TOSHIBA TB62501F

TOSHIBA
TB62501F
TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MOLITHIC
TB62501F
Power Management IC for Notebook PC
■Application
This IC will be used in Notebook PC and control power supply lines.
■Outline
TB62501F accepts the multiple power supply input and control each RAMP
drivers.
Multiple Power Supply --- VREGIN16(6∼16V Variable),VCC3M(3.3V),
VCC5M(5V), VDD15(15V)
Ramp Drivers are divided by 6 parts as follows.
1 --- 5B_DRV,3A_DRV,3B_DRV
2 --- 3P_DRV
3 --- VBL16_DRV
4 --- DCIN_DRV,BAT_DRV,M1_DRV,S1_DRV
( L Q F P 6 4 -P - 1 0 1 0 -0 . 5 A )
5 --- RD1_DRV,RD2_DRV,
6 --- RD3_DRV,RD4_DRV
W e i g h t:
0 . 3 4 g ( T y p i c a l)
Regarding Number 4,5,6, it will be named as NDRV due to difference of circuitry.
This IC performs power on, monitoring and power off by connecting N-Ch
MOS-FET to these NDRV terminals.
And also , the excess current into the power supplies controlled the external
MOS-FET(VCC5B,VCC3A,VCC3B,VCC3P,RD3,RD4) are monitored, the
shut down signal is given whenever the abnormal state is observed.
The voltage of the other 5 power supply (VCC5M,VCC3M,VCC5B,VCC3A,VCC3B) are also monitored.(PGS Circuit)
In addition, there are two PDRV circuit (M2_DRV,S2_DRV) , it is effective to control the power supply system that have
different power supply.
■Features
・Package : 64 pin thinner and compact flat package (LQFP64)
・Process : BiCD 0.8um – 40V process
・System Structure
1. Constant Current Driver for N-Ch Power MOS-FET Gates (RAMP DRIVER)
2. Integrated PGS Circuit +/- 8% (Typical) Tolerance
3. Integrated 3.3V Regulators (+4%/-3%)
4. Integrated driver for the Charge Pump
5. All Logic Input --- CMOS input (Compatible with TTL input Level)
6. Low power Dissipation (Shut Down --- 20uA, Battery Off --- 80uA)
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or
fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to
comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA
products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the
precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..
The products described in the document may include products subject to foreign exchange and foreign trade control laws.
The Toshiba products listed in this document are intended for usage in general electronics applications ( computer, personal equipment, office
equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These Toshiba products are neither intended nor warranted for usage in
equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury
(“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments,
traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products
listed in this document shall be made at the customer’s own risk.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any
infringements of patens or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of TOSHIBA or others.
The information contained herein is subject to change without notice.
14-Jan-03 (Rev.2.0)TB62501F (Page. 1)
TOSHIBA
TB62501F
Explanation of Pin
PIN
No.
1
2
3
4
5
6
PIN NAME
I/O
FUNCTION
DISCHARGE
-EXTPWR
S1GATEON
S2GATEON
DGND
M1GATEON
I
I
I
I
G
I
"DISCHARGE" = "L" "-EXTPWR" = "L"
DCIN_DRV : CHARGE , BAT_DRV : DISCHARGE
"DISCHARGE" = "H" or "-EXTPWR" = "H" DCIN_DRV : DISCHARGE , BAT_DRV : CHARGE
ON/OFF Control Signal of S1_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
ON/OFF Control Signal of S2_DRV Switch. "H" = DISCHARGE , "L" = OFF (Hi- Impedance)
Ground for Logic circuit (connect to system Ground)
ON/OFF Control Signal of M1_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
7
8
M2GATEON
5B_ON
I
I
ON/OFF Control Signal of M2_DRV Switch. "H" = DISCHARGE , "L" = OFF (Hi- Impedance)
ON/OFF Control Signal of 5B_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
9
3A_ON
I
ON/OFF Control Signal of 3A_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
10
CLKIN
I
Hysteresis Comparator Input for Oscillator
11
12
CLKOUT
3B_ON
O
I
13
VCC_RD3
I
14
RD3_ON
I
Hysteresis Comparator Output for Oscillator
ON/OFF Control Signal of 3B_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
Voltage Supply Pin for "RD3_DRV" Overload Detector
This Pin performs relatively Overload Detector to use supply voltage.
ON/OFF Control Signal of RD3_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
15
RD4_ON
I
ON/OFF Control Signal of RD4_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
16
VBL16_ON
I
ON/OFF Control Signal of VBL16_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
17
18
RD1_DRV
5B_DRV
O
O
Gate Drive Power Output For Nch-MOSFET(RD1)
Gate Drive Power Output For Nch-MOSFET(VCC5B)
19
5B
I
Input Pin for B_PGS and VCC5B Voltage Drop Protection
20
PGND1
G
Ground for Drivers (connect to system Ground)
21
3A_DRV
O
Gate Drive Power Output For Nch-MOSFET(VCC3A)
22
23
3A
3B_DRV
I
O
Input Pin for A_PGS and VCC3A Voltage Drop Protection
Gate Drive Power Output For Nch-MOSFET(VCC3B)
24
3B
I
Input Pin for B_PGS and VCC3B Voltage Drop Protection
25
VDD15
P
Power Input for Gate Drive (12 -17 VDC)
26
3P_DRV
O
Gate Drive Power Output For Nch-MOSFET(VCC3P)
27
28
3P
PGND2
I
G
Input Pin for VCC3P Voltage Drop Protection
Ground for Drivers (connect to system Ground)
29
RD3_DRV
O
Gate Drive Power Output For Nch-MOSFET(RD3)
30
31
32
RD3
I
Input Pin for RD3 Voltage Drop Protection
RD4_DRV
O
Gate Drive Power Output For Nch-MOSFET(RD4)
RD4
I
Input Pin for RD4 Voltage Drop Protection
Explanation of I/O : I= Input Terminal, O = Output Terminal, P = Power Lines
14-Jan-03 (Rev.2.0)TB62501F (Page. 2)
TOSHIBA
TB62501F
PIN
No.
33
34
35
PIN NAME
I/O
VBL16_DRV
VBL16
RD2_DRV
O
I
O
Gate Drive Power Output For Nch-MOSFET(VBL16)
Input Pin for VBL16 Voltage Drop Protection
Gate Drive Power Output For Nch-MOSFET(RD2)
36
CPOUT1
O
Output for first charge Pump Driver. It has switched using the power supply of VCC3M.
37
38
CPOUT2
VCPIN24
O
P
Output for second charge Pump Driver. It has switched using the power supply of VCC5M.
Power Input for Gate Drive (24 VDC)
39
S1_DRV
O
Gate Drive Power Output For Nch-MOSFET(S1)
40
M1_DRV
O
Gate Drive Power Output For Nch-MOSFET(M1)
41
BAT_DRV
O
Gate Drive Power Output For Nch-MOSFET(BAT)
42
DCIN_DRV
O
43
VCC_RD4
I
44
45
FIX_R
VCC3M
O
P
Gate Drive Power Output For Nch-MOSFET(DCIN)
Voltage Supply Pin for "RD4_DRV" Overload Detector
This Pin performs relatively Overload Detector to use supply voltage.
Terminal for Reference Current Setting Resistance
Power Input for Analog Circuit (3.3V +/-5% VDC)
46
M2_DRV
O
Gate Drive Power Output for Pch-MOSFET "M2" (Open-Drain)
47
S2_DRV
O
Gate Drive Power Output for Pch-MOSFET "S2" (Open-Drain)
48
VCC5M
P
Power Input for Analog Circuit (5V +/-5% VDC)
49
50
A_PGS
B_PGS
O
O
Output for VCC3A Power Good Signal (Open-Drain)
Output for VCC5B/VCC3B Power Good Signal (Open-Drain)
51
M_PGS
O
Output for VCC3M/VCC5M Power Good Signal (Open-Drain)
52
-SHDN
O
Output for System Shutdown Signal (Open-Drain)
53
AGND
G
Ground for Analog circuit (connect to system Ground)
54
55
BAT_VOLT
TH_DET
I
O
Setting Pin for Low-Battery Protection
Connect pin for Thermal Resistance
56
TEST
G
TEST mode signal input pin (connect to system Ground)
57
VREGIN16
P
Battery and AC Adapter Power Input (5.5 - 17 VDC)
58
-RESET
I
Input Pin for Reset Signal
59
3SW
O
3SW output pin made from the internal regulator.
60
RD2_ON
I
ON/OFF Control Signal of RD2_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
61
3P_ON
I
ON/OFF Control Signal of 3P_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
62
RD1_ON
I
ON/OFF Control Signal of RD1_DRV Switch. "H" = CHARGE , "L" = DISCHARGE
63
5M_ON
I
5M_ON Signal Input
64
3M_ON
I
3M_ON Signal Input
FUNCTION
Explanation of I/O : I= Input Terminal, O = Output Terminal, P = Power Lines
14-Jan-03 (Rev.2.0)TB62501F (Page. 3)
TOSHIBA
TB62501F
Block Diagram
-RESET
VDD15
Over Current
Protection
VCPIN24
VREGIN16
BAT_VOLT
Low-Battery
Protection
Charge Pump
Regulator
CPOUT2
CPOUT1
3SW
CLKOUT
OSC
Low Voltage
Protection
TH_DET
CLKIN
VCCRD3M
VCCRD4M
RD3
SHUTDOWN
-SHDN
Over
Load
Detector
LOGIC
TEST
Over
Load
Detector
Comp.
RD4
3P
VBL16
3B
3M_ON
5B
5M_ON
3A
B_PGS
BPGS
A_PGS
APGS
M_PGS
MPGS
PGS
Comp.
VCC3M
VCC5M
S2GATEON
M2GATEON
DISCHARGE
LOGIC
-EXTPWR
RD2_ON
RD1_ON
S1GATEON
M1GATEON
VBL16_ON
RD4_ON
RD3_ON
3P_ON
3B_ON
3A_ON
5B_ON
PDRV(S2)
S2_DRV
PDRV(M2)
M2_DRV
NDRV(BAT)
BAT_DRV
NDRV(DCIN)
DCIN_DRV
NDRV(RD2)
RD2_DRV
NDRV(RD1)
RD1_DRV
NDRV(S1)
S1_DRV
NDRV(M1)
M1_DRV
RAMP(VBL16)
VBL16_DRV
RAMP(RD4)
RD4_DRV
RAMP(RD3)
RD3_DRV
RAMP(3P)
3P_DRV
RAMP(3B)
3B_DRV
RAMP(3A)
3A_DRV
RAMP(5B)
5B_DRV
Reference Current
DGND
AGND
PGND1
FIX_R
PGND2
14-Jan-03 (Rev.2.0)TB62501F (Page. 4)
TOSHIBA
TB62501F
Operation State of each power on stage
VREGIN16
VCC5M
VCC3M
VDD15
Battery
Detector
Regulator
(3SW)
RAMP
DRIVER
NDRV
PDRV
Charge
Pump
State1
○
○
○
○
Operate
Operate
All Operate
All
Operate
Operate
All
Operate
Operate
−
All
Operate
M1_DRV
S1_DRV
BAT_DRV
RD1_DRV
RD2_DRV
−
State2
○
○
○
×
Operate
Operate
VBL16
State3
○
○
×
○
Operate
Operate
5B,RD1,RD2
RD3,RD4
State4
○
○
×
×
Operate
Operate
State5
○
×
○
○
Operate
Operate
−
−
State6
○
×
○
×
Operate
Operate
−
−
State7
○
×
×
○
Operate
Operate
−
−
State8
○
×
×
×
Operate
Operate
−
−
State9
○
×
×
×
Operate
−
−
−
All
Operate
All
Operate
All
Operate
All
Operate
All
Operate
All
Operate
−
−
−
−
−
−
−
−
○:Power supplied ×:No Power Supplied −:Stop Operation
* The charge up voltage of VCPIN24 is generated when both VCC5M and VCC3M are supplied.
