Operate All Operate Operate All Operate Operate − All Operate M1_DRV S1_DRV BAT_DRV RD1_DRV RD2_DRV − State2 ○ ○ ○ × Operate Operate VBL16 State3 ○ ○ × ○ Operate Operate 5B,RD1,RD2 RD3,RD4 State4 ○ ○ × × Operate Operate State5 ○ × ○ ○ Operate Operate − − State6 ○ × ○ × Operate Operate − − State7 ○ × × ○ Operate Operate − − State8 ○ × × × Operate Operate − − State9 ○ × × × Operate − − − All Operate All Operate All Operate All Operate All Operate All Operate − − − − − − − − ○:Power supplied ×:No Power Supplied −:Stop Operation * The charge up voltage of VCPIN24 is generated when both VCC5M and VCC3M are supplied. If either VCC5M or VCC3M is not supplied, the voltage of VCPIN24 become nearly equal to the voltage of VREGIN16. * 3SW operates when the voltage greater than 2.9V is supplied to BAT_VOLT Terminal under the state that VREGIN16 is supplying and excess current and so on are not observed. * BAT_DRV and DCIN_DRV for NDRV line are not turn on at the same time. DCIN_DRV performs discharge operation when BAT_DRV performs charging operation. When DCIN_DRV performs charging operation, BAT_VOLT performs discharge Operation. The operation of BAT_VOLT is described in the above table as the representative. Explanation of Operations 1. State 1 --- All power supplies are Supplied, All circuits are in a state of operation. 2. State 2 --- All RAMP Drivers except VBL16_DRV are stopped operation because VDD15 is not supplied. Also, RD1 and RD2 of NDRV line are stopped operation. 3. State 3 --- The operation of RAMP Drivers (3A,3B and 3P) of 3M line are stopped due to no supply of VCC3M. Also all NDRV circuit except RD1_DRV and RD2_DRV are stopped because charge pump circuit is stopped. 4. State 4 --- Ramp Drivers, BDRV, Charge pump circuit are all stopped operation because VDD15 is not supplied. 5. State 5 – 8 --- Ramp Drivers, BDRV, Charge pump circuit are all stopped operation because VCC5M is not supplied. 6. State 9 --- Battery monitoring circuit is stopped because the voltage of VREGIN16 is below specified voltage. 14-Jan-03 (Rev.2.0)TB62501F (Page. 5) TOSHIBA TB62501F Operation State of Each Operation Mode The below table is complied with the item of power consumption current in the table of Electrical Characteristics. Please refer to the table “ Operation state of each power on stage” described in the previous page regarding the necessary power supply at the actual operation stage. VREGIN16 3SW VCC5M VCC3M VDD15 VCPIN24 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × × ○ ○ ○ ○ × × × ○ ○ ○ ○ × × × ○ ○ ○ ○ × × × ○ ○ ○ ○ × × × OPERATION AC_OFF SUSPEND SOFT_OFF BAT_OFF SHUTDOWN LOW_BAT ○:Power Supplied ×:No power Supplied ※ When the operation of VCPIN24 is stopped, the voltage similar to VREGIN16 is generated. Battery Detector Regulator RAMP DRIVER PGS LOGIC NDRV M1_DRV S1_DRV BAT_DRV RD1_DRV RD2_DRV M1_DRV S1_DRV DCIN_DRV RD1_DRV RD2_DRV M1_DRV S1_DRV BAT_DRV RD1_DRV RD2_DRV OPERATION Operate Operate 5B , 3A , 3B 3P , RD3, RD4 , VBL16 AC_OFF Operate Operate − M_PGS SUSPEND Operate Operate 3A M_PGS A_PGS SOFT_OFF Operate Operate − M_PGS BAT_DRV BAT_OFF Operate Operate − − − SHUTDOWN Operate Operate LOW_BAT Operate − − − − − − − Explanation of operation 1. OPERATION M_PGS A_PGS B_PGS PDRV M2_DRV S2_DRV M2_DRV S2_DRV M2_DRV S2_DRV M2_DRV S2_DRV M2_DRV S2_DRV − − All power supplies are Supplied, All circuits are in a state of operation. 2. AC_OFF All power supplies are Supplied, All circuits are in a state of operation. But, RAMP circuits have stopped operation with the external signal. 3. SUSPEND All power supplies are Supplied, All circuits are in a state of operation. But, RAMP circuits other than "A" system have stopped operation. 4. SOFT_OFF All power supplies are Supplied, All circuits are in a state of operation. But, RAMP circuits and NDRV circuits have stopped operation. 5. BAT_OFF The circuit of low-battery protection, regulator, and Thermal Resistance detection is operating. Other circuits have stopped operation. 6. SHUTDOWN At the shutdown signal is inputted, Operation is stopped except Low Battery Detector and Regulator. 7. LOW_BAT At the Low-Battery is detected, Operation is stopped except Low Battery Detector 14-Jan-03 (Rev.2.0)TB62501F (Page. 6) TOSHIBA TB62501F Absolute Maximum Ratings and Conditions Absolute Maximum Ratings Parameter VREGIN16(57pin) VCPIN24(38pin) Power Supply VDD15(25pin) VCC5M(48pin) VCC3M(45pin) Input Voltage 1 (1∼4,6∼9,12,14 ∼ 16,55,58,60 ∼ 64pin) Input Voltage 2 (19,44pin) Input Voltage 3 (22,24,27pin) Input Voltage 4 (34,54pin) Input Voltage 5 (10pin) Output Voltage 1 (17,18,21,23, 26,29,31,35pin) Output Voltage 2 (33,39~42pin) Output Voltage 3 (36pin) Output Voltage 4 (37pin) Output Voltage 5 59pin) Output Voltage 6 11pin) Supply Voltage (46,47pin) Supply Voltage (13,30,32,43, 49,∼52pin) Power Dissipation(25℃) Operating Temperature Storage Temperature Symbol VREGIN16 VCPIN24 VDD15 VCC5M VCC3M Rating 30 30 30 7.0 7.0 Unit V V V V V V IN V SS-0.3V ∼3SW+0.3V V V IN V IN V SS-0.3V ∼VCC5M+0.3V V SS-0.3V ∼VCC3M+0.3V V V V IN V SS-0.3V ∼VREGIN16+0.3V V SS-0.3V ∼VCC3M+0.3V V SS-0.3V ∼VCC5M+0.3V V V OUT V SS-0.3V ∼VDD15+0.3V V V OUT V OUT V OUT 3SW V V V V V IN V SS-0.3V ∼VCPIN24+0.3V V SS-0.3V ∼VCC5M+0.3V V SS-0.3V ∼VCC3M+0.3V V SS-0.3V ∼3SW+0.3V V SS-0.3V ∼VCC3M+0.3V V SS-0.3V ∼VCC5M+0.3V 30 V IN 7 V PD Topr Tstg 700 0∼70 -55∼150 mW ℃ ℃ CLKIN CLKOUT V V V ※ Connect 56 pin “TEST” to GND ※ Input Voltage 5 (10pin), Output Voltage 6 (11pin) --- The Power Supply of OSC has diode that is OR composition of VCC3M and VCC5M. Therefore, the higher impression voltage is applied to the above Maximum Rating. Recommended Operating Condition(Ta=0∼70℃) Parameter Input Voltage Symbol VREGIN16 VCC3M VCC5M VDD15 VCPIN24 VCCRD3M VCCRD4M CCP1,CCP2 CCP3 CPOR CO3SW Condition(Refer to Application figure) Refer to the explanation of Operation (P.17) MIN. 6.0 3.13 4.75 12.0 − 1.425 1.425 − − 0.01 − TYP. − 3.3 5.0 15.0 24.0 − − 0.22 0.22 0.1 1.0 MAX 17.0 3.46 5.25 17.0 − 5.25 5.25 0.47 − − − UNIT V V V V V V V μF μF μF μF Capacitor for CP (C9, C10) Capacitor for CP (C11) Capacitor for POR delay (C12) Stabilized Capacitor for Regulator Output (C13) External Capacitor for Open-Drain Terminal External Parts COPD − − 0.47 μF Capacitor between 49∼52pin−GND CCLK Capacitor for Oscillator (C1) − 1000 − pF RCLK Resistor for Oscillator (R1) − 66.5 1000 Note 1 KΩ C×× Capacitor for Ramp (C2~C8) − − 0.47 μF Resistor for Constant Current Circuit RFIX − 56 − KΩ (R17)(Note2) Note 1 : In case using bigger resistance, it may cause increase the consumption current. Note 2 : In case using smaller resistance to set the constant current for Ramp, it may cause increase the tolerance of setting accuracy. And in case of the resistor values are extremely low , it may cause heat generation or damage of IC due to increase Power Consumption. 