FUJITSU SEMICONDUCTOR DATA SHEET DS04-27801-1E ASSP For Power Management Applications (Mobile Phones) Power Management IC for GSM Mobile Phone MB3891 ■ DESCRIPTION MB3891 is intended to be used in future GSM-phones, Dual Band phones and Dual Mode phones. It contains all the necessary functions to support all Digital, Analog and RF blocks in these phones. A Charge-pump including a Logic Level Translation circuit is built in to support SIM-card (SmartCard) of both 3 and 5 Volt technology. The circuit contains a charger for a rechargeable Lithium coin cell of a Real Time Clock. A complex control circuit is built in to generate main reset and to turn on and off the different LDO’s. ■ FEATURES • Supply voltage range : 3 V to 5.5 V • Low power consumption current during standby : 400 µA (MAX) • 6-channel low-saturation voltage type series regulator : 2.1 V/2 channels, 2.8 V/3 channels, 2.5 V/2.8 V switch • Error prevention function during Low voltage • Power on reset function • 3 V/5 V SW for SIM-Card • SIM interface function • Backflow prevention function for Battery-Backup • Temperature prevention function ■ PACKAGE 64-pin plastic LQFP (FPT-64P-M03) MB3891 ■ PIN ASSIGNMENT 33 : RESET-IN 34 : CLK-IN 35 : µP-IO 36 : RST 37 : CLK 38 : SIM-IO 39 : GND4 40 : OUT4 41 : OUT4 42 : VBAT4 43 : VBAT4 44 : CONT4 45 : SW1-OUTPUT 46 : SW1-INPUT 47 : SW3-OUTPUT 48 : SW3-INPUT (TOP VIEW) N.C. : 49 32 : GND-VSIM N.C. : 50 31 : VCAP− SW2-OUTPUT : 51 30 : VCAP+ SW2-INPUT : 52 29 : VSIMOUT SW1-ON : 53 28 : OSC SW2-ON : 54 27 : SIMPROG SW3-ON : 55 26 : VSIM-ON CONT3 : 56 25 : VCC-VSIM CONT5 : 57 24 : REF-OUT OUT5 : 58 23 : VFIL GND5 : 59 22 : VREF VBAT3 : 60 21 : V-BACKUP VBAT3 : 61 20 : VBAT2 VBAT3 : 62 19 : GND1 (FPT-64P-M03) 2 CONT2 : 16 CONT6 : 15 CONT1 : 14 OUT1 : 13 OUT1 : 12 VBAT1 : 11 VBAT1 : 10 VBAT1 : 9 VBAT1 : 8 OUT2 : 7 OUT2 : 6 GND3 : 5 OUT3 : 4 17 : XPOWERGOOD OUT3 : 3 N.C. : 64 N.C. : 2 18 : DELAYCAP N.C. : 1 N.C. : 63 MB3891 ■ PIN DESCRIPTION Pin No. Symbol I/O Descriptions 1, 2 N.C. Non connection. 3, 4 OUT3 O LDO3 output pin. 5 GND3 LDO3 ground pin. 6, 7 OUT2 O LDO2 output pin. 8, 9, 10, 11 VBAT1 Battery voltage input pin for LDO1 and LDO2. 12, 13 OUT1 O LDO1 output pin. 14 CONT1 I Power on input from keypad (Active low, Pulled up to VBAT2). 15 CONT6 I “CONT6” input from digital system µP (Active high). 16 CONT2 I External accessory supply voltage Enable (Active high). 17 XPOWERGOOD O Generates the main reset. (Active low, when OUT1 is out of regulation). 18 DELAYCAP Timing capacitor for XPOWERGOOD delay. 19 GND1 LDO1, LDO2, V-BACKUP, Reference and System ground pin. 20 VBAT2 Battery voltage input pin for both UVLO’s, Reference and V-BACKUP LDO. 21 V-BACKUP O Supply voltage for Charger for rechargeable Lithium coin cell. 22 VREF O Supply voltage for Reference. 23 VFIL O Reference voltage Filter. 24 REF-OUT O Reference output voltage (Present when BACKUP UVLO is high). 25 VCC-VSIM Input voltage for charge pump. (Supplied by VBAT1). 