If either VCC5M or VCC3M is not supplied, the voltage of VCPIN24 become nearly equal to the voltage of VREGIN16.
* 3SW operates when the voltage greater than 2.9V is supplied to BAT_VOLT Terminal under the state that VREGIN16 is
supplying and excess current and so on are not observed.
* BAT_DRV and DCIN_DRV for NDRV line are not turn on at the same time. DCIN_DRV performs discharge operation when
BAT_DRV performs charging operation. When DCIN_DRV performs charging operation, BAT_VOLT performs discharge
Operation. The operation of BAT_VOLT is described in the above table as the representative.
Explanation of Operations
1. State 1 --- All power supplies are Supplied, All circuits are in a state of operation.
2. State 2 --- All RAMP Drivers except VBL16_DRV are stopped operation because VDD15 is not supplied.
Also, RD1 and RD2 of NDRV line are stopped operation.
3. State 3 --- The operation of RAMP Drivers (3A,3B and 3P) of 3M line are stopped due to no supply of VCC3M.
Also all NDRV circuit except RD1_DRV and RD2_DRV are stopped because charge pump circuit is stopped.
4. State 4 --- Ramp Drivers, BDRV, Charge pump circuit are all stopped operation because VDD15 is not supplied.
5. State 5 – 8 --- Ramp Drivers, BDRV, Charge pump circuit are all stopped operation because VCC5M is not supplied.
6. State 9 --- Battery monitoring circuit is stopped because the voltage of VREGIN16 is below specified voltage.
14-Jan-03 (Rev.2.0)TB62501F (Page. 5)
TOSHIBA
TB62501F
Operation State of Each Operation Mode
The below table is complied with the item of power consumption current in the table of Electrical Characteristics.
Please refer to the table “ Operation state of each power on stage” described in the previous page regarding the necessary
power supply at the actual operation stage.
VREGIN16
3SW
VCC5M
VCC3M
VDD15
VCPIN24
○
○
○
○
○
○
○
○
○
○
○
○
×
×
○
○
○
○
×
×
×
○
○
○
○
×
×
×
○
○
○
○
×
×
×
○
○
○
○
×
×
×
OPERATION
AC_OFF
SUSPEND
SOFT_OFF
BAT_OFF
SHUTDOWN
LOW_BAT
○:Power Supplied ×:No power Supplied
※ When the operation of VCPIN24 is stopped, the voltage similar to VREGIN16 is generated.
Battery
Detector
Regulator
RAMP
DRIVER
PGS
LOGIC
NDRV
M1_DRV
S1_DRV
BAT_DRV
RD1_DRV
RD2_DRV
M1_DRV
S1_DRV
DCIN_DRV
RD1_DRV
RD2_DRV
M1_DRV
S1_DRV
BAT_DRV
RD1_DRV
RD2_DRV
OPERATION
Operate
Operate
5B , 3A , 3B
3P , RD3,
RD4 , VBL16
AC_OFF
Operate
Operate
−
M_PGS
SUSPEND
Operate
Operate
3A
M_PGS
A_PGS
SOFT_OFF
Operate
Operate
−
M_PGS
BAT_DRV
BAT_OFF
Operate
Operate
−
−
−
SHUTDOWN
Operate
Operate
LOW_BAT
Operate
−
−
−
−
−
−
−
Explanation of operation
1. OPERATION
M_PGS
A_PGS
B_PGS
PDRV
M2_DRV
S2_DRV
M2_DRV
S2_DRV
M2_DRV
S2_DRV
M2_DRV
S2_DRV
M2_DRV
S2_DRV
−
−
All power supplies are Supplied, All circuits are in a state of operation.
2. AC_OFF
All power supplies are Supplied, All circuits are in a state of operation.
But, RAMP circuits have stopped operation with the external signal.
3. SUSPEND
All power supplies are Supplied, All circuits are in a state of operation.
But, RAMP circuits other than "A" system have stopped operation.
4. SOFT_OFF
All power supplies are Supplied, All circuits are in a state of operation.
But, RAMP circuits and NDRV circuits have stopped operation.
5. BAT_OFF
The circuit of low-battery protection, regulator, and Thermal Resistance
detection is operating. Other circuits have stopped operation.
6. SHUTDOWN
At the shutdown signal is inputted, Operation is stopped except Low Battery
Detector and Regulator.
7. LOW_BAT
At the Low-Battery is detected, Operation is stopped except Low Battery Detector
14-Jan-03 (Rev.2.0)TB62501F (Page. 6)
TOSHIBA
TB62501F
Absolute Maximum Ratings and Conditions
Absolute Maximum Ratings
Parameter
VREGIN16(57pin)
VCPIN24(38pin)
Power
Supply
VDD15(25pin)
VCC5M(48pin)
VCC3M(45pin)
Input Voltage 1 (1∼4,6∼9,12,14
∼ 16,55,58,60 ∼
64pin)
Input Voltage 2 (19,44pin)
Input Voltage 3 (22,24,27pin)
Input Voltage 4 (34,54pin)
Input Voltage 5 (10pin)
Output Voltage 1 (17,18,21,23,
26,29,31,35pin)
Output Voltage 2 (33,39~42pin)
Output Voltage 3 (36pin)
Output Voltage 4 (37pin)
Output Voltage 5 59pin)
Output Voltage 6 11pin)
Supply Voltage (46,47pin)
Supply Voltage (13,30,32,43,
49,∼52pin)
Power Dissipation(25℃)
Operating Temperature
Storage Temperature
Symbol
VREGIN16
VCPIN24
VDD15
VCC5M
VCC3M
Rating
30
30
30
7.0
7.0
Unit
V
V
V
V
V
V IN
V SS-0.3V ∼3SW+0.3V
V
V IN
V IN
V SS-0.3V ∼VCC5M+0.3V
V SS-0.3V ∼VCC3M+0.3V
V
V
V IN
V SS-0.3V ∼VREGIN16+0.3V
V SS-0.3V ∼VCC3M+0.3V
V SS-0.3V ∼VCC5M+0.3V
V
V OUT
V SS-0.3V ∼VDD15+0.3V
V
V OUT
V OUT
V OUT
3SW
V
V
V
V
V IN
V SS-0.3V ∼VCPIN24+0.3V
V SS-0.3V ∼VCC5M+0.3V
V SS-0.3V ∼VCC3M+0.3V
V SS-0.3V ∼3SW+0.3V
V SS-0.3V ∼VCC3M+0.3V
V SS-0.3V ∼VCC5M+0.3V
30
V IN
7
V
PD
Topr
Tstg
700
0∼70
-55∼150
mW
℃
℃
CLKIN
CLKOUT
V
V
V
※ Connect 56 pin “TEST” to GND
※ Input Voltage 5 (10pin), Output Voltage 6 (11pin) --- The Power Supply of OSC has diode that is OR composition of VCC3M
and VCC5M. Therefore, the higher impression voltage is applied to the above Maximum Rating.
Recommended Operating Condition(Ta=0∼70℃)
Parameter
Input Voltage
Symbol
VREGIN16
VCC3M
VCC5M
VDD15
VCPIN24
VCCRD3M
VCCRD4M
CCP1,CCP2
CCP3
CPOR
CO3SW
Condition(Refer to Application figure)
Refer to the explanation of Operation (P.17)
MIN.
6.0
3.13
4.75
12.0
−
1.425
1.425
−
−
0.01
−
TYP.
−
3.3
5.0
15.0
24.0
−
−
0.22
0.22
0.1
1.0
MAX
17.0
3.46
5.25
17.0
−
5.25
5.25
0.47
−
−
−
UNIT
V
V
V
V
V
V
V
μF
μF
μF
μF
Capacitor for CP (C9, C10)
Capacitor for CP (C11)
Capacitor for POR delay (C12)
Stabilized Capacitor for Regulator Output (C13)
External Capacitor for Open-Drain Terminal
External Parts
COPD
−
−
0.47
μF
Capacitor between 49∼52pin−GND
CCLK
Capacitor for Oscillator (C1)
−
1000
−
pF
RCLK
Resistor for Oscillator (R1)
−
66.5
1000 Note 1
KΩ
C××
Capacitor for Ramp (C2~C8)
−
−
0.47
μF
Resistor for Constant Current Circuit
RFIX
−
56
−
KΩ
(R17)(Note2)
Note 1 : In case using bigger resistance, it may cause increase the consumption current.
Note 2 : In case using smaller resistance to set the constant current for Ramp, it may cause increase the tolerance of setting accuracy.
And in case of the resistor values are extremely low , it may cause heat generation or damage of IC due to increase Power Consumption.
14-Jan-03 (Rev.2.0)TB62501F (Page. 7)
TOSHIBA
TB62501F
ON and OFF Sequence of Each Power Supply
On State
OFF State
Setting Voltage
Setting Voltage
VREGIN16
3SW
VCC5M
VCC3M
VDD15
VDD15, VCC3M, and VCC5M power supply is required for RAMP circuit operation (5B,3A ,3B,RD1,RD2,RD3,RD4) of this IC.
Moreover, VCPIN21, VCC3M, and VCC5M power supply are required for NDRV circuit operation (DCIN,BAT,S1,M1,VBL16) of this IC.
Only when VCC3M and VCC5M are normally supplied, a charge pump circuit can be operated.
Notes1 : When the on/off order of V INT16, 3SW, or other power supplies are reversed, abnormal current flows via the protective diode.
This could lead to the damage to the IC.
Notes2 : Even if the IC releases the Shut-Down signal(-SHDN=L), the IC itself continues to operate and it is not shut down.
If the signal(-SHDN=L) needs to be stopped, Reset signal(-RESET=L) input or VREGIN16 re-input is required.
Electrical Characteristics
Consumption Current (Ta=0∼70℃)
VREGIN16=17V , VDD15=17V , VCC5M=5.25V , VCC3M=3.47V, (If not specially specified)
Parameter
Measur
ement
Circuit
Symbol
ICCV161
OPERATION
−
ICC5M1
ICC3M1
ICCV151
ICCV241
ICCV161
ICC5M1
AC_OFF
−
ICC3M1
ICCV151
ICCV241
SUSPEND
(TOTAL 12.9mW)
ICCV161
ICC5M1
−
ICC3M1
ICCV151
ICCV241
ICCV161
SOFT_OFF
−
ICC5M1
ICC3M1
ICCV151
ICCV241
Condition
MIN.
TYP.