14-Jan-03 (Rev.2.0)TB62501F (Page. 7) TOSHIBA TB62501F ON and OFF Sequence of Each Power Supply On State OFF State Setting Voltage Setting Voltage VREGIN16 3SW VCC5M VCC3M VDD15 VDD15, VCC3M, and VCC5M power supply is required for RAMP circuit operation (5B,3A ,3B,RD1,RD2,RD3,RD4) of this IC. Moreover, VCPIN21, VCC3M, and VCC5M power supply are required for NDRV circuit operation (DCIN,BAT,S1,M1,VBL16) of this IC. Only when VCC3M and VCC5M are normally supplied, a charge pump circuit can be operated. Notes1 : When the on/off order of V INT16, 3SW, or other power supplies are reversed, abnormal current flows via the protective diode. This could lead to the damage to the IC. Notes2 : Even if the IC releases the Shut-Down signal(-SHDN=L), the IC itself continues to operate and it is not shut down. If the signal(-SHDN=L) needs to be stopped, Reset signal(-RESET=L) input or VREGIN16 re-input is required. Electrical Characteristics Consumption Current (Ta=0∼70℃) VREGIN16=17V , VDD15=17V , VCC5M=5.25V , VCC3M=3.47V, (If not specially specified) Parameter Measur ement Circuit Symbol ICCV161 OPERATION − ICC5M1 ICC3M1 ICCV151 ICCV241 ICCV161 ICC5M1 AC_OFF − ICC3M1 ICCV151 ICCV241 SUSPEND (TOTAL 12.9mW) ICCV161 ICC5M1 − ICC3M1 ICCV151 ICCV241 ICCV161 SOFT_OFF − ICC5M1 ICC3M1 ICCV151 ICCV241 Condition MIN. TYP. MAX UNIT VREGIN16=17V VCC5M=5.25V VCC3M=3.43V VDD15=17V VCPIN24=24V Operation : Refer to P.6 − − 80 140 − 450 350 650 520 μA μA − − 370 480 VREGIN16=17V VCC5M=5.25V VCC3M=3.43V VDD15=17V VCPIN24=24V Operation : Refer to P.6 − 170 90 230 150 − − 350 520 − 170 100 280 140 − − 120 160 − 90 350 150 520 − − 240 350 − 140 120 190 160 − − 90 150 − 360 170 520 260 − − 0 0.5 0 0.5 VREGIN16=17V VCC5M=5.25V VCC3M=3.43V VDD15=17V VCPIN24=24V Operation : Refer to P.6 VREGIN16=17V VCC5M=5.25V VCC3M=3.43V VDD15=17V VCPIN24=24V Operation : Refer to P.6 μA μA μA μA μA μA μA μA μA μA μA μA μA μA μA μA μA μA 14-Jan-03 (Rev.2.0)TB62501F (Page. 8) TOSHIBA TB62501F ICCV161 ICC5M1 − BAT_OFF ICC3M1 ICCV151 ICCV241 ICCV161 ICC5M1 − SHUTDOWN ICC3M1 ICCV151 ICCV241 ICCV161 ICC5M1 ICC3M1 − LOW_BAT ICCV151 ICCV241 VREGIN16=17V VCC5M=5.25V VCC3M=3.43V VDD15=17V VCPIN24=24V Operation : Refer to P.6 − 70 100 μA − 0 0.5 μA − − 0 0 0.5 0.5 μA μA − 0 0.5 μA VREGIN16=17V VCC5M=5.25V VCC3M=3.43V VDD15=17V VCPIN24=24V Operation : Refer to P.6 − − 70 0 μA μA − 0 100 0.5 0.5 − − 0 0 0.5 0.5 μA μA VREGIN16=9V VCC5M=0V VCC3M=0V VDD15=0V VCPIN24=0V Operation : Refer to P.6 − 15 26 μA − − 0 0 0.5 0.5 μA μA − 0 0.5 μA − 0 0.5 μA μA RAMP Driver(Terminal : 5B_DRV , 3A_DRV , 3B_DRV , 3P_DRV , RD1_DRV , RD2_DRV, RD3_DRV , RD4_DRV)(Ta=0∼70℃) Parameter Output Voltage Measur ement Circuit Symbol 1 VOH×× 1 IOH ×× 1 IOL×× 1 ILK×× Output Current Off Leakage Current Condition Charge Mode Charge Mode Terminal Voltage=0V,VDD15−2V Discharge Mode 5B_DRV,3A_DRV,3B_DRV,3P_DRV, 1R8A_DRV,1R8B_DRV= 1.0V Terminal Leakage Current at Hi-Z Terminal Voltage=0V,VDD15−2V UNIT MIN. TYP. MAX VDD15-1 − − V − 400 − 350 − 300 μA 100 150 − mA − − 0.5 μA ××・・・5B_DRV:5B:, 3A_DRV: 3A,3B_DRV:3B,3P_DRV:3P,RD1_DRV:RD1,RD2_DRV:RD2,RD3_DRV:RD3,RD4_DRV:RD4 RAMP Driver(Terminal : 5B,3A,3B,3P,RD3,RD4)(Ta=0∼70℃) Parameter Input Current Measur ement Circuit Symbol 1 II5B IIRD3 IIRD4 II3A II3B II3P MIN. TYP. MAX − 20 − VI=3.3V − 12 − VI=3.3V − − 0.5 μA MIN. TYP. MAX UNIT Condition VI=5V UNIT μA RAMP Driver(Terminal : VBL16_DRV)(Ta=0∼70℃) Parameter Output Voltage Measur ement Circuit Symbol 2 V OHVBL 2 IOHVBL Charge Mode Charge Mode VBL16_DRV=VCPIN24-2V 2 IOLVBL ILKVBL Output Current Off Leakage Current 2 Condition VCPIN24-0.9 − − V − 400 − 350 − 300 μA Discharge Mode1 VBL16_DRV=3.0V 30 50 − mA Leakage Current at Hi-Z VBL16_DRV=0V,VCPIN24−2V − − 0.5 μA MIN. TYP. MAX UNIT − − 0.5 μA RAMP Driver(VBL16)(Ta=0∼70℃) Parameter Input Current Measur ement Circuit Symbol 2 ILKVBL Condition Terminal Voltage =1V 14-Jan-03 (Rev.2.0)TB62501F (Page. 9) TOSHIBA TB62501F Nch FET Driver(DCIN_DRV,BAT_DRV,S1_DRV,M1_DRV)(Ta=0∼70℃) Parameter Output Voltage Circuit Symbol 3 V OH×× 3 IOH×× 3 IOL×× 3 ILK×× Output Current Off Leakage Current Condition Charge Mode, No Load Charge Mode Terminal Voltage = VCPIN24−2V Discharge Mode 1 Terminal Voltage = 1.0V MIN. TYP. MAX VCPIN24-0.9 − − V − 55 − 45 − 35 μA 1 2 − mA − − 0.5 μA Leakage Current at Hi-Z Terminal Voltage = 0V,VCPIN24−2V UNIT ××・・・DCIN_DRV:DC,BAT_DRV:BAT,S1_DRV:S1,M1_DRV:M1 Pch FET Driver(S2_DRV,M2_DRV)(Ta=0∼70℃) Parameter Circuit Output Voltage 4 Output Leakage Current 4 Symbol V OLS2 V OLM2 ILEAKS2 ILEAKM2 Condition IOLP= 1.0mA VREGIN16=17V TYP. MAX UNIT − − 1.2 V − − 0.5 μA MIN. Logic Input Terminal (1∼16,62pin) (Ta=0∼70℃) Parameter H Level Input Voltage L Level Input Voltage Circuit Symbol MIN. TYP. MAX UNIT − V IH 3SW=3.3V Condition 2.0 − 3SW V − V IL 3SW=3.3V 0 − 0.8 V MIN. TYP. MAX UNIT − − − − 0.4 0.5 V μA Logic Output Terminal (*1) (Ta=0∼70℃) Parameter Circuit Symbol Condition V OL 3SW=3.3V, IOL=4mA Terminal Voltage = 3.3V ILEAK − *1 All Logic output terminal are N-CH Open Drain output. Output Voltage Output Leakage Current − OSC(Refer to the application Circuit P.49)(Ta=0∼70℃) Parameter Oscillation Frequency Circuit Symbol 7 tCLK 7 Input Current IINOSC 7 TYP. MAX UNIT 75 75 80 80 85 85 μs μs VCC3M=0V,VCC5M=5.25V CLKIN=2.7V − 100 250 nA VCC3M=3.13V,VCC5M=0V CLKIN=1.6V − 100 250 nA Condition 7 ΔROHCLK Load =100uA−0uA VCC3M=3.13V , VCC5M=0V − − 1.4 KΩ 7 ROLCLK Load =−100uA VCC3M=3.13V , VCC5M=0V − − 1.0 KΩ − V CLK 2.75 − 5.25 V MIN. TYP. MAX UNIT − 0.5 60 2.2 1.0 100 3.0 V V Output Impedance Operating Voltage MIN. VCC3M=0V , VCC5M=5.25V VCC3M=3.13V , VCC5M=0V − POR (Ta=0∼70℃) Parameter Circuit Detection Voltage of 3SW 6 Input Pull-Up Resistor 6 Symbol V PORH V PORL RPOR Condition 3SW=3.3V , at rising edge 3SW=3.3V , at falling edge − − 140 KΩ Over Load Monitoring (Ta=0∼70℃) Parameter Circuit Symbol MIN. TYP. MAX UNIT − V 5X08 V 3X08 VCC5M−0.9 VCC5M−0.8 VCC5M−0.7 V VCC3M−0.9 VCC3M−0.8 VCC3M−0.7 V V VBL08 V RD308 V RD408 V RD308 V RD408 VREGIN16−1.68 VREGIN16−1.5 VREGIN16−1.32 V VCCRD3M=VCCRD4M=5V 4.05 4.15 4.25 V VCCRD3M=VCCRD4M=1.50V 1.20 1.25 1.30 V − 5.0 − ms − − Detection Voltage − − No Detection Time − tfil Condition Internal Logic Filter Comp. →.LOGIC Input 14-Jan-03 (Rev.2.0)TB62501F (Page. 10) TOSHIBA TB62501F Charge Pump (Ta=0∼70℃) Parameter Circuit Symbol 5 5 5 5 V OHCP1 V OLCP1 V OHCP2 V OLCP2 Output Voltage Condition VCC3M=3.3V , IOH=−1mA VCC3M=3.3V ,IOL= 1mA VCC5M=5.0V, IOH=−1mA VCC5M=5.0V,IOL= 