26 VSIM-ON I VSIM supply Enable (Active high). 27 SIMPROG I VSIM programming: Low = 3 V SIM, High = 5 V SIM. 28 OSC Oscillator output pin. 29 VSIMOUT O Supply voltage for 3 or 5 V SIM-Card (SmartCard). 30 VCAP+ Positive side of boost capacitor. 31 VCAP− Negative side of boost capacitor. 32 GND-VSIM 3 or 5 V SIM-Card (SmartCard) ground pin. 33 RESET-IN I Non level shifted SIM reset (µP side). 34 CLK-IN I Non level shifted clock (µP side). 35 µP-IO I/O Non level shifted bi-directional data input/output (µP side). 36 RST O Level shifted SIM reset (SmartCard side). 37 CLK O Level shifted SIM clock (SmartCard side). 38 SIM-IO I/O Level shifted bi-directional SIM data input/output (SmartCard side). 39 GND4 LDO4 ground pin. 40, 41 OUT4 O LDO4 output pin. (Continued) 3 MB3891 4 (Continued) Pin No. Symbol I/O 42, 43 VBAT4 44 CONT4 I OUT4 output voltage selection (“L”=2.8 V,“H”=2.5 V). 45 SW1-OUTPUT O Output of general purpose switch number 1 (Drain). 46 SW1-INPUT I Input of general purpose switch number 1 (Source). 47 SW3-OUTPUT O Output of general purpose switch number 3 (Drain). 48 SW3-INPUT I Input of general purpose switch number 3 (Source). 49, 50 N.C. Non connection. 51 SW2-OUTPUT O Output of general purpose switch number 2 (Drain). 52 SW2-INPUT I Input of general purpose switch number 2 (Source). 53 SW1-ON I General purpose switch number 1 Enable (Active high). 54 SW2-ON I General purpose switch number 2 Enable (Active high). 55 SW3-ON I General purpose switch number 3 Enable (Active high). 56 CONT3 I OUT3 and OUT4 supply voltage Enable (Active high). 57 CONT5 I OUT5 supply voltage Enable (Active high). 58 OUT5 O Output terminal of LDO5. 59 GND5 LDO5 ground pin. 60, 61, 62 VBAT3 Supply voltage for LDO and LDO5. 63, 64 N.C. Non connection. Descriptions Supply voltage for LDO4. MB3891 ■ BLOCK DIAGRAM VBAT2 20 VBAT1 8 9 10 11 LDO1 Over Temp Protection CONT1 14 ON 12 OUT1 13 OUT POR Main UVLO 17 XPOWERGOOD 18 DELAYCAP 19 GND1 CONT6 15 LDO2 ON OUT 6 OUT2 7 CONT2 16 46 SW1-INPUT SW1 SW1-ON 53 45 SW1-OUTPUT SW2-ON 54 52 SW2-INPUT SW2 SW3-ON 55 51 SW2-OUTPUT 48 SW3-INPUT SW3 47 SW3-OUTPUT CONT3 56 60 61 VBAT3 62 CONT5 57 LDO3 CONT4 44 ON OUT VREF 22 VFIL 23 5 GND3 VREF + VREF-AMP 42 VBAT4 43 LDO4 − OUT ON CONT4 REF-OUT 24 RESET-IN 33 RST 36 40 OUT4 41 39 GND4 LDO5 CLK-IN 34 µP-IO 35 3 OUT3 4 GSM/SIM Logic Level Translation ON OUT 58 OUT5 59 GND5 CLK 37 LDO6 SIM-IO 38 BACKUP UVLO VCC-VSIM 25 ON OUT 21 V-BACKUP VSIM-ON 26 VSIMOUT Charge-pump SIMPROG 27 30 VCAP+ 31 VCAP− OSC 28 32 29 GND-VSIM VSIMOUT N.C. Pin : 1, 2, 49, 50, 63, 64 5 MB3891 ■ ABSOLUTE MAXIMUM RATINGS Parameter Power supply voltage Symbol Conditions VBAT VCC-VSIM Rating Unit Min. Max. −0.3 7 V −0.3 7 V IO OUT1 pin 120 mA IO OUT2 pin 50 mA IO OUT3 pin 100 mA IO OUT4 pin 100 mA IO OUT5 pin 50 mA VSIMOUT chargepump IO VSIMOUT pin 10 mA Power dissipation PD Ta ≤ +25 °C 800* mW −55 +125 °C LDO regulator Storage temperature Tstg * : The packages are mounted on the dual-sided