MAX
UNIT
VREGIN16=17V
VCC5M=5.25V
VCC3M=3.43V
VDD15=17V
VCPIN24=24V
Operation : Refer to P.6
−
−
80
140
−
450
350
650
520
μA
μA
−
−
370
480
VREGIN16=17V
VCC5M=5.25V
VCC3M=3.43V
VDD15=17V
VCPIN24=24V
Operation : Refer to P.6
−
170
90
230
150
−
−
350
520
−
170
100
280
140
−
−
120
160
−
90
350
150
520
−
−
240
350
−
140
120
190
160
−
−
90
150
−
360
170
520
260
−
−
0
0.5
0
0.5
VREGIN16=17V
VCC5M=5.25V
VCC3M=3.43V
VDD15=17V
VCPIN24=24V
Operation : Refer to P.6
VREGIN16=17V
VCC5M=5.25V
VCC3M=3.43V
VDD15=17V
VCPIN24=24V
Operation : Refer to P.6
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
μA
14-Jan-03 (Rev.2.0)TB62501F (Page. 8)
TOSHIBA
TB62501F
ICCV161
ICC5M1
−
BAT_OFF
ICC3M1
ICCV151
ICCV241
ICCV161
ICC5M1
−
SHUTDOWN
ICC3M1
ICCV151
ICCV241
ICCV161
ICC5M1
ICC3M1
−
LOW_BAT
ICCV151
ICCV241
VREGIN16=17V
VCC5M=5.25V
VCC3M=3.43V
VDD15=17V
VCPIN24=24V
Operation : Refer to P.6
−
70
100
μA
−
0
0.5
μA
−
−
0
0
0.5
0.5
μA
μA
−
0
0.5
μA
VREGIN16=17V
VCC5M=5.25V
VCC3M=3.43V
VDD15=17V
VCPIN24=24V
Operation : Refer to P.6
−
−
70
0
μA
μA
−
0
100
0.5
0.5
−
−
0
0
0.5
0.5
μA
μA
VREGIN16=9V
VCC5M=0V
VCC3M=0V
VDD15=0V
VCPIN24=0V
Operation : Refer to P.6
−
15
26
μA
−
−
0
0
0.5
0.5
μA
μA
−
0
0.5
μA
−
0
0.5
μA
μA
RAMP Driver(Terminal : 5B_DRV , 3A_DRV , 3B_DRV , 3P_DRV , RD1_DRV , RD2_DRV, RD3_DRV , RD4_DRV)(Ta=0∼70℃)
Parameter
Output Voltage
Measur
ement
Circuit
Symbol
1
VOH××
1
IOH ××
1
IOL××
1
ILK××
Output Current
Off Leakage Current
Condition
Charge Mode
Charge Mode
Terminal Voltage=0V,VDD15−2V
Discharge Mode
5B_DRV,3A_DRV,3B_DRV,3P_DRV,
1R8A_DRV,1R8B_DRV= 1.0V
Terminal Leakage Current at Hi-Z
Terminal Voltage=0V,VDD15−2V
UNIT
MIN.
TYP.
MAX
VDD15-1
−
−
V
− 400
− 350
− 300
μA
100
150
−
mA
−
−
0.5
μA
××・・・5B_DRV:5B:, 3A_DRV: 3A,3B_DRV:3B,3P_DRV:3P,RD1_DRV:RD1,RD2_DRV:RD2,RD3_DRV:RD3,RD4_DRV:RD4
RAMP Driver(Terminal : 5B,3A,3B,3P,RD3,RD4)(Ta=0∼70℃)
Parameter
Input Current
Measur
ement
Circuit
Symbol
1
II5B
IIRD3
IIRD4
II3A
II3B
II3P
MIN.
TYP.
MAX
−
20
−
VI=3.3V
−
12
−
VI=3.3V
−
−
0.5
μA
MIN.
TYP.
MAX
UNIT
Condition
VI=5V
UNIT
μA
RAMP Driver(Terminal : VBL16_DRV)(Ta=0∼70℃)
Parameter
Output Voltage
Measur
ement
Circuit
Symbol
2
V OHVBL
2
IOHVBL
Charge Mode
Charge Mode
VBL16_DRV=VCPIN24-2V
2
IOLVBL
ILKVBL
Output Current
Off Leakage Current
2
Condition
VCPIN24-0.9
−
−
V
− 400
− 350
− 300
μA
Discharge Mode1
VBL16_DRV=3.0V
30
50
−
mA
Leakage Current at Hi-Z
VBL16_DRV=0V,VCPIN24−2V
−
−
0.5
μA
MIN.
TYP.
MAX
UNIT
−
−
0.5
μA
RAMP Driver(VBL16)(Ta=0∼70℃)
Parameter
Input Current
Measur
ement
Circuit
Symbol
2
ILKVBL
Condition
Terminal Voltage =1V
14-Jan-03 (Rev.2.0)TB62501F (Page. 9)
TOSHIBA
TB62501F
Nch FET Driver(DCIN_DRV,BAT_DRV,S1_DRV,M1_DRV)(Ta=0∼70℃)
Parameter
Output Voltage
Circuit
Symbol
3
V OH××
3
IOH××
3
IOL××
3
ILK××
Output Current
Off Leakage Current
Condition
Charge Mode, No Load
Charge Mode
Terminal Voltage = VCPIN24−2V
Discharge Mode 1
Terminal Voltage = 1.0V
MIN.
TYP.
MAX
VCPIN24-0.9
−
−
V
− 55
− 45
− 35
μA
1
2
−
mA
−
−
0.5
μA
Leakage Current at Hi-Z
Terminal Voltage = 0V,VCPIN24−2V
UNIT
××・・・DCIN_DRV:DC,BAT_DRV:BAT,S1_DRV:S1,M1_DRV:M1
Pch FET Driver(S2_DRV,M2_DRV)(Ta=0∼70℃)
Parameter
Circuit
Output Voltage
4
Output Leakage Current
4
Symbol
V OLS2
V OLM2
ILEAKS2
ILEAKM2
Condition
IOLP= 1.0mA
VREGIN16=17V
TYP.
MAX
UNIT
−
−
1.2
V
−
−
0.5
μA
MIN.
Logic Input Terminal (1∼16,62pin) (Ta=0∼70℃)
Parameter
H Level Input Voltage
L Level Input Voltage
Circuit
Symbol
MIN.
TYP.
MAX
UNIT
−
V IH
3SW=3.3V
Condition
2.0
−
3SW
V
−
V IL
3SW=3.3V
0
−
0.8
V
MIN.
TYP.
MAX
UNIT
−
−
−
−
0.4
0.5
V
μA
Logic Output Terminal (*1) (Ta=0∼70℃)
Parameter
Circuit
Symbol
Condition
V OL
3SW=3.3V, IOL=4mA
Terminal Voltage = 3.3V
ILEAK
−
*1 All Logic output terminal are N-CH Open Drain output.
Output Voltage
Output Leakage Current
−
OSC(Refer to the application Circuit P.49)(Ta=0∼70℃)
Parameter
Oscillation Frequency
Circuit
Symbol
7
tCLK
7
Input Current
IINOSC
7
TYP.
MAX
UNIT
75
75
80
80
85
85
μs
μs
VCC3M=0V,VCC5M=5.25V
CLKIN=2.7V
−
100
250
nA
VCC3M=3.13V,VCC5M=0V
CLKIN=1.6V
−
100
250
nA
Condition
7
ΔROHCLK
Load =100uA−0uA
VCC3M=3.13V , VCC5M=0V
−
−
1.4
KΩ
7
ROLCLK
Load =−100uA
VCC3M=3.13V , VCC5M=0V
−
−
1.0
KΩ
−
V CLK
2.75
−
5.25
V
MIN.
TYP.
MAX
UNIT
−
0.5
60
2.2
1.0
100
3.0
V
V
Output Impedance
Operating Voltage
MIN.
VCC3M=0V , VCC5M=5.25V
VCC3M=3.13V , VCC5M=0V
−
POR (Ta=0∼70℃)
Parameter
Circuit
Detection Voltage of 3SW
6
Input Pull-Up Resistor
6
Symbol
V PORH
V PORL
RPOR
Condition
3SW=3.3V , at rising edge
3SW=3.3V , at falling edge
−
−
140
KΩ
Over Load Monitoring (Ta=0∼70℃)
Parameter
Circuit
Symbol
MIN.
TYP.
MAX
UNIT
−
V 5X08
V 3X08
VCC5M−0.9
VCC5M−0.8
VCC5M−0.7
V
VCC3M−0.9
VCC3M−0.8
VCC3M−0.7
V
V VBL08
V RD308
V RD408
V RD308
V RD408
VREGIN16−1.68
VREGIN16−1.5
VREGIN16−1.32
V
VCCRD3M=VCCRD4M=5V
4.05
4.15
4.25
V
VCCRD3M=VCCRD4M=1.50V
1.20
1.25
1.30
V
−
5.0
−
ms
−
−
Detection Voltage
−
−
No Detection Time
−
tfil
Condition
Internal Logic Filter
Comp. →.LOGIC Input
14-Jan-03 (Rev.2.0)TB62501F (Page. 10)
TOSHIBA
TB62501F
Charge Pump (Ta=0∼70℃)
Parameter
Circuit
Symbol
5
5
5
5
V OHCP1
V OLCP1
V OHCP2
V OLCP2
Output Voltage
Condition
VCC3M=3.3V , IOH=−1mA
VCC3M=3.3V ,IOL= 1mA
VCC5M=5.0V, IOH=−1mA
VCC5M=5.0V,IOL= 1mA
MIN.
TYP.
MAX
UNIT
3.1
3.2
0.1
4.9
0.1
−
0.15
V
V
V
V
−
4.8
−
−
0.15
* Charge pump operation is performed only when both VCCM and VCC5M are supplied at the same time.
Line Voltage Monitoring(PGS) (Ta=0∼70℃)
Parameter
MAX
UNIT
4.311
2.793
4.461
4.649
3.034
4.749
V
V
V
VCC3M Line
VHYS = VREC- VTP
(VCC5M, VCC3M line)
2.752
2.943
3.134
V
100
150
200
mV
tMPGS
45
50
55
ms
−
tAPGS
300
350
400
ms
−
tBPGS
400
450
500
ms
−
tAB
80
100
120
ms
MIN.
TYP.
MAX
UNIT
V
V TP5×
V TP3×
V REC5×
V REC3×
−
V HYS1
M_PGS
−
A_PGS
B_PGS
Recovery Voltage
Hyateresis Voltage
TYP.
3.974
2.552
4.174
Symbol
−
−
−
−
Detection Voltage
High Level
Propagation
delay Time
MIN.
VCC5M Line
VCC3M Line
VCC5M Line
Circuit
A_PGS → B_PGS Delay
Time
Condition
Regulator (Ta=0∼70℃)
Circuit
Symbol
Input Voltage range
Parameter
−
Output Voltage
8
V IN
V OUT
Condition
Output Current
8
Low Voltage Detection
8
IOUT
V OUTOFF
Load regulation
−
ΔV OUT1
Line Regulation
−
ΔV OUT2
5.5
VREGIN16=5.5∼17V , IOUT=0mA
3.15
17
3.3
3.48
V
−
−
mA
3.0
3.1
V
VREGIN16=5.5∼17V
40
VREGIN16=5.5∼17V
VREGIN16=5.5∼17V
IOUT=50μA∼20mA
5.5V < VREGIN16 < 17V
IOUT=20mA
2.9
−
15
−
15
50
mV
MIN.