1mA MIN. TYP. MAX UNIT 3.1 3.2 0.1 4.9 0.1 − 0.15 V V V V − 4.8 − − 0.15 * Charge pump operation is performed only when both VCCM and VCC5M are supplied at the same time. Line Voltage Monitoring(PGS) (Ta=0∼70℃) Parameter MAX UNIT 4.311 2.793 4.461 4.649 3.034 4.749 V V V VCC3M Line VHYS = VREC- VTP (VCC5M, VCC3M line) 2.752 2.943 3.134 V 100 150 200 mV tMPGS 45 50 55 ms − tAPGS 300 350 400 ms − tBPGS 400 450 500 ms − tAB 80 100 120 ms MIN. TYP. MAX UNIT V V TP5× V TP3× V REC5× V REC3× − V HYS1 M_PGS − A_PGS B_PGS Recovery Voltage Hyateresis Voltage TYP. 3.974 2.552 4.174 Symbol − − − − Detection Voltage High Level Propagation delay Time MIN. VCC5M Line VCC3M Line VCC5M Line Circuit A_PGS → B_PGS Delay Time Condition Regulator (Ta=0∼70℃) Circuit Symbol Input Voltage range Parameter − Output Voltage 8 V IN V OUT Condition Output Current 8 Low Voltage Detection 8 IOUT V OUTOFF Load regulation − ΔV OUT1 Line Regulation − ΔV OUT2 5.5 VREGIN16=5.5∼17V , IOUT=0mA 3.15 17 3.3 3.48 V − − mA 3.0 3.1 V VREGIN16=5.5∼17V 40 VREGIN16=5.5∼17V VREGIN16=5.5∼17V IOUT=50μA∼20mA 5.5V < VREGIN16 < 17V IOUT=20mA 2.9 − 15 − 15 50 mV MIN. TYP. MAX UNIT 50 mV Low Battery Protection (Monitoring) (Ta=0∼70℃) Parameter Circuit Symbol Input Voltage Range Input Current Trip Voltage Set Up Range Recovery Voltage Set Up Range Trip Voltage Accuracy Recovery Voltage Accuracy Hysteresis Voltage Trip Voltage Temperature Regulation − 9 − V IN IINBT V TPR − V RECR 9 9 − − V TPBT V RECBT V HYSBT ΔV TPBT ΔTa Condition 0 VREGIN16=17V 0∼70℃ 0∼70℃ VREC - VTP 17 V − 6.0 −0.05 −0.1 μA 9.0 12.0 V 7.0 10.5 14.0 V 2.425 2.5 2.625 V 2.55 2.9 3.25 V 0.25 0.4 0.55 V − 0.99 − mV/ ℃ MIN. TYP. MAX UNIT −4.5 0.4 −8 0.5 −13.5 0.6 μA V * AC Characteristics (Rise Time etc.) : Refer to P.21 Thermal Valuable Resistance Detection (Ta=0∼70℃) Parameter Input Voltage Detection Voltage Circuit Symbol − 10 IERIN V TPER Condition 3SW=3.3V 14-Jan-03 (Rev.2.0)TB62501F (Page. 11) TOSHIBA TB62501F Explanation of Operation RAMP DRIVER1 ,RAMP DRIVER2 ,NDRV This IC integrates 3 circuits of RAMP DRIVER 1. (5B,3A,3B) This IC integrates 1 circuit of RAMP DRIVER 2. (3P) This IC integrates 1 circuit of RAMP DRIVER 3. (VBL16) This IC integrates 2 circuits of NDRV 1. (RD1,RD2) This IC integrates 4 circuits of NDRV 2. (S1,M1,DCIN,BAT ) This IC integrates 2 circuits of NDRV 3. (RD3,RD4) The differences are described in the following table. [Table 1] Charge Volt. Charge VOH Current IOH Discharge Current IOL PGS Detection Circuit RAMP DRIVER1 14V 350μA 150mA Yes Over Load Detection Circuit Yes RAMP DRIVER2 14V 350μA 150mA No Yes RAMP DRIVER3 23V 350μA 150mA No Yes NDRV1 14V 350μA 150mA No No NDRV2 23V 50μA 1mA No No NDRV3 14V 350μA 150mA No Yes IOH current is depending on resistance value (RFIX). The typical current values are used in this table VDD15 = 15V ,VCPIN24 = 24V Block Diagram RAMP DRIVER1 FIX_R VDD15 VCC5M RFIX 56KΩ IREF ××_DRV BPGS C×× APGS −SHDN LOGIC Over Load COMP. VCC×× ×× ××_ON PGS COMP. ××・・・5B,3A,3B 14-Jan-03 (Rev.2.0)TB62501F (Page. 12) TOSHIBA TB62501F RAMP DRIVER2 VCC3M VDD15 FIX_R IREF RFIX 3P_DRV 56KΩ −SHDN 3P_ON C3P LOGIC Over Load VCC3P COMP. 3P RAMP DRIVER3 VINT16 FIX_R VCPIN24 IREF RFIX VBL16_DRV 56KΩ −SHDN VBL16_ON CVBL LOGIC Over Load VBL16 COMP. VBL16 NDRV1 VDD15 FIX_R RD1_DRV RD2_DRV IREF RFIX 56KΩ C5RD1 LOGIC C5RD2 RD1_ON RD2_ON NDRV2 FIX_R VCPIN24 IREF RFIX ××_DRV 56KΩ LOGIC ××_ON −EXTPWR DISCHARGE M1GATEON S1GATEON ××_DRV DCIN_DRV BAT_DRV C DCIN C BAT M1_DRV S1_DRV C M1 C S1 C ×× C×× ××_ON Input Status of “−EXTPWR" and "DISCHARGE" Terminal DISCHARGE DCIN_DRV −EXTPWR BAT_DRV 14-Jan-03 (Rev.2.0)TB62501F (Page. 13) TOSHIBA TB62501F NDRV3 VCCRD3M VCCRD4M FIX_R VDD15 RD3_DRV RD4_DRV IREF RFIX 56KΩ CRD3 −SHDN CRD4 RD3_ON RD4_ON LOGIC Over Load RD3 RD4 COMP. RD3 RD4 The following are explained for VCC5B of VCC5M line as the representative. The RAMP Operation Block are composed with Reference Current Source, Constant Current Driver and Control Logic. (Refer to the above Figure) The DRV terminal are controlled by Logic input signal “5B_ON” under normally supplying the Logic Power Supply generated by VREGIN16 (3SW), Internal reference voltage source (VREF) and main power supply of 5V line (VCC5M) The charge pump circuit can be operated when “5B_ON” terminal becomes “H" , C5B is charged up by the constant Current IOH set by the external resistor ( RFIX). DRV terminal is raised up to the similar voltage level of VDD15. (≒VDD15-VBE) In this case, VCC5B is out in line with the gate voltage of external N-Ch MOS FET (V5BDRV). (Refer to [RAMP Operation Waveform]と[Charge current and Operation]) The charge current value obtained by the following equation. IOH = 17.5*2.5V(VREFIN)/RFIX VREFIN : Internal Reference Voltage, RFIX : Current Set Up resistance [RAMP Operation Waveform] [Charge Current and Operation] −RESET 5M_ON 50ms VCC5M 5MPGS Charge Current I OH 3SW 5B_ON 0 High Impedance 5B_DRV 0 DRV Terminal Voltage VO H VDD15 VCC5B Next, in the transition from H to L of 5B_ON terminal, Charge circuit block become into disable and MOSFET for Discharge turns ON, discharge of C5B capacitor is started by discharge current IOL1 and IOL2. (Refer to [RAMP Operation Waveform] and [Discharge current and Operation]) 14-Jan-03 (Rev.2.0)TB62501F (Page. 14) TOSHIBA TB62501F Discharge Current [Discharge current and Operation] Discharge operation is represented by the characteristics of MOSFET. Drive Current Capability is greater than 100mA, when DRV terminal Voltage is 1V. In case of driving bigger load capacitance than specified in maximum rating, the insert of the series resistance is recommended in order to avoid the damage of the device. I OL 0 0 VDD15 1V DRV Terminal Voltage 5B_ON 5B_DRV VDD15 VOH5B I OH t C 5B VCC5M 100mA(At 1V) t DRV Operation Waveform PDRV PDRV Equivalent Circuit The circuit of PDRV is Open Drain Structure. This driver drives the external P-Ch MOSFET by switching internal MOSFET controlled by the logic input signal. No protection diode is connected toward power supply from output. Therefore maximum voltage is up to 30V. M2GATEON S2GATEON M2_DRV S2_DRV 14-Jan-03 (Rev.2.0)TB62501F (Page. 15) TOSHIBA TB62501F OSC OSC Equivalent Circuit VCC5M VCC3M CLKIN CLKIN RS Latch C CLK R CLK CLKOUT CLKOUT Oscillation VCC5M VCC5M−V BE (E) Vth+ Vth− T ≒1.1×C CLK×R CLK t Time (t) Oscillation circuit is equivalently composed with Inverting comparator with Hysteresis circuit and the external parts (Capacitor and Resistor). Oscillation is started either under the state of supplying VCC5M or VCC3M. The threshold Voltage (Vth) of comparator is defined by the internal voltage and each threshold voltage is obtained by the following formula. Vth+≒{(VCC5M or VCC3M)−VBE}*(3/4) Vth−≒{(VCC5M or VCC3M)−VBE}*(2/4) (refer to equivalent Circuit) Also the Period T is pbtained by the following formula as well. T(us) ≒ C(uF) x R(Ω) x Ln3 =1.1 x CCLK x (RCLK+500) Power Supply Voltage vs Period CCLK=1040pF, R CLK=68KΩ Period (us) 81 80 79 78 77 Figure 4-18 Characteristics Graph 2.5 3.5 4.5 5.5 Power Supply Voltage(VCC3M or VCC5M) (V) Period T is not easily affected by the fluctuation of power supply, however the period T is slightly increased because the output impedance of oscillation circuit is increased when the voltage is dropped. (Refer to the Characteristics Graph) The propagation delay time and so on is specified based on 12.8kHz (T = 78.125us), if not specified. 