epoxy board(10 cm × 10 cm) WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Conditions VBAT Value Unit Min. Typ. Max. 3.0 3.6 5.5 V VCC-VSIM 3.0 3.6 5.5 V LDO capacitor guarantee value CO OUT1 to OUT5, V-BACKUP pin 0.8 1.0 µF REF-OUT capacitor guarantee value CO REF-OUT pin 0.027 µF VSIMOUT capacitor guarantee value CO VSIMOUT pin 10 µF Operating ambient temperature Ta −20 +25 +85 °C Power supply voltage WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 6 MB3891 ■ ELECTRICAL CHARACTERISTICS Parameter Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. IBAT1 8, 9, 10, 11, UVLO = “L”, 20, 42, 43, BACKUP UVLO = “L” 60, 61, 62 80 µA IBAT2 8, 9, 10, 11, UVLO = “L”, 20, 42, 43, BACKUP UVLO = “H” 60, 61, 62 160 µA Standby supply current IBAT3 8, 9, 10, 11, All circuit’s = On 20, 42, 43, (No load) 60, 61, 62 400 µA Operating ground current IGND 10 mA Shutdown supply current 4, 5, 19, 32, 59 All circuit’s -VSIM = On Max. load on all regulators VTHH 8, 9, 10, 11, 20, 42, 43, OUT1 = ON 60, 61, 62 2.980 3.080 3.180 V VTHL 8, 9, 10, 11, 20, 42, 43, OUT1 = OFF 60, 61, 62 2.780 2.880 2.980 V VTHH 8, 9, 10, 11, 20, 42, 43, V-BACKUP = ON 60, 61, 62 2.980 3.080 3.180 V VTHL 8, 9, 10, 11, 20, 42, 43, V-BACKUP = OFF 60, 61, 62 2.580 2.680 2.780 V UVLO threshold voltage General BACKUP UVLO threshold voltage VIH 16, 56, 57 0.7 × OUT1 OUT1 V VIL 16, 56, 57 0 0.3 × OUT1 V VIH 14, 15, 44 0.7 × VBAT VBAT V VIL 14, 15, 44 0 0.3 × VBAT V VIH 26, 27 VCC-VSIM V VIL 26, 27 0 RPU 17 15* kΩ RPU 14, 57 200* kΩ RPD 15, 53, 54, 55 200* kΩ Input voltage Pull-up resistor Pull-down resistor 0.7 × VCC-VSIM 0.3 × VCC-VSIM V * : Standard design value (Continued) 7 MB3891 Parameter LDO1 (OUT1) 12, 13 −50 µA > OUT1 > −120 mA 2.000 2.100 2.200 VO Line regulation Line 12, 13 3.1 V < VBAT1 < 5.5 V 10 mV Load reguration Load 12, 13 −50 µA > OUT1 > −120 mA 30 mV Ripple rejection ∆VBAT1/∆OUT1 R.R 12, 13 f = 217 Hz 45 dB Dropout voltage VDO 12, 13 OUT1 = −120 mA 500 mV GND current at low load IGND 19 OUT1 > −1 mA 30 µA GND current at max. load IGND 19 OUT1 = −120 mA 2 mA Output noise volt. (RMS) VNOVL 12, 13 f = 10 Hz to 1 MHz, OUT1 = 1 µF 500 µV VOH 17 0.8 × OUT1 OUT1 V VOL 17 0 0.1 × OUT1 V TXPG 17 DELAYCAP = 0.033 µF 10 25 40 ms Output voltage VO 6, 7 −50 µA > OUT2 > −50 mA 2.700 2.800 2.900 Line regulation Line 6, 7 3.1 V < VBAT1 < 5.5 V 10 mV Load regulation Load 6, 7 −50 µA > OUT2 > −50 mA 30 mV Ripple rejection ∆VBAT1/∆OUT2 R.R 6, 7 f = 217 Hz 45 dB Dropout voltage VDO 6, 7 OUT2 = −50 mA 250 mV GND current at low load IGND 19 OUT2 > −1 mA 30 µA GND current at max. load IGND 19 OUT2 = −50 mA 1 mA Output noise volt. (RMS) VNOVL 6, 7 f = 10 Hz to 1 MHz, OUT2 = 1 µF 350 µV RSW1 45, 46 SW1-INPUT = 2.8 V (Gate/Source = 2.8 V) 4.0 Ω RSW2 51, 52 SW2-INPUT = 2.8 V (Gate/Source = 2.8 V) 7.0 Ω RSW3 47, 48 SW3-INPUT = 2.8 V (Gate/Source = 2.8 V) 7.0 Ω Hold time General purpose switches Pin No. Output voltage XPOWER- Output voltage GOOD (RESET) LDO2 (OUT2) Symbol (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. Input/Output resistance V V (Continued) 8 MB3891 Parameter LDO3 (OUT3) Symbol Pin No. Output voltage VO 3, 4 −50 µA > OUT3 > −100 mA 2.700 2.800 2.900 Line regulation Line 3, 4 3.1 V < VBAT3 < 5.5 V 10 mV Load regulation Load 3, 4 −50 µA > OUT3 > −100 mA 30 mV Ripple rejection ∆VBAT3/∆OUT3 R.R 3, 4 f = 217 Hz 45 dB Dropout voltage VDO 3, 4 OUT3 = −100 mA 250 mV GND current at low load IGND 5 OUT3 > −1 mA 30 µA GND current at max. load IGND 5 OUT3 = −100 mA 2 mA VNOVL 3, 4 f = 10 Hz to 1 MHz, OUT3 = 1 µF 350 µV VO 40, 41 −50 µA > OUT4 > −100 mA, 2.700 2.800 2.900 CONT4 = “L” V VO 40, 41 −50 µA > OUT4 > −100 mA, 2.400 2.500 2.600 CONT4 = “H” V Output noise volt. (RMS) Output voltage LDO4 (OUT4) V Line regulation Line 40, 41 3.1 V < VBAT4 < 5.5 V 10 mV Load regulation Load 40, 41 −50 µA > OUT4 > −100 mA 30 mV Ripple rejection ∆VBAT4 - OUT4/∆OUT4 R.R 40, 41 f = 217 Hz 45 dB Dropout voltage VDO 40, 41 OUT4 = −100 mA 250 mV GND current at low load IGND 39 OUT4 > −1 mA 30 µA GND current at max. load IGND 39 OUT4 = −100 mA 2 mA VNOVL 40, 41 f = 10 Hz to 1 MHz, OUT4 = 1 µF 500 µV Output voltage VO 58 −50 µA > OUT5 > −50 mA 2.700 2.800 2.900 Line regulation Line 58 3.1 V < VBAT3 < 5.5 V 10 mV Load regulation Load 58 −50 µA > OUT5 > −50 mA 30 mV Ripple rejection ∆VBAT3/∆OUT5 R.R 58 f = 217 Hz 45 dB Dropout voltage VDO 58 OUT5 = −50 mA 250 mV GND current at low load IGND 59 OUT5 > −500 µA 20 µA GND current at max. load IGND 59 OUT5 = −50 mA 1 mA VNOVL 58 f = 10 Hz to 1 MHz, OUT5 = 1 µF 350 µV Output noise volt. (RMS) LDO5 (OUT5) (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. Output noise volt. (RMS) V (Continued) 9 MB3891 Parameter Output voltage VO 21 −10 µA > V-BACKUP > −250 µA Line regulation Line 21 3.1 V < VBAT2 < 5.5 V 10 mV Load regulation Load 21 −10 µA > V-BACKUP > −250 µA 30 mV Ripple rejection ∆VBAT2/ ∆V-BACKUP R.R 21 f = 217 Hz 25 dB IGND 19 V-BACKUP > −10 µA 10 µA IGND 19 V-BACKUP = −250 µA 50 µA Output noise volt. (RMS) VNOVL 21 f = 10 Hz to 1 MHz, V-BACKUP = 1 µF 500 µV Reverse current IRC 21 VBAT2 = 0 V, V-BACKUP = 3.0 V 100 nA Output voltage VO 24 0 µA > REF-OUT > −50 µA Line regulation Line 24 3.1 V < VBAT2 < 5.5 V 10 mV Load regulation Load 24 0 µA > REF-OUT > −50 µA 6 mV Ripple rejection ∆VBAT2/ ∆REF-OUT R.R 24 f = 217 Hz 50 dB Output noise volt. (RMS) VNOVL 24 f = 10 Hz to 1 MHz, REF-OUT = 27 nF 250 µV VO 29 −50 µA > VSIMOUT > −10 mA, 4.600 5.000 5.400 SIMPROG = “H” V VO 29 −50 µA > VSIMOUT > −10 mA, 2.760 3.000 3.240 SIMPROG = “L” V Line regulation Line 29 3.1 V < VCC-VSIM < 5.5 V 50 mV Load regulation Load 29 −50 µA > VSIMOUT > −10 mA 100 mV LDO6 (V-BACKUP) GND current at low load GND current at max. load REF-OUT Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. Output voltage VSIMOUT chargepump 2.000 2.100 2.200 1.200 1.225 1.250 V V (Continued) 10 MB3891 Parameter Ripple rejection ∆VCC-VSIM/ ∆VSIMOUT Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. R.R 