TYP.
MAX
UNIT
50
mV
Low Battery Protection (Monitoring) (Ta=0∼70℃)
Parameter
Circuit
Symbol
Input Voltage Range
Input Current
Trip Voltage Set Up Range
Recovery Voltage Set Up
Range
Trip Voltage Accuracy
Recovery Voltage Accuracy
Hysteresis Voltage
Trip Voltage Temperature
Regulation
−
9
−
V IN
IINBT
V TPR
−
V RECR
9
9
−
−
V TPBT
V RECBT
V HYSBT
ΔV TPBT
ΔTa
Condition
0
VREGIN16=17V
0∼70℃
0∼70℃
VREC - VTP
17
V
−
6.0
−0.05
−0.1
μA
9.0
12.0
V
7.0
10.5
14.0
V
2.425
2.5
2.625
V
2.55
2.9
3.25
V
0.25
0.4
0.55
V
−
0.99
−
mV/ ℃
MIN.
TYP.
MAX
UNIT
−4.5
0.4
−8
0.5
−13.5
0.6
μA
V
* AC Characteristics (Rise Time etc.) : Refer to P.21
Thermal Valuable Resistance Detection (Ta=0∼70℃)
Parameter
Input Voltage
Detection Voltage
Circuit
Symbol
−
10
IERIN
V TPER
Condition
3SW=3.3V
14-Jan-03 (Rev.2.0)TB62501F (Page. 11)
TOSHIBA
TB62501F
Explanation of Operation
RAMP DRIVER1 ,RAMP DRIVER2 ,NDRV
This IC integrates 3 circuits of RAMP DRIVER 1. (5B,3A,3B)
This IC integrates 1 circuit of RAMP DRIVER 2. (3P)
This IC integrates 1 circuit of RAMP DRIVER 3. (VBL16)
This IC integrates 2 circuits of NDRV 1. (RD1,RD2)
This IC integrates 4 circuits of NDRV 2. (S1,M1,DCIN,BAT )
This IC integrates 2 circuits of NDRV 3. (RD3,RD4)
The differences are described in the following table.
[Table 1]
Charge Volt.
Charge
VOH
Current
IOH
Discharge
Current
IOL
PGS
Detection
Circuit
RAMP DRIVER1
14V
350μA
150mA
Yes
Over
Load
Detection
Circuit
Yes
RAMP DRIVER2
14V
350μA
150mA
No
Yes
RAMP DRIVER3
23V
350μA
150mA
No
Yes
NDRV1
14V
350μA
150mA
No
No
NDRV2
23V
50μA
1mA
No
No
NDRV3
14V
350μA
150mA
No
Yes
IOH current is depending on resistance value (RFIX). The typical current values are used in this table
VDD15 = 15V ,VCPIN24 = 24V
Block Diagram
RAMP DRIVER1
FIX_R
VDD15
VCC5M
RFIX
56KΩ
IREF
××_DRV
BPGS
C××
APGS
−SHDN
LOGIC
Over Load
COMP.
VCC××
××
××_ON
PGS
COMP.
××・・・5B,3A,3B
14-Jan-03 (Rev.2.0)TB62501F (Page. 12)
TOSHIBA
TB62501F
RAMP DRIVER2
VCC3M
VDD15
FIX_R
IREF
RFIX
3P_DRV
56KΩ
−SHDN
3P_ON
C3P
LOGIC
Over Load
VCC3P
COMP.
3P
RAMP DRIVER3
VINT16
FIX_R
VCPIN24
IREF
RFIX
VBL16_DRV
56KΩ
−SHDN
VBL16_ON
CVBL
LOGIC
Over Load
VBL16
COMP.
VBL16
NDRV1
VDD15
FIX_R
RD1_DRV
RD2_DRV
IREF
RFIX
56KΩ
C5RD1
LOGIC
C5RD2
RD1_ON
RD2_ON
NDRV2
FIX_R
VCPIN24
IREF
RFIX
××_DRV
56KΩ
LOGIC
××_ON
−EXTPWR
DISCHARGE
M1GATEON
S1GATEON
××_DRV
DCIN_DRV
BAT_DRV
C DCIN
C BAT
M1_DRV
S1_DRV
C M1
C S1
C ××
C××
××_ON
Input Status of “−EXTPWR" and "DISCHARGE" Terminal
DISCHARGE
DCIN_DRV
−EXTPWR
BAT_DRV
14-Jan-03 (Rev.2.0)TB62501F (Page. 13)
TOSHIBA
TB62501F
NDRV3
VCCRD3M
VCCRD4M
FIX_R
VDD15
RD3_DRV
RD4_DRV
IREF
RFIX
56KΩ
CRD3
−SHDN
CRD4
RD3_ON
RD4_ON
LOGIC
Over Load
RD3
RD4
COMP.
RD3
RD4
The following are explained for VCC5B of VCC5M line as the representative.
The RAMP Operation Block are composed with Reference Current Source, Constant Current Driver and Control Logic.
(Refer to the above Figure)
The DRV terminal are controlled by Logic input signal “5B_ON” under normally supplying the Logic Power Supply
generated by VREGIN16 (3SW), Internal reference voltage source (VREF) and main power supply of 5V line (VCC5M)
The charge pump circuit can be operated when “5B_ON” terminal becomes “H" , C5B is charged up by the constant
Current IOH set by the external resistor ( RFIX). DRV terminal is raised up to the similar voltage level of VDD15.
(≒VDD15-VBE)
In this case, VCC5B is out in line with the gate voltage of external N-Ch MOS FET (V5BDRV).
(Refer to [RAMP Operation Waveform]と[Charge current and Operation])
The charge current value obtained by the following equation.
IOH = 17.5*2.5V(VREFIN)/RFIX
VREFIN : Internal Reference Voltage, RFIX : Current Set Up resistance
[RAMP Operation Waveform]
[Charge Current and Operation]
−RESET
5M_ON
50ms
VCC5M
5MPGS
Charge Current
I OH
3SW
5B_ON
0
High Impedance
5B_DRV
0
DRV Terminal Voltage
VO H
VDD15
VCC5B
Next, in the transition from H to L of 5B_ON terminal, Charge circuit block become into disable and MOSFET for
Discharge turns ON, discharge of C5B capacitor is started by discharge current IOL1 and IOL2.
(Refer to [RAMP Operation Waveform] and [Discharge current and Operation])
14-Jan-03 (Rev.2.0)TB62501F (Page. 14)
TOSHIBA
TB62501F
Discharge Current
[Discharge current and Operation]
Discharge operation is represented by the characteristics of MOSFET. Drive
Current Capability is greater than 100mA, when DRV terminal Voltage is
1V.
In case of driving bigger load capacitance than specified in maximum
rating, the insert of the series resistance is recommended in order to
avoid the damage of the device.
I OL
0
0
VDD15
1V
DRV Terminal Voltage
5B_ON
5B_DRV
VDD15
VOH5B
I OH
t
C 5B
VCC5M
100mA(At 1V)
t
DRV Operation Waveform
PDRV
PDRV Equivalent Circuit
The circuit of PDRV is Open Drain Structure.
This driver drives the external P-Ch MOSFET by switching
internal MOSFET controlled by the logic input signal.
No protection diode is connected toward power supply from
output. Therefore maximum voltage is up to 30V.
M2GATEON
S2GATEON
M2_DRV
S2_DRV
14-Jan-03 (Rev.2.0)TB62501F (Page. 15)
TOSHIBA
TB62501F
OSC
OSC Equivalent Circuit
VCC5M
VCC3M
CLKIN
CLKIN
RS
Latch
C CLK
R CLK
CLKOUT
CLKOUT
Oscillation
VCC5M
VCC5M−V BE
(E)
Vth+
Vth−
T ≒1.1×C CLK×R CLK
t
Time (t)
Oscillation circuit is equivalently composed with Inverting
comparator with Hysteresis circuit and the external parts
(Capacitor and Resistor). Oscillation is started either under the
state of supplying VCC5M or VCC3M.
The threshold Voltage (Vth) of comparator is defined by the internal
voltage and each threshold voltage is obtained by the following
formula.
Vth+≒{(VCC5M or VCC3M)−VBE}*(3/4)
Vth−≒{(VCC5M or VCC3M)−VBE}*(2/4)
(refer to equivalent Circuit)
Also the Period T is pbtained by the following formula as well.
T(us) ≒ C(uF) x R(Ω) x Ln3
=1.1 x CCLK x (RCLK+500)
Power Supply Voltage vs Period
CCLK=1040pF, R CLK=68KΩ
Period (us)
81
80
79
78
77
Figure 4-18 Characteristics Graph
2.5
3.5
4.5
5.5
Power Supply Voltage(VCC3M or VCC5M)
(V)
Period T is not easily affected by the fluctuation of power supply, however the period T is slightly increased
because the output impedance of oscillation circuit is increased when the voltage is dropped. (Refer to the
Characteristics Graph)
The propagation delay time and so on is specified based on 12.8kHz (T = 78.125us), if not specified.
14-Jan-03 (Rev.2.0)TB62501F (Page. 16)
TOSHIBA
TB62501F
Charge Pump Operation
Equivalent Circuit for Charge Pump
VINT16
OSC
3MPGS
5MPGS
3M_ON
DCP1
CPOUT1 C CP1
LOGIC
DCP2
5M_ON
VCPIN24
DCP3
CPOUT2 C CP2
CCP3
The drive terminals for Charge Pump (CPOUT1 and CPOUT2) generate the pulse of fosc/2 with duty ratio 1/2, when
both VCC3M and VCC5M are supplied.
In this case, the maximum energy QMAX (IMAX) in a unit time is obtained by the following equation.
Qmax(=Imax)=(VCC3M+VCC5M−Vf( DCP1) − Vf(DCP2))×CCP1×fosc/2
In case of maximum load current is ILMAX, capacitance value is recommended more than ten times.
CCP3≫2・ILmax/((VCC3M+VCC5M−Vf(DCP1)−Vf(DCP2))×fosc)
However, with consideration of power consumption such as load short (Pd≒(fosc/2)×CCP1×(VCC3M) 2) or current
imitation of internal aluminum line of die,
CCP1≦0.47μF
This is recommended, and as well
CCP2≦0.47μF
Also recommended.
If bigger capacitance is as CCP3, ripple voltage is reduced, however the time that VCPIN24 is stabilized is increased, as
the result it may affect to system boot up characteristics. Therefore it should be considered to adjust each system by
system. Also operating consumption current same level of IL flows from VCC5M and VINT16 through CCP1 and
CCP2,this should be considered when consumption current for the system is examined.
VINT16
Charge Pump Operation
VCC3M
CPOUT1
①
DCP1
CPOUT1
CCP1
VCC5M
④
CPOUT2
DCP2
③
DCP3
VCPIN24
CCP2
① ②
③ ④
CPOUT2
The voltage of VCPIN24is generated by the repeat operation of ① to ④.