14-Jan-03 (Rev.2.0)TB62501F (Page. 16) TOSHIBA TB62501F Charge Pump Operation Equivalent Circuit for Charge Pump VINT16 OSC 3MPGS 5MPGS 3M_ON DCP1 CPOUT1 C CP1 LOGIC DCP2 5M_ON VCPIN24 DCP3 CPOUT2 C CP2 CCP3 The drive terminals for Charge Pump (CPOUT1 and CPOUT2) generate the pulse of fosc/2 with duty ratio 1/2, when both VCC3M and VCC5M are supplied. In this case, the maximum energy QMAX (IMAX) in a unit time is obtained by the following equation. Qmax(=Imax)=(VCC3M+VCC5M−Vf( DCP1) − Vf(DCP2))×CCP1×fosc/2 In case of maximum load current is ILMAX, capacitance value is recommended more than ten times. CCP3≫2・ILmax/((VCC3M+VCC5M−Vf(DCP1)−Vf(DCP2))×fosc) However, with consideration of power consumption such as load short (Pd≒(fosc/2)×CCP1×(VCC3M) 2) or current imitation of internal aluminum line of die, CCP1≦0.47μF This is recommended, and as well CCP2≦0.47μF Also recommended. If bigger capacitance is as CCP3, ripple voltage is reduced, however the time that VCPIN24 is stabilized is increased, as the result it may affect to system boot up characteristics. Therefore it should be considered to adjust each system by system. Also operating consumption current same level of IL flows from VCC5M and VINT16 through CCP1 and CCP2,this should be considered when consumption current for the system is examined. VINT16 Charge Pump Operation VCC3M CPOUT1 ① DCP1 CPOUT1 CCP1 VCC5M ④ CPOUT2 DCP2 ③ DCP3 VCPIN24 CCP2 ① ② ③ ④ CPOUT2 The voltage of VCPIN24is generated by the repeat operation of ① to ④. ① --- Charge up operation to CCP1 from VINT16 ③,④ --- Charge up CCP2 from CCP1 ② --- Voltage out to VCCPIN24 from CCP2 after charged up The voltage of VCPIN24 is obtained by the following equation. VOH =VINT16 +VOHCP1+VOHCP2−(DCP1 +DCP2+DCP3) Due to limitation of charging energy of one cycle, the rising time for VCPIN24 to reach to the specified voltage is about 3ms (Typ.) at the standard condition. This value varies depending on the current consuming at VCPIN24. ② V OH 3ms Charge Pump Rise Up Time 14-Jan-03 (Rev 2.0)TB62501F (Page. 17) TOSHIBA TB62501F POR V −RESET" Terminal Voltage 3SW Equivalent Circuit for Power ON Reset Vth+ Vth− −RESET 100kΩ D1 3SW −RESET t 0 Reset Time Reset Operation at 3SW Supplied CPOR V Power ON reset Circuit is composed Internal Pull-up Resistor (100k Ohm) Internal Diode (D1) and Buffers with Hysteresis input. Then the capacitor CPOR is connected to –RESET terminal as described in equivalent circuit. The signal of 3SW is generated by supplying VREGIN16. At that time, POR circuit operates as described in the figure. When 3SW is momentarily disconnected, “-RESET” Terminal starts to discharge through the internal diode. However it is difficult to completely discharge all energy charged in CMOS logic, therefore holding this state, 3SW is rising up. When the voltage level of “-RESET” terminal is in the range between Vth+ and Vth- , RESET operation is observed. The status of each output are described in the following table. 3SW "−RESET" Terminal Voltage Vth+ Vth− t 0 Reset Period Reset Operation at 3SW Open momentarily OFF −SHDN, "L" Output Each PGS Output (5 Circuit) Operation with regardless RESET CLKOUT , Pch FET DRIVER(2 Circuit) Each DRV Output(13 Circuit), CPOUT1, CPOUT2 Note) Internal Logic is stopped in the state of RESET. However when VCC5M and VCC3M are both supplied, Reference current source is in the state of operation. 14-Jan-03 (Rev 2.0)TB62501F (Page. 18) TOSHIBA TB62501F Regulator, Battery Monitor, Thermostat Resistor Detection Block Diagram Latch “OFF” state if abnormal stage Over Current VREGIN16 Detection RBAT1 ON/OFF Battery Monitor Reg. 3SW Low Voltage RBAT2 Latch “OFF” state if abnormal stage Detection 10K Thermostat Resistor 3SW Detection −SHDN SHDN for RAMP DRV Signal SHDN Hold Circuit Over Load Detection Filter Function Table VREGIN16 Voltage Condition Battery Monitor Lower than 6V Output "L" Normal Operation 6∼17V Stage System Error Stage 6∼17V Regulator Voltage 6∼17V Drop Stage * Set at 6V 1) Normal Operation Stage Battery Monitor Output Regulator Output Shut Down Signal "L" 0V "L" "H" 3SW "H" "H" 3SW "L" "H" 0V High Impedance 2) System Error Stage 3) Battery Voltage Drop Stage 9V VREGIN16 3SW Constant Value of the external Pull-Up resistor High Impedance −SHDN * Latch Low Level at 3SW * Control Output terminal by using –SHDN terminal 14-Jan-03 (Rev 2.0)TB62501F (Page. 19) TOSHIBA TB62501F Battery Monitor Recovery Voltage VREGIN16 VREGIN16 Detected Voltage R BAT1 BAT_VOLT Output Battery Monitor 2.9V±8% BAT_VOLT Into IC 2.5V±5% R BAT2 Output The Voltage of BAT_VOLT is monitored, detected signal is generated at recovery Voltage 2.9V+/- 8% and detection Voltage 2.5V +5%/-3%. The setting voltage of BAT_VOLT is constant. Therefore detection voltage is changed in the range from 6V(-5%) to 12V(+5%)by adjusting resistor value of RBAT1 and RBAT2. In this case, recovery voltage = detection voltage x 7/6. In order to avoid malfunction caused by the fluctuation of VREGIN16, hysteresis voltage (= recovery voltage - detection voltage) should be greater than 0.7V(Min.) Note) 1. It may cause malfunction if VREGIN16 is changed by the ratio greater than 12.5us/V this circuit operates at low power consumption. 2. The voltage level of BAT_VOLT is delayed compare to theoretical value due to the affection of the value of RBAT1, board capacitance, parasitic capacitance of the circuit and so on. Also Circuit delay is existed. (Approximately 150us) Therefore the voltage level of the output is larger than the voltage level of VREGIN16 as the following figure. This is remarkably observed if the fluctuation of VREGIN16 is larger. 