29 f = 217 Hz 30 dB IO 29 3.1 V < VCC-VSIM < 5.5 V, VSIMOUT = 5 V 10 mA IO 29 3.1 V < VCC-VSIM < 5.5 V, VSIMOUT = 3 V 6 mA IGND 32 VSIMOUT > −50 µA 100 µA Efficiency at max. load η 25, 29 VSIMOUT = −10 mA, VSIMOUT = 5 V 85 % Output ripple voltage VRP 29 f = 10 Hz to 1 MHz, VSIMOUT = 10 µF 100 mVPP Shutdown supply current ILDO 25 VSIM-ON = “L” 100 nA VIH 33, 34, 35 0.7 × OUT1 OUT1 V VIL 33, 34, 35 0 0.3 × OUT1 V VOH 35 µP-IO (max.) = −20 µA 0.8 × OUT1 OUT1 V VOL 35 µP-IO (max.) = 1 mA 0 0.2 × OUT1 V Output current VSIMOUT GND current at chargepump no load Input voltage GSM/SIM logic level translation µp interface Output voltage (Continued) 11 MB3891 (Continued) Parameter Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. VOH 36 RST (max.) = −20 µA VSIMOUT VOL 36 RST (max.) = 200 µA Rise time TR 36 Fall time TF VSIMOUT V 0 0.6 V RESET-IN = RST = 30 pF 400 µs 36 RESET-IN = RST = 30 pF 400 µs VOH 37 CLK (max.) = −20 µA VSIMOUT V VOL 37 CLK (max.) = 200 µA 0 0.5 V TR 37 CLK-IN = CLK = 30 pF 27 ns TF 37 CLK-IN = CLK = 30 pF 27 ns VOH 38 SIM-IO (max.) = −20 µA 3.8 VSIMOUT V VOL 38 SIM-IO (max.) = 1 mA 0 0.4 V VIH 38 VSIMOUT V VIL 38 0 0.8 V Rise time TR 38 SIM-IO = 30 pF 1 µs Fall time TF 38 SIM-IO = 30 pF 1 µs VOH 36 RST (max.) = −20 µA VSIMOUT V VOL 36 RST (max.) = 200 µA 0 Rise time TR 36 RESET-IN = RST = 30 pF 400 µs Fall time TF 36 RESET-IN = RST = 30 pF 400 µs VOH 37 CLK (max.) = −20 µA VSIMOUT V VOL 37 CLK (max.) = 200 µA 0 TR 37 CLK-IN = CLK = 30 pF 50 ns TF 37 CLK-IN = CLK = 30 pF 50 ns VOH 38 SIM-IO (max.) = −20 µA VSIMOUT V VOL 38 SIM-IO (max.) = 1 mA 0.4 V VIH 38 VSIMOUT V VIL 38 Rise time TR 38 Fall time TF 38 Output voltage Output voltage SIM interface Rise time 5V (SIMPROG Fall time = H) Output voltage Input voltage Output voltage Output voltage SIM interface Rise time 3V (SIMPROG Fall time = L) Output voltage Input voltage 12 − 0.7 0.7 × VSIMOUT 0.7 × VSIMOUT 0.8 × VSIMOUT 0.7 × VSIMOUT 0.7 × VSIMOUT 0 0.7 × VSIMOUT 0.2 × VSIMOUT 0.2 × VSIMOUT 0.2 × V V 0 SIM-IO = 30 pF 1 µs SIM-IO = 30 pF 1 µs VSIMOUT V MB3891 ■ TYPICAL CHARACTERISTICS 400 Ta = +25 °C CONT1 = “L” CONT2 = “H” CONT3 = “H” CONT4 = OPEN CONT5 = OPEN CONT6 = OPEN VSIM-ON = “H” SIMPROG = “H” 350 300 250 200 OUT1 = No load OUT2 = No load OUT3 = No load OUT4 = No load OUT5 = No load V-BACKUP = No load VSIMOUT = No load 150 100 50 0 0 Power supply current vs. power supply voltage Power supply current IBAT (µA) Power supply current IBAT (µA) Power supply current vs. power supply voltage 1 3 2 4 5 350 Ta = +25 °C CONT1 = OPEN 300 CONT2 = “H” CONT3 = “H” 250 CONT4 = OPEN CONT5 = OPEN 200 CONT6 = “H” VSIM-ON = “H” 150 SIMPROG = “H” 100 50 0 0 Power supply voltage VBAT (V) CONT4 = OPEN 250 50 0 1 200 OUT1 = 18 Ω OUT2 = 56 Ω OUT3 = 28 Ω OUT4 = 28 Ω OUT5 = 56 Ω V-BACKUP = 8.4 kΩ VSIMOUT = 510 Ω 100 0 300 IGND 2 3 4 150 100 50 Output voltage VOUT1 (V) 350 GND current IGND (µA) Power supply current IBAT (mA) 400 CONT2 = “H” 150 4 5 2.5 2.0 1.5 1.0 