① --- Charge up operation to CCP1 from VINT16
③,④ --- Charge up CCP2 from CCP1
② --- Voltage out to VCCPIN24 from CCP2 after charged up
The voltage of VCPIN24 is obtained by the following equation.
VOH =VINT16 +VOHCP1+VOHCP2−(DCP1 +DCP2+DCP3)
Due to limitation of charging energy of one cycle, the rising time for VCPIN24 to reach to the
specified voltage is about 3ms (Typ.) at the standard condition.
This value varies depending on the current consuming at VCPIN24.
②
V OH
3ms
Charge Pump Rise Up Time
14-Jan-03 (Rev 2.0)TB62501F (Page. 17)
TOSHIBA
TB62501F
POR
V
−RESET" Terminal Voltage
3SW
Equivalent Circuit for Power ON Reset
Vth+
Vth−
−RESET
100kΩ
D1
3SW
−RESET
t
0
Reset Time
Reset Operation at 3SW Supplied
CPOR
V
Power ON reset Circuit is composed Internal Pull-up Resistor
(100k Ohm) Internal Diode (D1) and Buffers with Hysteresis
input. Then the capacitor CPOR is connected to –RESET
terminal as described in equivalent circuit.
The signal of 3SW is generated by supplying VREGIN16. At
that time, POR circuit operates as described in the figure.
When 3SW is momentarily disconnected, “-RESET” Terminal
starts to discharge through the internal diode. However it is
difficult to completely discharge all energy charged in CMOS
logic, therefore holding this state, 3SW is rising up.
When the voltage level of “-RESET” terminal is in the range
between Vth+ and Vth- , RESET operation is observed. The
status of each output are described in the following table.
3SW
"−RESET" Terminal Voltage
Vth+
Vth−
t
0
Reset Period
Reset Operation at 3SW Open momentarily
OFF
−SHDN,
"L" Output
Each PGS Output (5 Circuit)
Operation
with
regardless RESET
CLKOUT , Pch FET DRIVER(2 Circuit)
Each DRV Output(13 Circuit), CPOUT1, CPOUT2
Note) Internal Logic is stopped in the state of RESET.
However when VCC5M and VCC3M are both
supplied,
Reference current source is in the state of operation.
14-Jan-03 (Rev 2.0)TB62501F (Page. 18)
TOSHIBA
TB62501F
Regulator, Battery Monitor, Thermostat Resistor Detection
Block Diagram
Latch “OFF” state if abnormal stage
Over Current
VREGIN16
Detection
RBAT1
ON/OFF
Battery Monitor
Reg.
3SW
Low Voltage
RBAT2
Latch “OFF” state if abnormal stage
Detection
10K
Thermostat Resistor
3SW
Detection
−SHDN
SHDN
for RAMP DRV
Signal
SHDN
Hold Circuit
Over Load Detection
Filter
Function Table
VREGIN16
Voltage
Condition
Battery Monitor
Lower than 6V
Output "L"
Normal Operation
6∼17V
Stage
System Error Stage
6∼17V
Regulator Voltage
6∼17V
Drop Stage
* Set at 6V
1) Normal Operation Stage
Battery Monitor
Output
Regulator Output
Shut Down Signal
"L"
0V
"L"
"H"
3SW
"H"
"H"
3SW
"L"
"H"
0V
High Impedance
2) System Error Stage
3) Battery Voltage Drop Stage
9V
VREGIN16
3SW
Constant Value of the external Pull-Up resistor
High Impedance
−SHDN
* Latch Low Level at 3SW
* Control Output terminal
by using –SHDN terminal
14-Jan-03 (Rev 2.0)TB62501F (Page. 19)
TOSHIBA
TB62501F
Battery Monitor
Recovery Voltage
VREGIN16
VREGIN16
Detected Voltage
R BAT1
BAT_VOLT
Output
Battery Monitor
2.9V±8%
BAT_VOLT
Into IC
2.5V±5%
R BAT2
Output
The Voltage of BAT_VOLT is monitored, detected signal is generated at recovery Voltage 2.9V+/- 8% and detection Voltage
2.5V +5%/-3%.
The setting voltage of BAT_VOLT is constant. Therefore detection voltage is changed in the range from 6V(-5%) to
12V(+5%)by adjusting resistor value of RBAT1 and RBAT2. In this case, recovery voltage = detection voltage x 7/6.
In order to avoid malfunction caused by the fluctuation of VREGIN16, hysteresis voltage (= recovery voltage - detection
voltage) should be greater than 0.7V(Min.)
Note) 1. It may cause malfunction if VREGIN16 is changed by the ratio greater than 12.5us/V this circuit operates at
low power consumption.
2. The voltage level of BAT_VOLT is delayed compare to theoretical value due to the affection of the value of
RBAT1, board capacitance, parasitic capacitance of the circuit and so on.
Also Circuit delay is existed. (Approximately 150us)
Therefore the voltage level of the output is larger than the voltage level of VREGIN16 as the following figure.
This is remarkably observed if the fluctuation of VREGIN16 is larger.
3. The current of about 0.1uA is sourced from BAT_VOLT. Therefore it may cause voltage shift from the set
voltage with RBAT1 and RBAT 2.
(Detection Voltage = 6V)
(Recovery Voltage = 7V)
VREGIN16 Voltage at detected
VREGIN16
VREGIN16
7V
6V
VREGIN16 Voltage at detected
Theoretical State
2.5V
2.9V
BAT_VOLT
BAT_VOLT
Circuit Delay
(Approximately 150us)
Actual Voltage transition of BAT_VOLT
The reaching point
is delayed compare
to theoretical point
due to capacitance
or resistance.
Circuit Delay
(Approximately 150us)
The reaching point
is delayed compare
to theoretical point
due to capacitance
or resistance.
Theoretical State
14-Jan-03 (Rev 2.0)TB62501F (Page. 20)
TOSHIBA
TB62501F
AC Characteristics
* AC Characteristics may be affected by the ambient temperature, input voltage and so on.
【Operation at power up stage】
The set up time as following is required for battery monitoring circuit to operate normally.
<Set Up Time>
BAT_VOLT Rising Time : Greater than 30us
BAT_VOLT Recovery voltage detection time : Greater than 60us
When constant value is determined, enough margin should be considered against above mentioned value.
VREGIN16(14V)
BAT_VOLT
3SW
5.5V
2.9V
A
B
A:Rising Time
B:Recovery Voltage detection time
Accuracy of detection voltage
Accuracy of Recovery Voltage
3.1V
Voltage (V)
Voltage (V)
2.625V
2.5V
2.375V
2.9V
2. 7V
0
25
70
Temperature (℃)
0
25
70
Temperature (℃)
14-Jan-03 (Rev 2.0)TB62501F (Page. 21)
TOSHIBA
TB62501F
Regulator
Block Diagram
Latch “OFF” state if abnormal stage
Over Current
Protection
−RESET
VREGIN16
Battery Monitor
ON/OFF
Reg.
3SW
Voltage Drop
Detection
Latch “OFF” state if abnormal stage
Operation Chart
Battery Monitor output
3SWOutput Voltage
Recovery Voltage
Voltage Drop
Detection Point
3SWOutput Current
Over Load State
Shortage
Battery Monitor OFF
The regulator starts operation based on “ON” signal of Battery monitoring circuit.
At the state of power up, voltage drop detection is not work, so during this period even shortage is not detected.
This period ( No detection time) is determined by the external capacitor and the internal resistor. (Refer to the following figure)
It is approximately 200us (Typ.).
Power Up stage
Detection Error Stage
Set Value
Set Value
VREGIN16
VREGIN16
The operation of 3SW
is stopped, if the
voltage of 3SW is not
reach to the specified
level after releasing no
detection period.
Voltage Drop Detection
Voltage Drop Detection
3SW 出力
3SW 出力
Delay Circuit
Delay Circuit
No Detection Period
No Detection period
14-Jan-03 (Rev 2.0)TB62501F (Page. 22)
TOSHIBA
TB62501F
Over Load Stage
In case the current of 3SW Output is big, it is possible to excess package power
dissipation. The package power dissipation is 0.7W maximum, total power dissipation
should be lower than this value. Therefore the maximum current should be in the range
obtained from the following equation.
0.7(W)
Output Current(A)=
(VREGIN16−VOUT)(V)
This device integrates over current protection circuit to protect excess of power
dissipation due to abnormal current flow.(MIN 40mA)
Regulator is stopped when over current flows excess the threshold voltage of over
current detection circuit (55ma typ.) during certain period. (500us typ.)
If regulator is stopped, the device should be initialized either by turning VREGIN16 to
0V or RESET terminal to 0V.
Recovery from abnormal stage
Abnormal Stage
3SW Stopped
Within Setting Time
3SW Output Voltage
3SW Output Voltage
Over current detection Value
(55mA)
Voltage
Drop
Detection Point
Longer than setting time
3SW Output Current
Over Current Detection
(40mA)
3SW Output Current
Voltage Drop Stage
In case output level is dropped to specified voltage (3.0V Typ.) from normal output level
the voltage drop detection circuit is worked immediately, then 3SW output is stopped.
When regulator output is OFF state, the device should be initialized either by turning
VREGIN16 to 0V or RESET terminal to 0V.
Function Table (Error Detected)
Over Current Detected
Voltage Drop Detected
Setting
Value
Setting Time
Function
40∼70mA
2.9∼3.1V
0.03∼1ms
Momentarily
Latch “OFF” State of Regulator Output
Latch “OFF” State of Regulator Output
14-Jan-03 (Rev 2.0)TB62501F (Page. 23)
TOSHIBA
TB62501F
AC Characteristics
Input Voltage transition response (Overshoot, Undershoot, Response Time)
This characteristic is depending on ambient Temperature, load capacitance, output current and so on.
100 us
100 us
17V
VREGIN16 Voltage
6V
Overshoot
3SW Output Voltage
Undershoot
Response
Time
Parameter
Response
Time
Condition
Output Load Current
10mA∼40mA
Change of VREGIN16
6∼17V
Load Capacitance
0.1∼10μF
Temperature
0∼70℃
Reduce Overshoot
Reduce Undershoot
Speed up of Response Time
Reduce current
Reduce Fluctuation
Reduce current
Reduce Fluctuation
Reduce Fluctuation
Increase Load
Increase Load
Reduce Load
Lower Temp.
Lower Temp.
Lower Temp.
Increase current
* The values are indicated as the reference except condition.