3. The current of about 0.1uA is sourced from BAT_VOLT. Therefore it may cause voltage shift from the set voltage with RBAT1 and RBAT 2. (Detection Voltage = 6V) (Recovery Voltage = 7V) VREGIN16 Voltage at detected VREGIN16 VREGIN16 7V 6V VREGIN16 Voltage at detected Theoretical State 2.5V 2.9V BAT_VOLT BAT_VOLT Circuit Delay (Approximately 150us) Actual Voltage transition of BAT_VOLT The reaching point is delayed compare to theoretical point due to capacitance or resistance. Circuit Delay (Approximately 150us) The reaching point is delayed compare to theoretical point due to capacitance or resistance. Theoretical State 14-Jan-03 (Rev 2.0)TB62501F (Page. 20) TOSHIBA TB62501F AC Characteristics * AC Characteristics may be affected by the ambient temperature, input voltage and so on. 【Operation at power up stage】 The set up time as following is required for battery monitoring circuit to operate normally. <Set Up Time> BAT_VOLT Rising Time : Greater than 30us BAT_VOLT Recovery voltage detection time : Greater than 60us When constant value is determined, enough margin should be considered against above mentioned value. VREGIN16(14V) BAT_VOLT 3SW 5.5V 2.9V A B A:Rising Time B:Recovery Voltage detection time Accuracy of detection voltage Accuracy of Recovery Voltage 3.1V Voltage (V) Voltage (V) 2.625V 2.5V 2.375V 2.9V 2. 7V 0 25 70 Temperature (℃) 0 25 70 Temperature (℃) 14-Jan-03 (Rev 2.0)TB62501F (Page. 21) TOSHIBA TB62501F Regulator Block Diagram Latch “OFF” state if abnormal stage Over Current Protection −RESET VREGIN16 Battery Monitor ON/OFF Reg. 3SW Voltage Drop Detection Latch “OFF” state if abnormal stage Operation Chart Battery Monitor output 3SWOutput Voltage Recovery Voltage Voltage Drop Detection Point 3SWOutput Current Over Load State Shortage Battery Monitor OFF The regulator starts operation based on “ON” signal of Battery monitoring circuit. At the state of power up, voltage drop detection is not work, so during this period even shortage is not detected. This period ( No detection time) is determined by the external capacitor and the internal resistor. (Refer to the following figure) It is approximately 200us (Typ.). Power Up stage Detection Error Stage Set Value Set Value VREGIN16 VREGIN16 The operation of 3SW is stopped, if the voltage of 3SW is not reach to the specified level after releasing no detection period. Voltage Drop Detection Voltage Drop Detection 3SW 出力 3SW 出力 Delay Circuit Delay Circuit No Detection Period No Detection period 14-Jan-03 (Rev 2.0)TB62501F (Page. 22) TOSHIBA TB62501F Over Load Stage In case the current of 3SW Output is big, it is possible to excess package power dissipation. The package power dissipation is 0.7W maximum, total power dissipation should be lower than this value. Therefore the maximum current should be in the range obtained from the following equation. 0.7(W) Output Current(A)= (VREGIN16−VOUT)(V) This device integrates over current protection circuit to protect excess of power dissipation due to abnormal current flow.(MIN 40mA) Regulator is stopped when over current flows excess the threshold voltage of over current detection circuit (55ma typ.) during certain period. (500us typ.) If regulator is stopped, the device should be initialized either by turning VREGIN16 to 0V or RESET terminal to 0V. Recovery from abnormal stage Abnormal Stage 3SW Stopped Within Setting Time 3SW Output Voltage 3SW Output Voltage Over current detection Value (55mA) Voltage Drop Detection Point Longer than setting time 3SW Output Current Over Current Detection (40mA) 3SW Output Current Voltage Drop Stage In case output level is dropped to specified voltage (3.0V Typ.) from normal output level the voltage drop detection circuit is worked immediately, then 3SW output is stopped. When regulator output is OFF state, the device should be initialized either by turning VREGIN16 to 0V or RESET terminal to 0V. Function Table (Error Detected) Over Current Detected Voltage Drop Detected Setting Value Setting Time Function 40∼70mA 2.9∼3.1V 0.03∼1ms Momentarily Latch “OFF” State of Regulator Output Latch “OFF” State of Regulator Output 14-Jan-03 (Rev 2.0)TB62501F (Page. 23) TOSHIBA TB62501F AC Characteristics Input Voltage transition response (Overshoot, Undershoot, Response Time) This characteristic is depending on ambient Temperature, load capacitance, output current and so on. 100 us 100 us 17V VREGIN16 Voltage 6V Overshoot 3SW Output Voltage Undershoot Response Time Parameter Response Time Condition Output Load Current 10mA∼40mA Change of VREGIN16 6∼17V Load Capacitance 0.1∼10μF Temperature 0∼70℃ Reduce Overshoot Reduce Undershoot Speed up of Response Time Reduce current Reduce Fluctuation Reduce current Reduce Fluctuation Reduce Fluctuation Increase Load Increase Load Reduce Load Lower Temp. Lower Temp. Lower Temp. Increase current * The values are indicated as the reference except condition. 条件:IOUT=10mA VIN=6⇔17V Ta=35℃ VREGIN16変動 VREGIN16 vs Output Capacitance 出力容量依存性 100 リンギング電圧量(mV) リンギング電圧量(mV) 120 100 Ringing Voltage (mV) Ringing Voltage (mV) 120 80 60 40 Overshoot オーバーシュート 20 80 60 40 オーバーシュート Overshoot 20 アンダーシュート Undershoot アンダーシュート Undershoot 0 0 0 1 2 3 4 5 6 7 8 9 0 10 1 2 3 4 5 6 7 8 9 10 Output Capacitance出力容量(μF) ( uF) Output Capacitance ( uF) 出力容量(μF) 条件:CL=1μF VIN=6⇔17V Ta=35℃ VREGIN16変動 VREGIN16 vs Output Current 出力電流依存性 条件:CL=10μF VIN=6⇔17V Ta=35℃ VREGIN16変動 VREGIN16 vs Output Current 出力電流依存性 120 120 Ringing Voltage (mV) 100 リンギング電圧量(mV) Ringing Voltage (mV) リンギング電圧量(mV) 条件:IOUT=40mA VIN=6⇔17V Ta=35℃ VREGIN16変動 VREGIN16 vs Output Capacitance 出力容量依存性 80 60 40 オーバーシュート Overshoot 20 100 80 60 40 オーバーシュート Overshoot 20 アンダーシュート アンダーシュート Undershoot Undershoot 0 0 5 10 15 20 25 30 Output Current出力電流(mA) ( mA) 35 40 45 5 10 15 20 25 30 35 40 45 出力電流(mA) Output Current ( mA) 14-Jan-03 (Rev 2.0)TB62501F (Page. 24) TOSHIBA 条件:IOUT=10mA CL=1μF VIN=6⇔17V VREGIN16変動 VREGIN16 vs Temperature 温度依存性 120 120 100 100 リンギング電圧量(mV) オーバーシュート Overshoot アンダーシュート Undershoot 80 条件:IOUT=10mA 条件:IOUT=40mA CL=1μF VIN=6⇔17V VREGIN16変動 VREGIN16 vs Temperature 温度依存性 Ringing Voltage (mV) Ringing Voltage (mV) リンギング電圧量(mV) TB62501F 60 40 オーバーシュート Overshoot アンダーシュート Undershoot オーバーシュート Overshoot 80 60 40 20 20 0 0 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 Temperature 出力電流(mA) (Degree C) 出力電流(mA) Temperature (Degree C) Response Characteristics vs Load (Overshoot, Undershoot, Response Time) This characteristic is depending on ambient Temperature, load capacitance, output current and so on. 1 us 1 us 3SW Output Current Overshoot 3SW Output Voltage Undershoot Response Time Parameter Response Time Condition Fluctuation of Output Current 10mA∼40mA VREGIN16 6∼17V Load Capacitance 0.1∼10μF Temperature 0∼70℃ Reduce Overshoot Reduce Undershoot Speed up of Response Time Reduce Current Lower Voltage Reduce Current Lower Voltage Reduce Current Increase Load Increase Load Reduce Load Lower Temp. Lower Temp. Lower Temp. Lower Voltage * The values are indicated as the reference except condition. 