条件:IOUT=10mA
VIN=6⇔17V
Ta=35℃
VREGIN16変動
VREGIN16 vs Output
Capacitance
出力容量依存性
100
リンギング電圧量(mV)
リンギング電圧量(mV)
120
100
Ringing Voltage (mV)
Ringing Voltage (mV)
120
80
60
40
Overshoot
オーバーシュート
20
80
60
40
オーバーシュート
Overshoot
20
アンダーシュート
Undershoot
アンダーシュート
Undershoot
0
0
0
1
2
3
4
5
6
7
8
9
0
10
1
2
3
4
5
6
7
8
9
10
Output Capacitance出力容量(μF)
( uF)
Output Capacitance
( uF)
出力容量(μF)
条件:CL=1μF
VIN=6⇔17V
Ta=35℃
VREGIN16変動
VREGIN16 vs Output
Current
出力電流依存性
条件:CL=10μF
VIN=6⇔17V
Ta=35℃
VREGIN16変動
VREGIN16 vs Output
Current
出力電流依存性
120
120
Ringing Voltage (mV)
100
リンギング電圧量(mV)
Ringing Voltage (mV)
リンギング電圧量(mV)
条件:IOUT=40mA
VIN=6⇔17V
Ta=35℃
VREGIN16変動
VREGIN16 vs Output
Capacitance
出力容量依存性
80
60
40
オーバーシュート
Overshoot
20
100
80
60
40
オーバーシュート
Overshoot
20
アンダーシュート
アンダーシュート
Undershoot
Undershoot
0
0
5
10
15
20
25
30
Output Current出力電流(mA)
( mA)
35
40
45
5
10
15
20
25
30
35
40
45
出力電流(mA)
Output
Current ( mA)
14-Jan-03 (Rev 2.0)TB62501F (Page. 24)
TOSHIBA
条件:IOUT=10mA
CL=1μF
VIN=6⇔17V
VREGIN16変動
VREGIN16 vs Temperature
温度依存性
120
120
100
100
リンギング電圧量(mV)
オーバーシュート
Overshoot
アンダーシュート
Undershoot
80
条件:IOUT=10mA
条件:IOUT=40mA
CL=1μF
VIN=6⇔17V
VREGIN16変動
VREGIN16 vs Temperature
温度依存性
Ringing Voltage (mV)
Ringing Voltage (mV)
リンギング電圧量(mV)
TB62501F
60
40
オーバーシュート
Overshoot
アンダーシュート
Undershoot
オーバーシュート
Overshoot
80
60
40
20
20
0
0
-10
0
10
20
30
40
50
60
70
80
-10
0
10
20
30
40
50
60
70
80
Temperature
出力電流(mA)
(Degree C)
出力電流(mA)
Temperature
(Degree C)
Response Characteristics vs Load (Overshoot, Undershoot, Response Time)
This characteristic is depending on ambient Temperature, load capacitance, output current and so on.
1 us
1 us
3SW Output Current
Overshoot
3SW Output Voltage
Undershoot
Response
Time
Parameter
Response
Time
Condition
Fluctuation of Output Current
10mA∼40mA
VREGIN16
6∼17V
Load Capacitance
0.1∼10μF
Temperature
0∼70℃
Reduce Overshoot
Reduce Undershoot
Speed up of Response Time
Reduce Current
Lower Voltage
Reduce Current
Lower Voltage
Reduce Current
Increase Load
Increase Load
Reduce Load
Lower Temp.
Lower Temp.
Lower Temp.
Lower Voltage
* The values are indicated as the reference except condition.
条件:VIN=6V
3SW負荷電流変動(0⇔40mA)
出力容量依存性
3SW負荷電流変動(0⇔10mA) Ta=35℃
出力容量依存性
3SW Load Current (0 ó 40mA) vs Output Load C
3SW Load Current (0 ó 10mA) vs Output Load C
120
120
リンギング電圧量(mV)
リンギング電圧量(mV)
Ringing Voltage (mV)
Ringing Voltage (mV)
100
80
60
40
オーバーシュート
Overshoot
20
条件:VIN=6V
Ta=35℃
100
80
60
40
オーバーシュート
Overshoot
20
アンダーシュート
Undershoot
アンダーシュート
Undershoot
0
0
0
1
2
3
4
5
出力容量(μF)
Load Capacitance
( uF)
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
Load
出力容量(μF)
Capacitance ( uF)
14-Jan-03 (Rev 2.0)TB62501F (Page. 25)
TOSHIBA
TB62501F
条件:IOUT=50μA⇔10mA
3SW負荷電流変動(0⇔10mA) VIN=17V
Ta=35℃
出力容量依存性
3SW負荷電流変動(0⇔40mA)
出力容量依存性
3SW Load Current (0 ó 10mA) vs Output Load C
3SW Load Current (0 ó 40mA) vs Output Load C
120
Ringing Voltage (mV)
リンギング電圧量(mV)
Ringing Voltage (mV)
リンギング電圧量(mV)
120
100
80
60
40
オーバーシュート
Overshoot
20
100
80
60
40
オーバーシュート
Overshoot
20
アンダーシュート
Undershoot
アンダーシュート
Undershoot
0
0
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
出力容量(μF)
Output Load
Capacitance ( uF)
3SW負荷電流変動(0⇔10mA)
VREGIN16電圧依存性
3SW Load Current (0 ó 10mA) vs VREGIN16
5
6
7
8
9
10
3SW負荷電流変動(0⇔40mA)
条件:CL=1μF
Ta=35℃
3SW Load Current (0VREGIN16電圧依存性
ó 40mA) vs VREGIN16
120
120
Ringing Voltage (mV)
100
リンギング電圧量(mV)
Ringing Voltage (mV)
リンギング電圧量(mV)
条件:CL=1μF
Ta=35℃
オーバーシュート
Overshoot
80
アンダーシュート
Undershoot
60
40
0
100
80
60
40
オーバーシュート
Overshoot
アンダーシュート
20
0
5
7
9
11
13
15
17
19
5
7
9
VRGIN16VREGIN16電圧(V)
Voltage (V)
11
13
15
17
19
VREGIN16電圧(V)
VREGIN16
Voltage (V)
3SW負荷電流変動(0⇔10mA)
条件:CL=10μF
Ta=35℃
3SW負荷電流変動(0⇔40mA)
VREGIN16電圧依存性
3SW Load Current (0 ó 40mA) vs VREGIN16
3SW Load Current (0VREGIN16電圧依存性
ó 10mA) vs VREGIN16
条件:CL=10μF
Ta=35℃
120
120
80
60
Overshoot
オーバーシュート
Undershoot
アンダーシュート
40
20
リンギング電圧量(mV)
100
Ringing Voltage (mV)
Ringing Voltage (mV)
リンギング電圧量(mV)
4
Output Load
出力容量(μF)
Capacitance ( uF)
20
100
80
60
40
オーバーシュート
Overshoot
20
アンダーシュート
Undershoot
0
0
5
7
9
11
13
15
17
5
19
7
9
11
13
15
17
19
VRGIN16VREGIN16電圧(V)
Voltage (V)
VREGIN16電圧(V)
VRGIN16
Voltage (V)
3SW負荷電流変動(0⇔10mA)
温度依存性
3SW Load Current (0 ó 10mA) vs Temperature
条件:CL=1μF
Vin=6V
3SW負荷電流変動(0⇔40mA)
3SW Load Current (0 ó 40mA)
vs Temperature
温度依存性
Ringing Voltage (mV)
120
100
リンギング電圧量(mV)
Ringing Voltage (mV)
リンギング電圧量(mV)
条件:IOUT=50μA⇔40mA
VIN=17V
Ta=35℃
80
オーバーシュート
Overshoot
60
アンダーシュート
Undershoot
40
20
条件:CL=1μF
Vin=17V
120
100
80
オーバーシュート
Overshoot
60
アンダーシュート
Undershoot
40
20
0
0
-10
0
10
20
30
40
温度(℃)
Temperature
(Degree
50
C)
60
70
80
-10
0
10
20
30
40
50
60
70
80
温度(℃) (Degree C)
Temperature
14-Jan-03 (Rev 2.0)TB62501F (Page. 26)
TOSHIBA
TB62501F
・Accuracy of Output Voltage
This characteristic is depending on ambient Temperature, load capacitance, output current and so on.
(Note) Refer to the typical Value described below about
other elements except condition.
:25℃
:9V
:10mA
3SW Output Voltage
(V)
3SW Output Voltage
Output Voltage vs Load Current
3.35
3.34
3.33
3.32
3.31
3.3
3.29
3.28
3.27
3.26
3.25
0
10
20
30
Load Current (mA)
40
50
3SW Output Voltage
Output Voltage vs Temperature
3SW Output Voltage
(
V)
Load Current = 0mA
3.35
3.34
3.33
3.32
3.31
3.3
3.29
3.28
3.27
3.26
3.25
0
20
40
Temperature (Degree C)
60
3SW Output Voltage
Output Voltage vs VREGIN16 (
V)
Load Current=0mA
3SW Output Voltage
(
V)
Temperature
VREGIN16
Load Current
3.35
3.34
3.33
3.32
3.31
3.3
3.29
3.28
3.27
3.26
3.25
6
8
10
12
VREGIN16 (
V)
14
16
14-Jan-03 (Rev 2.0)TB62501F (Page. 27)
TOSHIBA
TB62501F
Thermostat Resistance Detection
The voltage of TH_DET terminal is determined by the terminal current and external thermostat resistor assembled in the board
sensing the temperature, then when the voltage of this terminal become greater than specified voltage, the shutdown signal is
generated immediately and hold shut down state.
The operating range of this device is specified from 0 to 70 degree C, therefore design of system board should be considered this
temperature range when examined heat dissipation.
3SW
TH_DET
Detection
Circuit
−SHDN
SHUTDOWN
Latch
Terminal Output Current(Dotted line shows sample dependence)
TH_DET Output Current
Output Current vs Temperature
12
Output Current (uA)
11
電流(μA)
12μA
8μA
10
0
70
温度(℃)
9
8
7
6
5
0
10
20
30
40
50
60
70
Temperature (℃)
14-Jan-03 (Rev 2.0)TB62501F (Page. 28)
RAMP(3P)
RAMP(VBL16)
RAMP(RD3)
RAMP(RD4)
3P_ON
RD3_ON
RD4_ON
RD4
RD3
VBL16
3P
3B
3A
5B
VCC3M
VCC5M
VBL16_ON
RAMP(3B)
×M-0.8V
+
−
Over
Load
comp.
Vref(n)
+
−
PGS
comp.
3B_ON
5B
3B
3A
RAMP(3A)
20ms
20ms
20ms
20ms
20ms
100ms
450ms
350ms
Vref(n)
+
−
3A_ON
5ms
3B_ON
5B_ON
3M
5M
RAMP(5B)
SHDN
Hold Circuit
20ms
20ms
50ms
3M_ON
3A_ON
50ms
5M_ON
Filter
5B_ON
3M_ON
5M_ON
TH_DET
−SHDN
B_PGS
A_PGS
M_PGS
PGS
comp.
TOSHIBA
TB62501F
Logic Circuit
To Analog Circuit
14-Jan-03 (Rev 2.0)TB62501F (Page. 29)
TOSHIBA
TB62501F
Line Voltage Monitoring Operation (PGS Circuit)
The voltages of M Power Lines (VCC5M and VCC3M), A Power Line (VCC3A) and B Power Lines (VCC5B
and VCC3B) are monitored with high accuracy.
Monitoring results are supplied to PGS output terminal corresponding to each power lines that are composed
with open drain output structure.
50ms
5M
50ms
3M
Filter
PGS Equivalent Circuit
PGS
comp.
VCC5M
VCC3M
VCC5M
VCC3M
+
−
VCC5M
VCC3M
5M_ON
Vref(n)
Pass if greater
than 1 ms
M_PGS
3M_ON
RAMP
Circuit
A_PGS
3A_ON
3A
3A
5B
100ms
3B
Filter
350ms
5B
XX_DRV
PGS
comp.
+
−
3B
3A
XX
5B
3B
Note)
Delay time in the Figures
are approximate values
(Refer to the following
Explanation)
450ms
B_PGS
3B_ON
5B_ON
Note)
The tolerance of time is depending on fOSC.
In this explanation, it is explained based on the recommended
frequency of 12.8kHz.
Vref(n)
Reference Voltage table for PGS Comp. (Vref(n))
Item
Detected
Voltage
Recovery
Voltage
Symbol
Min.
Typ.
Max.
Unit
5M
V TP5×
3.974
4.311
4.649
V
3M
V TP3×
2.552
2.793
3.034
V
5M
V REC5×
4.174
4.461
4.749
V
3M
V REC3×
2.752
2.943
3.134
V
14-Jan-03 (Rev 2.0)TB62501F (Page. 30)
TOSHIBA
TB62501F
M_PGS Block
In the block of M_PGS, the voltage of VCC5M and VCC3M are monitored by the internal analog comparator respectively, each state
is supplied to M_PGS output. The terminal is Open drain structure.
The operation of detection is started when both 5M_ON and 3M_ON are equal to High. The analog Comparator has hysteresis
voltage and generate high signal when the following condition are satisfied.
Greater than 4.461V(Typ.) at power on stage of "VCC5M"(Rising Edge)and lower than 4.311V (Typ.) at the shut down stage
(Falling edge) after 47.5ms +/- 2.5ms
Greater than 2.943V(Typ.) at power on stage of "VCC3M"(Rising Edge)and lower than 2.793V (Typ.) at the shut down stage
(Falling edge) after 47.5ms +/- 2.5ms
"L" output is
"VCC5M"=4.311V(Typ.),"VCC3M"=2.793V(Typ.)
If to meet any condition in the above three conditions, this operation is performed momentarily.
The Hysteresis Voltage are set 150mV +/- 50mV both for 5M and 3M.
2.793±0.241V
/4.311± 0.338V
3M_ON
5M_ON
2.943±0.191V
/4.461±0.288V
VCC5M
/VCC3M
150mV ±50mV
VCC3M
/VCC5M
M_PGS
47.5±5ms
47.5±5ms
Truth Table
5M_ON
3M_ON
VCC5M
VCC3M
L
L
L
L
VCC5B<Detection Voltage
H
M_PGS
H
VCC3B>Recovery Volatge
L
VCC3B<Detection Voltage
L
VCC3B>recovery Volatage
H
Blank : Don’t Care
14-Jan-03 (Rev 2.0)TB62501F (Page. 31)
TOSHIBA
TB62501F
APGS Block
In the block of A_PGS, the voltage of VCC3A is monitored by the internal analog comparator, each state is supplied to A_PGS output.
The terminal is Open drain structure.
The operation of detection is started when 3A_ON is equal to High. The analog Comparator has hysteresis voltage and generate high
signal when the following condition are satisfied.
Greater than 2.943V(Typ.) at power on stage of "VCC3A"(Rising Edge)and lower than 2.793V (Typ.) at the shut down stage (Falling edge)
In this period A_PGS is supplying H level.
The Hysteresis Voltage are set 150mV +/- 50mV. At the High state, the delay time of 350ms +/- 10ms is set.
【Timing Chart】
3M_ON
3A_ON
2.793±0.241V
2.943±0.191V
VCC3A
150mV ±50mV
A_PGS
350±10ms
350±10ms
Truth Table
3M_ON
3A_ON
VCC3A
L
L
L
H
A_PGS
H
L
VCC3A<Detection Voltage
L
VCC3A>Recovery Voltage
H
Blank : Don’t Care
14-Jan-03 (Rev 2.0)TB62501F (Page. 32)
TOSHIBA
TB62501F
BPGS Block
In the block of B_PGS, the voltage of VCC5B and VCC3B are monitored by the internal analog comparator, each voltage state is
supplied to B_PGS output. The terminal is Open drain structure.
The operation of detection is started when both 5B_ON and 3B_ON are equal to High. The analog Comparator has hysteresis
voltage and generate high signal when the following condition are satisfied.
Greater than 4.461V(Typ.) at power on stage of "VCC5M"(Rising Edge)and lower than 4.311V (Typ.) at the shut down stage
(Falling edge) after 47.5ms +/- 2.5ms
Greater than 2.943V(Typ.) at power on stage of "VCC3M"(Rising Edge)and lower than 2.793V (Typ.) at the shut down stage
(Falling edge) after 47.5ms +/- 2.5ms
In this period B_PGS is supplying H level. The Hysteresis Voltage are set 150mV +/- 50mV.
And at the High state, the delay time is set, when B_PGS become High, the delay time of 100ms +/- 5ms is set in case of A_PGS is
equal to Low, and the delay time of 445ms +/- 5ms is set in case of A_PGS is equal to High.
【Timing Chart】
5B_ON
3B_ON
A_PGS
5B_ON
3B_ON
2.793±0.241V
/4.311± 0.338V
/1.615±0.085V
VCC3M
/VCC5M
2.943±0.191V
/4.461±0.288V
VCC3B
/VCC5B
150mV ±50mV
B_PGS
100±5ms
445±5ms
Truth Table
5M_ON
3M_ON
5B_ON
3B_ON
APGS
VCC5B
VCC3B
L
L
L
L
L
L
L
L
L
L
VCC5B<Detection Voltage
H
B_PGS
H
H
H
VCC5B>Recovery Voltage
L
VCC3B<Detection Voltage
L
VCC3B>Recovery Voltage
H
Blank : Don’t Care
14-Jan-03 (Rev 2.0)TB62501F (Page. 33)
TOSHIBA
TB62501F
Over Load Detection
Over Load Detection Equivalent Circuit
PGS
Circuit
VCC5M
VCC3M
5B
Over Load
Monitoring
Circuit
20ms
3A
20ms
−SHDN
3B
20ms
3P
Vref (n)
20ms
SHDN
Hold Circuit
VBL16
5ms
20ms
TH_DET
TH_DET
RD3
20ms
RD4
20ms
5B_ON
5B_DRV
3A_DRV
3A_ON
RAMP
Circuit
3B_ON
3B_DRV
3P_ON
3P_DRV
VBL16_ON
VBL16_DRV
RD3_ON
RD3_DRV
RD4_ON
RD4_DRV
Note)
The delay time is just reference value.
Refer to the following explanation for the
actual value)
Reference Voltage Table for Over Load Comp.
Symbol
MIN.
TYP.
MAX
UNIT
5M
V 5X08
VCC5M
-0.9
VCC5M
-0.8
VCC5M
-0.7
V
3M
V 3X08
VCC3M
-0.9
VCC3M
-0.8
VCC3M
-0.7
V
VBL16
V VBL08
VREGIN16
-1.68
VREGIN16
-1.5
VREGIN16
-1.32
V
RD
(Note
)
V RD308
V RD408
4.1
4.2
4.3
V
Item
Detection
Voltage
Note) VCCRD3=VCCRD4=5V
14-Jan-03 (Rev 2.0)TB62501F (Page. 34)
TOSHIBA
TB62501F
Over load monitoring function perform independently to monitor each MOSFET that are controlled each RAMP DRIVER.
The function of monitoring over load of 5B is explained as follows as the representative case.
5B Over Load Detection Equivalent Circuit
VCC5M
SHDN
Hold
Circuit
−SHDN
Main power source
PGS
Circuit
Over Load
Detection
5ms
Reference
Voltage
20ms
VCC5M-0.8V± 0.1V
5B_DRV
RAMP
Circuit
Input Signal
5B_ON
0.047μF
Monitoring Signal
5B
Terminal Table to be referred
Circuit
Input Signal
5B
3A
3B
3P
VBL16
RD3
RD4
5B_ON
3A_ON
3B_ON
3P_ON
VBL16_ON
RD3_ON
RD4_ON
Main Power
Source
VCC5M
VCC3M
VCC3M
VCC3M
VREGIN16
VCC5M
VCC5M
Monitoring
Signal
5B
3A
3B
3P
VREGIN16
RD3
RD4
In order to start over load function, it is required for PGS signal
5MPGS to activate when main power source VCC5M is on after VREGIN16
3SW signal is coming normally by supplying VREGIN16.
Then the voltage drop between source and drain of external
3SW
MOSFET is detected after normal operation of RAMP DRIVER
by receiving input signal. Just after receiving 5B_ON signal, the −SHDN
voltage between source and Drain of external MOSFET is nearly
equal to VCC5M level. Therefore during the period of 47.5ms +/VCC5M
2.5ms, over load detection signal is ignored. Then after this
state, when the larger voltage than specified voltage is detected,
5MPGS
the shut down signal “L” is out to “-SHDN” terminal.
【Note 1】
Pull up resistor value affect to the response time and consumption current at
the low output state.
The resistance value should be carefully considered in the system.
【Note 2】
The setting time for the signal is under the condition that OSC is operates
at12.8kHz. The operation frequency may be changed by board capacitance,
external resistor, capacitance tolerance, circuit delay and so on. So it should
be considered at design system.
5B_ON
Reference Voltage
VCC5M−0.8V±0.1V
VCC3M−0.8V±0.1V
VCC3M−0.8V±0.1V
VCC3M−0.8V±0.1V
VREGIN16−1.5V±0.18V
SPEC Table (Refer to P.10)
SPEC Table (Refer to P.10)
7.0V
4.7ms±0.3ms
47.5ms
±2.5ms
0.8± 0.1V
VCC5B
21.25ms
±1.25ms
【Note 3】
When "-SHDN" becomes "L", this device does not perform reset operation
and hold the output state.
In order to recover, VREGIN16 power supply is powered on again or –RESET
terminal should be turn to L to initialize the device.
14-Jan-03 (Rev 2.0)TB62501F (Page. 35)
TOSHIBA
TB62501F
Shut Down Function
When the shut down signal is out, this device holds L at the “-SHDN” terminal and output terminal become shut down state.
To release this state, Low level is applied to –RESET terminal (POR Operation) or VREGIN16 is powered up again.
1) In case Shut Down signal is out
−RESET
3SW
Signal is latched internal IC, Output Terminal: Shut Down State
State of Output Terminal
at Shut down stage
−SHDN (Internal IC)
−SHDN (External IC)
When this device receives shut down signal, output terminal become shut down state and hold the
state.
To release this state, Low level is applied to –RESET terminal (POR Operation) or VREGIN16 is
powered up again.