条件:VIN=6V 3SW負荷電流変動(0⇔40mA) 出力容量依存性 3SW負荷電流変動(0⇔10mA) Ta=35℃ 出力容量依存性 3SW Load Current (0 ó 40mA) vs Output Load C 3SW Load Current (0 ó 10mA) vs Output Load C 120 120 リンギング電圧量(mV) リンギング電圧量(mV) Ringing Voltage (mV) Ringing Voltage (mV) 100 80 60 40 オーバーシュート Overshoot 20 条件:VIN=6V Ta=35℃ 100 80 60 40 オーバーシュート Overshoot 20 アンダーシュート Undershoot アンダーシュート Undershoot 0 0 0 1 2 3 4 5 出力容量(μF) Load Capacitance ( uF) 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Load 出力容量(μF) Capacitance ( uF) 14-Jan-03 (Rev 2.0)TB62501F (Page. 25) TOSHIBA TB62501F 条件:IOUT=50μA⇔10mA 3SW負荷電流変動(0⇔10mA) VIN=17V Ta=35℃ 出力容量依存性 3SW負荷電流変動(0⇔40mA) 出力容量依存性 3SW Load Current (0 ó 10mA) vs Output Load C 3SW Load Current (0 ó 40mA) vs Output Load C 120 Ringing Voltage (mV) リンギング電圧量(mV) Ringing Voltage (mV) リンギング電圧量(mV) 120 100 80 60 40 オーバーシュート Overshoot 20 100 80 60 40 オーバーシュート Overshoot 20 アンダーシュート Undershoot アンダーシュート Undershoot 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 出力容量(μF) Output Load Capacitance ( uF) 3SW負荷電流変動(0⇔10mA) VREGIN16電圧依存性 3SW Load Current (0 ó 10mA) vs VREGIN16 5 6 7 8 9 10 3SW負荷電流変動(0⇔40mA) 条件:CL=1μF Ta=35℃ 3SW Load Current (0VREGIN16電圧依存性 ó 40mA) vs VREGIN16 120 120 Ringing Voltage (mV) 100 リンギング電圧量(mV) Ringing Voltage (mV) リンギング電圧量(mV) 条件:CL=1μF Ta=35℃ オーバーシュート Overshoot 80 アンダーシュート Undershoot 60 40 0 100 80 60 40 オーバーシュート Overshoot アンダーシュート 20 0 5 7 9 11 13 15 17 19 5 7 9 VRGIN16VREGIN16電圧(V) Voltage (V) 11 13 15 17 19 VREGIN16電圧(V) VREGIN16 Voltage (V) 3SW負荷電流変動(0⇔10mA) 条件:CL=10μF Ta=35℃ 3SW負荷電流変動(0⇔40mA) VREGIN16電圧依存性 3SW Load Current (0 ó 40mA) vs VREGIN16 3SW Load Current (0VREGIN16電圧依存性 ó 10mA) vs VREGIN16 条件:CL=10μF Ta=35℃ 120 120 80 60 Overshoot オーバーシュート Undershoot アンダーシュート 40 20 リンギング電圧量(mV) 100 Ringing Voltage (mV) Ringing Voltage (mV) リンギング電圧量(mV) 4 Output Load 出力容量(μF) Capacitance ( uF) 20 100 80 60 40 オーバーシュート Overshoot 20 アンダーシュート Undershoot 0 0 5 7 9 11 13 15 17 5 19 7 9 11 13 15 17 19 VRGIN16VREGIN16電圧(V) Voltage (V) VREGIN16電圧(V) VRGIN16 Voltage (V) 3SW負荷電流変動(0⇔10mA) 温度依存性 3SW Load Current (0 ó 10mA) vs Temperature 条件:CL=1μF Vin=6V 3SW負荷電流変動(0⇔40mA) 3SW Load Current (0 ó 40mA) vs Temperature 温度依存性 Ringing Voltage (mV) 120 100 リンギング電圧量(mV) Ringing Voltage (mV) リンギング電圧量(mV) 条件:IOUT=50μA⇔40mA VIN=17V Ta=35℃ 80 オーバーシュート Overshoot 60 アンダーシュート Undershoot 40 20 条件:CL=1μF Vin=17V 120 100 80 オーバーシュート Overshoot 60 アンダーシュート Undershoot 40 20 0 0 -10 0 10 20 30 40 温度(℃) Temperature (Degree 50 C) 60 70 80 -10 0 10 20 30 40 50 60 70 80 温度(℃) (Degree C) Temperature 14-Jan-03 (Rev 2.0)TB62501F (Page. 26) TOSHIBA TB62501F ・Accuracy of Output Voltage This characteristic is depending on ambient Temperature, load capacitance, output current and so on. (Note) Refer to the typical Value described below about other elements except condition. :25℃ :9V :10mA 3SW Output Voltage (V) 3SW Output Voltage Output Voltage vs Load Current 3.35 3.34 3.33 3.32 3.31 3.3 3.29 3.28 3.27 3.26 3.25 0 10 20 30 Load Current (mA) 40 50 3SW Output Voltage Output Voltage vs Temperature 3SW Output Voltage ( V) Load Current = 0mA 3.35 3.34 3.33 3.32 3.31 3.3 3.29 3.28 3.27 3.26 3.25 0 20 40 Temperature (Degree C) 60 3SW Output Voltage Output Voltage vs VREGIN16 ( V) Load Current=0mA 3SW Output Voltage ( V) Temperature VREGIN16 Load Current 3.35 3.34 3.33 3.32 3.31 3.3 3.29 3.28 3.27 3.26 3.25 6 8 10 12 VREGIN16 ( V) 14 16 14-Jan-03 (Rev 2.0)TB62501F (Page. 27) TOSHIBA TB62501F Thermostat Resistance Detection The voltage of TH_DET terminal is determined by the terminal current and external thermostat resistor assembled in the board sensing the temperature, then when the voltage of this terminal become greater than specified voltage, the shutdown signal is generated immediately and hold shut down state. The operating range of this device is specified from 0 to 70 degree C, therefore design of system board should be considered this temperature range when examined heat dissipation. 3SW TH_DET Detection Circuit −SHDN SHUTDOWN Latch Terminal Output Current(Dotted line shows sample dependence) TH_DET Output Current Output Current vs Temperature 12 Output Current (uA) 11 電流(μA) 12μA 8μA 10 0 70 温度(℃) 9 8 7 6 5 0 10 20 30 40 50 60 70 Temperature (℃) 14-Jan-03 (Rev 2.0)TB62501F (Page. 28) RAMP(3P) RAMP(VBL16) RAMP(RD3) RAMP(RD4) 3P_ON RD3_ON RD4_ON RD4 RD3 VBL16 3P 3B 3A 5B VCC3M VCC5M VBL16_ON RAMP(3B) ×M-0.8V + − Over Load comp. Vref(n) + − PGS comp. 3B_ON 5B 3B 3A RAMP(3A) 20ms 20ms 20ms 20ms 20ms 100ms 450ms 350ms Vref(n) + − 3A_ON 5ms 3B_ON 5B_ON 3M 5M RAMP(5B) SHDN Hold Circuit 20ms 20ms 50ms 3M_ON 3A_ON 50ms 5M_ON Filter 5B_ON 3M_ON 5M_ON TH_DET −SHDN B_PGS A_PGS M_PGS PGS comp. TOSHIBA TB62501F Logic Circuit To Analog Circuit 14-Jan-03 (Rev 2.0)TB62501F (Page. 29) TOSHIBA TB62501F Line Voltage Monitoring Operation (PGS Circuit) The voltages of M Power Lines (VCC5M and VCC3M), A Power Line (VCC3A) and B Power Lines (VCC5B and VCC3B) are monitored with high accuracy. Monitoring results are supplied to PGS output terminal corresponding to each power lines that are composed with open drain output structure. 50ms 5M 50ms 3M Filter PGS Equivalent Circuit PGS comp. VCC5M VCC3M VCC5M VCC3M + − VCC5M VCC3M 5M_ON Vref(n) Pass if greater than 1 ms M_PGS 3M_ON RAMP Circuit A_PGS 3A_ON 3A 3A 5B 100ms 3B Filter 350ms 5B XX_DRV PGS comp. + − 3B 3A XX 5B 3B Note) Delay time in the Figures are approximate values (Refer to the following Explanation) 450ms B_PGS 3B_ON 5B_ON Note) The tolerance of time is depending on fOSC. In this explanation, it is explained based on the recommended frequency of 12.8kHz. Vref(n) Reference Voltage table for PGS Comp. (Vref(n)) Item Detected Voltage Recovery Voltage Symbol Min. Typ. Max. Unit 5M V TP5× 3.974 4.311 4.649 V 3M V TP3× 2.552 2.793 3.034 V 5M V REC5× 4.174 4.461 4.749 V 3M V REC3× 2.752 2.943 3.134 V 14-Jan-03 (Rev 2.0)TB62501F (Page. 30) TOSHIBA TB62501F M_PGS Block In the block of M_PGS, the voltage of VCC5M and VCC3M are monitored by the internal analog comparator respectively, each state is supplied to M_PGS output. The terminal is Open drain structure. The operation of detection is started when both 5M_ON and 3M_ON are equal to High. The analog Comparator has hysteresis voltage and generate high signal when the following condition are satisfied. Greater than 4.461V(Typ.) at power on stage of "VCC5M"(Rising Edge)and lower than 4.311V (Typ.) at the shut down stage (Falling edge) after 47.5ms +/- 2.5ms Greater than 2.943V(Typ.) at power on stage of "VCC3M"(Rising Edge)and lower than 2.793V (Typ.) at the shut down stage (Falling edge) after 47.5ms +/- 2.5ms "L" output is "VCC5M"=4.311V(Typ.),"VCC3M"=2.793V(Typ.) If to meet any condition in the above three conditions, this operation is performed momentarily. The Hysteresis Voltage are set 150mV +/- 50mV both for 5M and 3M. 2.793±0.241V /4.311± 0.338V 3M_ON 5M_ON 2.943±0.191V /4.461±0.288V VCC5M /VCC3M 150mV ±50mV VCC3M /VCC5M M_PGS 47.5±5ms 47.5±5ms Truth Table 5M_ON 3M_ON VCC5M VCC3M L L L L VCC5B<Detection Voltage H M_PGS H VCC3B>Recovery Volatge L VCC3B<Detection Voltage L VCC3B>recovery Volatage H Blank : Don’t Care 14-Jan-03 (Rev 2.0)TB62501F (Page. 31) TOSHIBA TB62501F APGS Block In the block of A_PGS, the voltage of VCC3A is monitored by the internal analog comparator, each state is supplied to A_PGS output. The terminal is Open drain structure. The operation of detection is started when 3A_ON is equal to High. The analog Comparator has hysteresis voltage and generate high signal when the following condition are satisfied. Greater than 2.943V(Typ.) at power on stage of "VCC3A"(Rising Edge)and lower than 2.793V (Typ.) at the shut down stage (Falling edge) In this period A_PGS is supplying H level. The Hysteresis Voltage are set 150mV +/- 50mV. At the High state, the delay time of 350ms +/- 10ms is set. 【Timing Chart】 3M_ON 3A_ON 2.793±0.241V 2.943±0.191V VCC3A 150mV ±50mV A_PGS 350±10ms 350±10ms Truth Table 3M_ON 3A_ON VCC3A L L L H A_PGS H L VCC3A<Detection Voltage L VCC3A>Recovery Voltage H Blank : Don’t Care 14-Jan-03 (Rev 2.0)TB62501F (Page. 32) TOSHIBA TB62501F BPGS Block In the block of B_PGS, the voltage of VCC5B and VCC3B are monitored by the internal analog comparator, each voltage state is supplied to B_PGS output. The terminal is Open drain structure. The operation of detection is started when both 5B_ON and 3B_ON are equal to High. The analog Comparator has hysteresis voltage and generate high signal when the following condition are satisfied. Greater than 4.461V(Typ.) at power on stage of "VCC5M"(Rising Edge)and lower than 4.311V (Typ.) at the shut down stage (Falling edge) after 47.5ms +/- 2.5ms Greater than 2.943V(Typ.) at power on stage of "VCC3M"(Rising Edge)and lower than 2.793V (Typ.) at the shut down stage (Falling edge) after 47.5ms +/- 2.5ms In this period B_PGS is supplying H level. The Hysteresis Voltage are set 150mV +/- 50mV. And at the High state, the delay time is set, when B_PGS become High, the delay time of 100ms +/- 5ms is set in case of A_PGS is equal to Low, and the delay time of 445ms +/- 5ms is set in case of A_PGS is equal to High. 【Timing Chart】 5B_ON 3B_ON A_PGS 5B_ON 3B_ON 2.793±0.241V /4.311± 0.338V /1.615±0.085V VCC3M /VCC5M 2.943±0.191V /4.461±0.288V VCC3B /VCC5B 150mV ±50mV B_PGS 100±5ms 445±5ms Truth Table 5M_ON 3M_ON 5B_ON 3B_ON APGS VCC5B VCC3B L L L L L L L L L L VCC5B<Detection Voltage H B_PGS H H H VCC5B>Recovery Voltage L VCC3B<Detection Voltage L VCC3B>Recovery Voltage H Blank : Don’t Care 14-Jan-03 (Rev 2.0)TB62501F (Page. 33) TOSHIBA TB62501F Over Load Detection Over Load Detection Equivalent Circuit PGS Circuit VCC5M VCC3M 5B Over Load Monitoring Circuit 20ms 3A 20ms −SHDN 3B 20ms 3P Vref (n) 20ms SHDN Hold Circuit VBL16 5ms 20ms TH_DET TH_DET RD3 20ms RD4 20ms 5B_ON 5B_DRV 3A_DRV 3A_ON RAMP Circuit 3B_ON 3B_DRV 3P_ON 3P_DRV VBL16_ON VBL16_DRV RD3_ON RD3_DRV RD4_ON RD4_DRV Note) The delay time is just reference value. Refer to the following explanation for the actual value) Reference Voltage Table for Over Load Comp. Symbol MIN. TYP. MAX UNIT 5M V 5X08 VCC5M -0.9 VCC5M -0.8 VCC5M -0.7 V 3M V 3X08 VCC3M -0.9 VCC3M -0.8 VCC3M -0.7 V VBL16 V VBL08 VREGIN16 -1.68 VREGIN16 -1.5 VREGIN16 -1.32 V RD (Note ) V RD308 V RD408 4.1 4.2 4.3 V Item Detection Voltage Note) VCCRD3=VCCRD4=5V 14-Jan-03 (Rev 2.0)TB62501F (Page. 34) TOSHIBA TB62501F Over load monitoring function perform independently to monitor each MOSFET that are controlled each RAMP DRIVER. The function of monitoring over load of 5B is explained as follows as the representative case. 5B Over Load Detection Equivalent Circuit VCC5M SHDN Hold Circuit −SHDN Main power source PGS Circuit Over Load Detection 5ms Reference Voltage 20ms VCC5M-0.8V± 0.1V 5B_DRV RAMP Circuit Input Signal 5B_ON 0.047μF Monitoring Signal 5B Terminal Table to be referred Circuit Input Signal 5B 3A 3B 3P VBL16 RD3 RD4 5B_ON 3A_ON 3B_ON 3P_ON VBL16_ON RD3_ON RD4_ON Main Power Source VCC5M VCC3M VCC3M VCC3M VREGIN16 VCC5M VCC5M Monitoring Signal 5B 3A 3B 3P VREGIN16 RD3 RD4 In order to start over load function, it is required for PGS signal 5MPGS to activate when main power source VCC5M is on after VREGIN16 3SW signal is coming normally by supplying VREGIN16. Then the voltage drop between source and drain of external 3SW MOSFET is detected after normal operation of RAMP DRIVER by receiving input signal. Just after receiving 5B_ON signal, the −SHDN voltage between source and Drain of external MOSFET is nearly equal to VCC5M level. Therefore during the period of 47.5ms +/VCC5M 2.5ms, over load detection signal is ignored. Then after this state, when the larger voltage than specified voltage is detected, 5MPGS the shut down signal “L” is out to “-SHDN” terminal. 【Note 1】 Pull up resistor value affect to the response time and consumption current at the low output state. The resistance value should be carefully considered in the system. 【Note 2】 The setting time for the signal is under the condition that OSC is operates at12.8kHz. The operation frequency may be changed by board capacitance, external resistor, capacitance tolerance, circuit delay and so on. So it should be considered at design system. 5B_ON Reference Voltage VCC5M−0.8V±0.1V VCC3M−0.8V±0.1V VCC3M−0.8V±0.1V VCC3M−0.8V±0.1V VREGIN16−1.5V±0.18V SPEC Table (Refer to P.10) SPEC Table (Refer to P.10) 7.0V 4.7ms±0.3ms 47.5ms ±2.5ms 0.8± 0.1V VCC5B 21.25ms ±1.25ms 【Note 3】 When "-SHDN" becomes "L", this device does not perform reset operation and hold the output state. In order to recover, VREGIN16 power supply is powered on again or –RESET terminal should be turn to L to initialize the device. 14-Jan-03 (Rev 2.0)TB62501F (Page. 35) TOSHIBA TB62501F Shut Down Function When the shut down signal is out, this device holds L at the “-SHDN” terminal and output terminal become shut down state. To release this state, Low level is applied to –RESET terminal (POR Operation) or VREGIN16 is powered up again. 1) In case Shut Down signal is out −RESET 3SW Signal is latched internal IC, Output Terminal: Shut Down State State of Output Terminal at Shut down stage −SHDN (Internal IC) −SHDN (External IC) When this device receives shut down signal, output terminal become shut down state and hold the state. To release this state, Low level is applied to –RESET terminal (POR Operation) or VREGIN16 is powered up again. 