2) In case receiving Shut Down Signal
-RESET
3SW
-SHDN(Internal IC)
-SHDN(External IC)
Signal is latched internal IC,
Each Output Terminal: Shut Down State
OFF output :5B_DRV(18)
(Hi-Impedance) 3A_DRV(21)
3B_DRV(23)
3P_DRV(26)
RD3_DRV(29)
RD4_DRV(31)
VBL16_ DRV(33)
RD1_DRV(17)
RD2_DRV(35)
M2_DRV(46)
S2_ DRV(47)
“ L ” o u t p u t :CPOUT1(36)
S1_DRV(39)
M1_DRV(40)
BAT_DRV(41)
DCIN_DRV(42)
−SHDN(52)
B_PGS(50)
A_PGS(49)
M_PGS(51)
“ H” o u t p u t
:CPOUT2(37)
No Change :CLKOUT(11)
Terminal Number are
shown in the blankets
14-Jan-03 (Rev 2.0)TB62501F (Page. 36)
TOSHIBA
TB62501F
I/O Equivalent Circuit of Terminals
PIN
NUMBER
1
2
3
4
6
7
8
9
12
13
14
15
16
56
60
62
63
64
TERMINAL
DISCHARGE
−EXTPWR
S1GATEON
S2GATEON
M1GATEON
M2GATEON
5B_ON
3A_ON
3B_ON
3P_ON
RD3_ON
RD4_ON
VBL16_ON
TEST
RD2_ON
RD1_ON
5M_ON
3M_ON
17
18
21
23
26
29
31
35
RD1_DRV
5B_DRV
3A_DRV
3B_DRV
3P_DRV
RD3_DRV
RD4_DRV
RD2_DRV
19
22
24
5B
3A
3B
5B:VCC5M
3A:VCC3M
3B:VCC3M
EQUIVALENT CIRCUIT
3SW
3k
VDD15
Over Load Detection
comp.
PGS Detection
comp.
14-Jan-03 (Rev 2.0)TB62501F (Page. 37)
TOSHIBA
PIN
NUMBER
27
30
32
TERMINAL
3P
RD3
RD4
TB62501F
EQUIVALENT CIRCUIT
3P:VCC3M
RD3:VCC5M
RD4:VCC5M
comp.
33
39
40
41
42
VBL16_DRV
S1_DRV
M1_DRV
BAT_DRV
DCIN_DRV
34
VBL16
VCPIN21
comp.
49
50
51
52
A_PGS
B_PGS
M_PGS
−SHDN
14-Jan-03 (Rev 2.0)TB62501F (Page. 38)
TOSHIBA
PIN
NUMBER
10
TB62501F
TERMINAL
EQUIVALENT CIRCUIT
CLKIN
VCC5M
VCC3M
VREGIN16
3k
comp.
3k
11
comp.
CLKOUT
VCC5M
VCC3M
VREGIN16
3k
200
44
FIX_R
VDD15
500
46
47
M2_DRV
S2_DRV
14-Jan-03 (Rev 2.0)TB62501F (Page. 39)
TOSHIBA
PIN
NUMBER
36
37
TERMINAL
CPOUT1
CPOUT2
54
BAT_VOLT
TB62501F
EQUIVALENT CIRCUIT
36pin:VCC3M
37pin:VCC5M
VREGIN16
comp.
58
−RESET
55
TH_DET
13
43
VCCRD3M
VCCRD4M
25
45
48
38
58
59
5
20
28
53
VDD15
VCC3M
VCC5M
VCPIN24
VREGIN16
3SW
DGND
PGND1
PGND2
AGND
3SW
3SW
14-Jan-03 (Rev 2.0)TB62501F (Page. 40)
TOSHIBA
TB62501F
MEASUREMENT CIRCUIT
1. RAMP DRIVER(Ex. 5B Circuit)
FIX_R
VDD15
RFIX
56KΩ
IREF
5B_DRV
IOH5BD
VOH5BD (Output "H")
B_PGS
IOL5BD
ILK5BD
A_PGS
−SHDN
LOGIC
At the measurement of ILK5BD
5B_ON="H"
FIX_R="OPEN"
Over Load
COMP.
II5B
5B
PGS
5B_ON
COMP.
2. RAMP DRIVER (VBL16 Circuit)
FIX_R
VCPIN24
IREF
RFIX
56KΩ
VBL16_DRV
VOHVBLD (Output "H")
−SHDN
LOGIC
VBL16_ON
IOHVBLD
IOLVBLD
ILKVBLD
Over Load
COMP.
IIVBL
At the measurement of ILKVBLD
VBL16_ON="H"
FIX_R="OPEN"
VBL16
14-Jan-03 (Rev 2.0)TB62501F (Page. 41)
TOSHIBA
TB62501F
3. NDRV (Ex. : S1 Circuit)
FIX_R
VCPIN24
S1_DRV
IREF
RFIX
IOHS1
56KΩ
VOHS1(Output "H")
IOLS1
ILKS1
LOGIC
At the measurement of ILKS1
S1GATEON="H"
FIX_R="OPEN"
S1GATEON
4.PDRV (Ex. : S2GATEON)
ILKS2
IOLS2
S2GATEON
S2_DRV
IOLS2 Measurement : S2GATEON = ”H”
ILKS2 Measurement : S2GATEON = “L”
LOGIC
5. Charge Pump
OSC
3M_ON
5M_ON
CPOUT1
LOGIC
VOHCP1(Output "H")
VOLCP1(Output "L")
CPOUT2
VOHCP2(Output "H")
VOLCP2(Output "L")
14-Jan-03 (Rev 2.0)TB62501F (Page. 42)
TOSHIBA
TB62501F
6.POR
D1
VPORH
VPORL
RPOR
3SW
−RESET
−RESET
CPOR
VPORH :3SW Rising Edge
VPORL:3SW Falling Edge
7.OSC
VCC5M
VCC3M
RS
CLKIN
Latch
IINOSC
C CLK
tCLK
R CLK
CLKOUT
ROHCLK
ROLCLK
14-Jan-03 (Rev 2.0)TB62501F (Page. 43)
TOSHIBA
TB62501F
8. Regulator
Over Current
Protection
−RESET
VREGIN16
IOUT
Battery Monitor
ON/OFF
IOUT
Reg.
3SW
Low Volt
VOUT
Detection
VOUTOFF
SHUTDOWN
9. Battery Monitor
VREGIN16
R BAT1
BAT_VOLT
R BAT2
VTPBT
VRECBT
Battery Monitor
Output
Into IC
IINBT
10.Detection of Thermostat Resistance
3SW
0.4K∼20KΩ
TH_DET
Detection Circuit
SHUTDOWN
VTPER
14-Jan-03 (Rev 2.0)TB62501F (Page. 44)
TOSHIBA
TB62501F
Application Block Diagram
Q14
Q12
Q10
S-BATT
VCC×M
R19
470kΩ
Q15
M-BATT
Q13
Q9
VINT16
AC
C11
0.047μF
SD8 SD9
R16
100Ω
R17
56kΩ
SD7
C10
0.22
μF
48
47
46
45
44
43
42
41
40
39
38
37
C9
0.22
μF
36
35
R15
100Ω
34
32
B_PGS
50
31
M_PGS
51
30
52
29
53
28
54
27
TOP VIEW
55
56
SW1
VREGIN16
C12
0.1μF
25
24
58
23
3SW
59
22
C13
1.0μF
60
21
61
20
62
19
63
18
64
17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
C8
0.047μF
C7
0.047μF
R11
100Ω
LOGIC(TTL)
CCLK
C1 1000pF
Q7
R12
100Ω
RD3
SD5
Q6
C6
0.047μF
VDD15
VCCRD3M
R10
100Ω
R9
100Ω SD4
C5
0.047μF
R7
100Ω
R5
100Ω
VCC3P
Q5
VCC3B
R8
100Ω
SD3
C4
0.047μF
Q4
R6
100Ω
SD2
C3
0.047μF
VCC3A
Q3
R2 100Ω
16
R3 100Ω
LOGIC(TTL)
RD4
SD6
26
57
1
R14
100Ω
33
49
SR1
R13
100Ω
VCCRD4M
A_PGS
BAT_VOLT
Q8
VREGIN16
VCC3M
VCC5M
VCC3M
VCC5M
3SW
VCC5M
VBL16
SD10
R20
R23
R22 R21
10kΩ
10kΩ 10kΩ 10kΩ
−SHDN
Schottkey Barrier Diode
--- 1SS388
Q11
R18
470kΩ
LOGIC(TTL)
C2
0.047μF
RCLK
R1 66.5kΩ
R4
100Ω
VCC5B
SD1
Q2
VCC×M
VCC5M
VCC3M
Q1
NOTES:
VCC3M
VCC5M
C14
0.1 μ
F
AGND
C15
0.1μF
VDD15
C16
0.1μF
PGND1
VINT16
VREGIN16
C17
0.1μF
PGND2
C18
0.1μF
DGND
3SW
C19
0.1μF
DGND
Each GND pin is connected inside this device.When the different voltage is
supplied to each GND, this device may be destroyed by the electric current
among GNDs.Therefore, please connect each GND at the same point.
C12 to C18 is the bypass condenser for power supply stabilization.
Please layout bypass condenser near this device.
Utmost care is necessary in the design of the output line, VCC, COMMON
and GND line since IC may be destroyed due to short-circuit between outputs,
air contamination fault, or fault by improper grounding.
Do not insert devices in the wrong orientation. Make sure that the positive and
negative terminals of power supplies are connected correctly. Otherwise, the
rated maximum current of power dissipation may be exceeded and the device
may break down or undergo performance degradation, causing it to catch fire
or explode and resulting in injury.
The coefficient of the oscillator device in the figure(RCLK,CCLK) is ideal value.
Since oscillator is subject to circuit board capacity and wiring resistance, these
coefficients need to be adjusted on the actual circuit board.
14-Jan-03 (Rev 2.0)TB62501F (Page. 45)
TOSHIBA
TB62501F
Pin Assignment
Package : LQFP64-P-1010-0.5A
35
34
VBL16_DRV
36
VBL16
37
CPOUT1
38
RD2_DRV
39
CPOUT2
40
VCPIN24
41
S1_DRV
42
M1_DRV
43
BAT_DRV
44
DCIN_DRV
FIX_R
45
VCCRD4M
46
VCC3M
47
M2_DRV
VCC5M
S2_DRV
48
33
A_PGS
49
32
RD4
B_PGS
50
31
RD4_DRV
M_PGS
51
30
RD3
−SHDN
52
29
RD3_DRV
AGND
53
28
PGND2
BAT_VOLT
54
27
3P
TH_DET
55
26
3P_DRV
TEST
56
25
VDD15
VREGIN16
57
24
3B
−RESET
58
23
3B_DRV
3SW
59
22
3A
RD2_ON
60
21
3A_DRV
3P_ON
61
20
PGND1
RD1_ON
62
19
5B
5M_ON
63
18
5B_DRV
3M_ON
64
17
RD1_DRV
12
13
14
15
16
VBL16_ON
RD4_ON
3A_ON
11
RD3_ON
5B_ON
10
VCCRD3M
9
3B_ON
8
CLKOUT
7
CLKIN
6
M2GATEON
S2GATEON
5
DGND
4
M1GATEON
3
S1GATEON
DISCHARGE
2
−EXTPWR
1
14-Jan-03 (Rev 2.0)TB62501F (Page. 46)
TOSHIBA
TB62501F
Marking Indication
TOSHIBA
TB62501F
Logo
Product Name
JAPAN □□□□□□□
1pin
Country
of Origin
Lot Code
Weekly Code
Factory Code
Revision Control Code
14-Jan-03 (Rev 2.0)TB62501F (Page. 47)
TOSHIBA
TB62501F
Package Outline (Dimensions)
14-Jan-03 (Rev 2.0)TB62501F (Page. 48)