2) In case receiving Shut Down Signal -RESET 3SW -SHDN(Internal IC) -SHDN(External IC) Signal is latched internal IC, Each Output Terminal: Shut Down State OFF output :5B_DRV(18) (Hi-Impedance) 3A_DRV(21) 3B_DRV(23) 3P_DRV(26) RD3_DRV(29) RD4_DRV(31) VBL16_ DRV(33) RD1_DRV(17) RD2_DRV(35) M2_DRV(46) S2_ DRV(47) “ L ” o u t p u t :CPOUT1(36) S1_DRV(39) M1_DRV(40) BAT_DRV(41) DCIN_DRV(42) −SHDN(52) B_PGS(50) A_PGS(49) M_PGS(51) “ H” o u t p u t :CPOUT2(37) No Change :CLKOUT(11) Terminal Number are shown in the blankets 14-Jan-03 (Rev 2.0)TB62501F (Page. 36) TOSHIBA TB62501F I/O Equivalent Circuit of Terminals PIN NUMBER 1 2 3 4 6 7 8 9 12 13 14 15 16 56 60 62 63 64 TERMINAL DISCHARGE −EXTPWR S1GATEON S2GATEON M1GATEON M2GATEON 5B_ON 3A_ON 3B_ON 3P_ON RD3_ON RD4_ON VBL16_ON TEST RD2_ON RD1_ON 5M_ON 3M_ON 17 18 21 23 26 29 31 35 RD1_DRV 5B_DRV 3A_DRV 3B_DRV 3P_DRV RD3_DRV RD4_DRV RD2_DRV 19 22 24 5B 3A 3B 5B:VCC5M 3A:VCC3M 3B:VCC3M EQUIVALENT CIRCUIT 3SW 3k VDD15 Over Load Detection comp. PGS Detection comp. 14-Jan-03 (Rev 2.0)TB62501F (Page. 37) TOSHIBA PIN NUMBER 27 30 32 TERMINAL 3P RD3 RD4 TB62501F EQUIVALENT CIRCUIT 3P:VCC3M RD3:VCC5M RD4:VCC5M comp. 33 39 40 41 42 VBL16_DRV S1_DRV M1_DRV BAT_DRV DCIN_DRV 34 VBL16 VCPIN21 comp. 49 50 51 52 A_PGS B_PGS M_PGS −SHDN 14-Jan-03 (Rev 2.0)TB62501F (Page. 38) TOSHIBA PIN NUMBER 10 TB62501F TERMINAL EQUIVALENT CIRCUIT CLKIN VCC5M VCC3M VREGIN16 3k comp. 3k 11 comp. CLKOUT VCC5M VCC3M VREGIN16 3k 200 44 FIX_R VDD15 500 46 47 M2_DRV S2_DRV 14-Jan-03 (Rev 2.0)TB62501F (Page. 39) TOSHIBA PIN NUMBER 36 37 TERMINAL CPOUT1 CPOUT2 54 BAT_VOLT TB62501F EQUIVALENT CIRCUIT 36pin:VCC3M 37pin:VCC5M VREGIN16 comp. 58 −RESET 55 TH_DET 13 43 VCCRD3M VCCRD4M 25 45 48 38 58 59 5 20 28 53 VDD15 VCC3M VCC5M VCPIN24 VREGIN16 3SW DGND PGND1 PGND2 AGND 3SW 3SW 14-Jan-03 (Rev 2.0)TB62501F (Page. 40) TOSHIBA TB62501F MEASUREMENT CIRCUIT 1. RAMP DRIVER(Ex. 5B Circuit) FIX_R VDD15 RFIX 56KΩ IREF 5B_DRV IOH5BD VOH5BD (Output "H") B_PGS IOL5BD ILK5BD A_PGS −SHDN LOGIC At the measurement of ILK5BD 5B_ON="H" FIX_R="OPEN" Over Load COMP. II5B 5B PGS 5B_ON COMP. 2. RAMP DRIVER (VBL16 Circuit) FIX_R VCPIN24 IREF RFIX 56KΩ VBL16_DRV VOHVBLD (Output "H") −SHDN LOGIC VBL16_ON IOHVBLD IOLVBLD ILKVBLD Over Load COMP. IIVBL At the measurement of ILKVBLD VBL16_ON="H" FIX_R="OPEN" VBL16 14-Jan-03 (Rev 2.0)TB62501F (Page. 41) TOSHIBA TB62501F 3. NDRV (Ex. : S1 Circuit) FIX_R VCPIN24 S1_DRV IREF RFIX IOHS1 56KΩ VOHS1(Output "H") IOLS1 ILKS1 LOGIC At the measurement of ILKS1 S1GATEON="H" FIX_R="OPEN" S1GATEON 4.PDRV (Ex. : S2GATEON) ILKS2 IOLS2 S2GATEON S2_DRV IOLS2 Measurement : S2GATEON = ”H” ILKS2 Measurement : S2GATEON = “L” LOGIC 5. Charge Pump OSC 3M_ON 5M_ON CPOUT1 LOGIC VOHCP1(Output "H") VOLCP1(Output "L") CPOUT2 VOHCP2(Output "H") VOLCP2(Output "L") 14-Jan-03 (Rev 2.0)TB62501F (Page. 42) TOSHIBA TB62501F 6.POR D1 VPORH VPORL RPOR 3SW −RESET −RESET CPOR VPORH :3SW Rising Edge VPORL:3SW Falling Edge 7.OSC VCC5M VCC3M RS CLKIN Latch IINOSC C CLK tCLK R CLK CLKOUT ROHCLK ROLCLK 14-Jan-03 (Rev 2.0)TB62501F (Page. 43) TOSHIBA TB62501F 8. Regulator Over Current Protection −RESET VREGIN16 IOUT Battery Monitor ON/OFF IOUT Reg. 3SW Low Volt VOUT Detection VOUTOFF SHUTDOWN 9. Battery Monitor VREGIN16 R BAT1 BAT_VOLT R BAT2 VTPBT VRECBT Battery Monitor Output Into IC IINBT 10.Detection of Thermostat Resistance 3SW 0.4K∼20KΩ TH_DET Detection Circuit SHUTDOWN VTPER 14-Jan-03 (Rev 2.0)TB62501F (Page. 44) TOSHIBA TB62501F Application Block Diagram Q14 Q12 Q10 S-BATT VCC×M R19 470kΩ Q15 M-BATT Q13 Q9 VINT16 AC C11 0.047μF SD8 SD9 R16 100Ω R17 56kΩ SD7 C10 0.22 μF 48 47 46 45 44 43 42 41 40 39 38 37 C9 0.22 μF 36 35 R15 100Ω 34 32 B_PGS 50 31 M_PGS 51 30 52 29 53 28 54 27 TOP VIEW 55 56 SW1 VREGIN16 C12 0.1μF 25 24 58 23 3SW 59 22 C13 1.0μF 60 21 61 20 62 19 63 18 64 17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C8 0.047μF C7 0.047μF R11 100Ω LOGIC(TTL) CCLK C1 1000pF Q7 R12 100Ω RD3 SD5 Q6 C6 0.047μF VDD15 VCCRD3M R10 100Ω R9 100Ω SD4 C5 0.047μF R7 100Ω R5 100Ω VCC3P Q5 VCC3B R8 100Ω SD3 C4 0.047μF Q4 R6 100Ω SD2 C3 0.047μF VCC3A Q3 R2 100Ω 16 R3 100Ω LOGIC(TTL) RD4 SD6 26 57 1 R14 100Ω 33 49 SR1 R13 100Ω VCCRD4M A_PGS BAT_VOLT Q8 VREGIN16 VCC3M VCC5M VCC3M VCC5M 3SW VCC5M VBL16 SD10 R20 R23 R22 R21 10kΩ 10kΩ 10kΩ 10kΩ −SHDN Schottkey Barrier Diode --- 1SS388 Q11 R18 470kΩ LOGIC(TTL) C2 0.047μF RCLK R1 66.5kΩ R4 100Ω VCC5B SD1 Q2 VCC×M VCC5M VCC3M Q1 NOTES: VCC3M VCC5M C14 0.1 μ F AGND C15 0.1μF VDD15 C16 0.1μF PGND1 VINT16 VREGIN16 C17 0.1μF PGND2 C18 0.1μF DGND 3SW C19 0.1μF DGND Each GND pin is connected inside this device.When the different voltage is supplied to each GND, this device may be destroyed by the electric current among GNDs.Therefore, please connect each GND at the same point. C12 to C18 is the bypass condenser for power supply stabilization. Please layout bypass condenser near this device. Utmost care is necessary in the design of the output line, VCC, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding. Do not insert devices in the wrong orientation. Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise, the rated maximum current of power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it to catch fire or explode and resulting in injury. The coefficient of the oscillator device in the figure(RCLK,CCLK) is ideal value. Since oscillator is subject to circuit board capacity and wiring resistance, these coefficients need to be adjusted on the actual circuit board. 14-Jan-03 (Rev 2.0)TB62501F (Page. 45) TOSHIBA TB62501F Pin Assignment Package : LQFP64-P-1010-0.5A 35 34 VBL16_DRV 36 VBL16 37 CPOUT1 38 RD2_DRV 39 CPOUT2 40 VCPIN24 41 S1_DRV 42 M1_DRV 43 BAT_DRV 44 DCIN_DRV FIX_R 45 VCCRD4M 46 VCC3M 47 M2_DRV VCC5M S2_DRV 48 33 A_PGS 49 32 RD4 B_PGS 50 31 RD4_DRV M_PGS 51 30 RD3 −SHDN 52 29 RD3_DRV AGND 53 28 PGND2 BAT_VOLT 54 27 3P TH_DET 55 26 3P_DRV TEST 56 25 VDD15 VREGIN16 57 24 3B −RESET 58 23 3B_DRV 3SW 59 22 3A RD2_ON 60 21 3A_DRV 3P_ON 61 20 PGND1 RD1_ON 62 19 5B 5M_ON 63 18 5B_DRV 3M_ON 64 17 RD1_DRV 12 13 14 15 16 VBL16_ON RD4_ON 3A_ON 11 RD3_ON 5B_ON 10 VCCRD3M 9 3B_ON 8 CLKOUT 7 CLKIN 6 M2GATEON S2GATEON 5 DGND 4 M1GATEON 3 S1GATEON DISCHARGE 2 −EXTPWR 1 14-Jan-03 (Rev 2.0)TB62501F (Page. 46) TOSHIBA TB62501F Marking Indication TOSHIBA TB62501F Logo Product Name JAPAN □□□□□□□ 1pin Country of Origin Lot Code Weekly Code Factory Code Revision Control Code 14-Jan-03 (Rev 2.0)TB62501F (Page. 47) TOSHIBA TB62501F Package Outline (Dimensions) 14-Jan-03 (Rev 2.0)TB62501F (Page. 48)