Ta = +25 °C OUT1 = 1 µF CONT1 = OPEN CONT6 = “H” 0.5 0.0 0 0 5 1 2 3 4 5 6 7 Power supply voltage VBAT (V) Power supply voltage VBAT (V) Output voltage vs. power supply voltage (LDO1) Output voltage vs. load current (LDO1) 2.2 3.0 Ta = +25 °C OUT1 = 1 µF 2.5 CONT1 = “L” CONT6 = OPEN 2.0 Output voltage VOUT1 (V) Output voltage VOUT1 (V) 3 3.0 450 350 CONT3 = “H” 200 SIMPROG = “H” 2 Output voltage vs. power supply voltage (LDO1) IBAT 300 CONT5 = OPEN = “H” 250 CONT6 VSIM-ON = “H” 1 Power supply voltage VBAT (V) Power supply current , GND current vs. power supply voltage 450 Ta = +25 °C 400 CONT1 = OPEN OUT1 = No load OUT2 = No load OUT3 = No load OUT4 = No load OUT5 = No load V-BACKUP = No load VSIMOUT = No load 1.5 1.0 0.5 0.0 2.1 2.0 1.9 Ta = +25 °C VBAT = 3.6 V CONT1 = “L” CONT6 = OPEN 1.8 1.7 0 1 2 3 4 Power supply voltage VBAT (V) 5 0 −100 −200 −300 −400 −500 −600 −700 −800 Load current ILOAD (mA) (Continued) 13 MB3891 Ripple rejection vs. frequency (LDO1) 0 Ripple rejection R.R (dBm) Ripple rejection R.R (dBm) Ripple rejection vs. frequency (LDO1) −20 −40 Ta = +25 °C VBAT = 3.6 V OUT1 = 1 µF OUT1 = 18 Ω CONT1 = “L” CONT6 = OPEN −60 −80 −100 10 100 1k 10 k 100 k 0 Ta = +25 °C VBAT = 3.6 V OUT1 = 1 µF CONT1 = “L” CONT6 = OPEN −20 −40 −60 −80 −100 1M 10 100 Frequency f (Hz) Output voltage VOUT1 (V) Dropout voltage VDO (V) Ta = +85 °C 0.4 0.3 Ta = −20 °C 0.2 Ta = +25 °C 0.1 0.0 0 −50 −100 −150 VBAT 0 1.5 1.0 Ta = +25°C OUT1 = 18 Ω CONT1 = “L” CONT6 = OPEN 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 14 2.0 0.5 0.0 Output voltage VOUT1 (V) Power supply voltage VBAT 10 OUT1 2.11 2.10 2.09 −20 0 20 40 60 80 Ambient temperature Ta ( °C) Output voltage rising waveforms (LDO1) t (ms) 1M VBAT = 3.6 V CONT1 = OPEN CONT6 = “H” 2.12 2.08 −40 −200 Load current ILOAD (mA) 5 100 k Output voltage vs. ambient temperature (LDO1) 2.13 VBAT = 2.1 V CONT1 = OPEN CONT6 = “H” 0.5 10 k Frequency f (Hz) Dropout voltage vs. load current (LDO1) 0.6 1k 100 Ta = +25°C OUT1 = No load CONT1 = “L” CONT6 = OPEN 3 2 1 VBAT 2 0 1 OUT1 0 0 4 2 VBAT 0 2 1 OUT1 t (s) Output voltage rising waveforms (LDO1) 4 2 CONT1 OUT1 2 1 0 20 40 60 0 Output voltage VOUT1 (V) Input voltage VCONT1 (V) Input voltage VCONT1 (V) t (ms) Ta = +25°C VBAT = 3.6 V OUT1 = 18 Ω CONT6 = OPEN Output voltage falling waveforms (LDO1) 10 CONT1 5 Ta = +25°C VBAT = 3.6 V OUT1 = No load CONT6 = OPEN 0 0.5 0.0 20 40 60 VBAT = 3.6 V Ta = +25°C VBAT = 3.6 V CONT1 = “L” CONT6 = OPEN 1.5 1.0 2 0.5 1 0.0 VC 0 30 40 −120 mA 50 60 70 80 NPN collector voltage VC (V) Output voltage VOUT1 (V) [Measurement diagram] OUT1 2.0 20 80 100 120 140 160 180 200 t (ms) Waveform at rapid change of output load (LDO1) 10 1.5 OUT1 t (µs) 0 2.0 1.0 0 80 100 120 140 160 180 200 OUT1 = 0 A 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 50 100 150 200 250 300 350 400 450 500 0 Ta = +25°C VBAT = 1 µF OUT1 = No load CONT1 = “L” CONT6 = OPEN Output voltage VOUT1 (V) 4 Output voltage falling waveforms (LDO1) Output voltage VOUT1 (V) Output voltage falling waveforms (LDO1) Output voltage VOUT1 (V) Power supply voltage VBAT (V) Power supply voltage VBAT (V) MB3891 VREF = 1.225 V (IC internal) LDO1 OUT1 120 mA 1 µF VC 4V 0V 90 100 t (µs) (Continued) 15 Waveform at rapid change of output load (LDO1) OUT1 2.0 1.5 1.0 VC 0.5 2 Ta = +25°C VBAT = 3.6 V CONT1 = “L” CONT6 = OPEN 0.0 1 0 OUT1 = −120 mA 0 A NPN Collector voltage VC (V) Output voltage VOUT1 (V) MB3891 [Measurement diagram] VBAT = 3.6 V VREF = 1.225 V (IC internal) LDO1 OUT1 120 mA 1 µF VC 4V 0V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t (ms) 3.0 OUT2 Ta = +25°C VBAT = 3.6 V CONT1 = “L” CONT2 = “H” CONT6 = OPEN 2.5 2.0 1.5 1.0 3 2 0.5 1 VC 0.0 0 OUT2 = 0 A −50 mA 0 10 20 30 40 50 60 70 80 [Measurement diagram] VBAT = 3.6 V NPN Collector voltage VC (V) Output voltage VOUT2 (V) Waveform at rapid change of output load (LDO2) VREF = 1.225 V (IC internal) LDO2 OUT2 50 mA 1 µF VC 4V 0V 90 100 t (µs) 3.0 OUT2 2.5 2.0 VC 1.5 1.0 3 Ta = +25°C VBAT = 3.6 V CONT1 = “L” CONT2 = “H” CONT6 = OPEN OUT2 = −50 mA 0 A 0.5 0.0 0 10 20 30 40 50 60 70 80 2 1 0 NPN Collector voltage VC (V) Output voltage VOUT2 (V) Waveform at rapid change of output load (LDO2) [Measurement diagram] VBAT = 3.6 V VREF = 1.225 V (IC internal) LDO2 OUT2 50 mA 1 µF VC 4V 0V 90 100 t (ms) (Continued) 16 MB3891 Reference voltage vs. power supply voltage Reference voltage vs. ambient temperature 1.24 Reference voltage VFIL (V) Reference voltage VFIL (V) 1.4 1.2 1.0 0.8 0.6 0.4 Ta = +25 °C VFIL = 0.1 µF 0.2 0.0 0 1 2 3 4 5 6 7 VBAT = 3.6 V 1.23 1.22 1.21 1.20 1.19 −40 −20 10000 1000 VSIMOUT = No load 100 Ta = +25 °C VBAT = 3.6 V VSIM-ON = “H” SIMPROG = “H” 0 1 2 3 4 5 Power supply voltage VCC-VSIM (V) Power supply current ICC-VSIM (µA) Power supply current ICC-VSIM (µA) VSIMOUT = 510 Ω 1 40 60 80 100 Power supply current vs. power supply voltage (VSIMOUT Chargepump) Power supply current vs. power supply voltage (VSIMOUT Chargepump) 10 20 Ambient temperature Ta ( °C) Power supply voltage VBAT (V) 100000 0 100000 VSIMOUT = 510 Ω 10000 1000 VSIMOUT = No load 100 Ta = +25 °C VBAT = 3.6 V VSIM-ON = “H” SIMPROG = “L” 10 1 0 1 2 3 4 5 Power supply voltage VCC-VSIM (V) Output voltage VSIMOUT (V) Output voltage vs. power supply voltage (VSIMOUT Chargepump) 5 SIMPROG = “H” VSIMOUT = No load 4 3 SIMPROG = “L” VSIMOUT = No load 2 Ta = +25 °C VBAT = 3.6 V VSIM-ON = “H” 1 0 0 1 2 3 4 5 6 7 Power supply voltage VCC-VSIM (V) (Continued) 17 MB3891 3.00 2.99 2.98 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.90 Output voltage vs. load current (VSIMOUT Chargepump) Ta = +25 °C VSIM-ON = “H” SIMPROG = “L” VCC-VISM = 5.5 V VCC-VISM = 3.1 V VCC-VISM = 3.6 V 0 −5 −10 −15 5.00 Output voltage VSIMOUT (V) Output voltage VSIMOUT (V) Output voltage vs. load current (VSIMOUT Chargepump) −20 Ta = +25 °C VSIM-ON = “H” SIMPROG = “H” 4.95 4.90 4.80 VCC-VISM = 3.1 V 4.75 4.65 4.60 0 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” VCAP+ VCAP− = 0.1 µF VSIMOUT = 10 µF VSIMOUT = 510 Ω Ripple rejection R.R (dBm) 100 1k 10 k 100 k 0 −15 −20 −40 −60 −80 −100 100 1k 10 k 100 k Frequency f (Hz) Frequency f (Hz) Ripple rejection vs. frequency (VSIMOUT Chargepump) Ripple rejection vs. frequency (VSIMOUT Chargepump) −20 −40 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VCAP+ VCAP− = 0.1 µF VSIMOUT = 10 µF VSIMOUT = 510 Ω −60 −80 −100 100 1k 10 k Frequency f (Hz) 100 k −20 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” VCAP+ VCAP− = 0.1 µF VSIMOUT = 10 µF 10 1M 0 10 Ripple rejection R.R (dBm) −40 1M Ripple rejection R.R (dBm) Ripple rejection R.R (dBm) −20 10 −10 Ripple rejection vs. frequency (VSIMOUT Chargepump) 0 −100 −5 Load current ILOAD (mA) Ripple rejection vs. frequency (VSIMOUT Chargepump) −80 VCC-VISM = 3.6 V 4.70 Load current ILOAD (mA) −60 VCC-VISM = 5.5 V 4.85 0 1M Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VCAP+ VCAP− = 0.1 µF VSIMOUT = 10 µF −20 −30 −40 −80 −100 10 100 1k 10 k 100 k 1M Frequency f (Hz) (Continued) 18 MB3891 Ta = +25 °C VSIM-ON = “H” SIMPROG = “L” ILOAD = −10 mA ILOAD = −1 mA 3.5 4.5 4.0 5.0 5.5 ILOAD = −10 mA ILOAD = −1 mA 3.0 3.5 4.5 4.0 5.0 5.5 Power supply voltage VCC-VSIM (V) Efficiency vs. load current (VSIMOUT Chargepump) Efficiency vs. load current (VSIMOUT Chargepump) Efficiency η (%) VCC-VSIM = 5.5 V VCC-VSIM = 3.6 V VCC-VSIM = 3.1 V −5 −10 −15 −20 0 VSIMOUT 5 4 3 2 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V SIMPROG = “H” VSIMOUT = 510 Ω 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t (ms) 1 0 Output voltage VSIMOUT (V) Input voltage VSIM-ON (V) 10 VSIM-ON VCC-VSIM = 3.1 V VCC-VSIM = 3.6 V VCC-VSIM = 5.5 V Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” −5 −10 −15 −20 Load current ILOAD (mA) Output voltage rising waveforms (VSIMOUT Chargepump) 5 100 90 80 70 60 50 40 30 20 10 0 0 Load current ILOAD (mA) Input voltage VSIM-ON (V) Ta = +25 °C VSIM-ON = “H” SIMPROG = “H” Power supply voltage VCC-VSIM (V) Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” 0 100 90 80 70 60 50 40 30 20 10 0 Output voltage rising waveforms (VSIMOUT Chargepump) 10 5 VSIM-ON 0 VSIMOUT 3 2 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V SIMPROG = “L” VSIMOUT = 510 Ω 1 0 Output voltage VSIMOUT (V) 100 90 80 70 60 50 40 30 20 10 0 Efficiency vs. power supply voltage (VSIMOUT Chargepump) Efficiency η (%) 100 90 80 70 60 50 40 30 20 10 0 3.0 Efficiency η (%) Efficiency η (%) Efficiency vs. power supply voltage (VSIMOUT Chargepump) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t (ms) (Continued) 19 5 SIMPROG 0 VSIMOUT 5 4 3 2 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIMOUT = 510 Ω VSIM-ON = “H” 1 0 Output voltage falling waveforms (VSIMOUT Chargepump) 10 5 SIMPROG 4 VSIMOUT Ta = +25 °C VBAT = VCC-SIM = 3.6 V VSIMOUT = 510 Ω VSIM-ON = “H” 2 1 VSIMOUT 0 15 20 25 30 35 40 45 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V SIMPROG = “L” VSIMOUT = 510 Ω 5 0 VSIM-ON 3 2 1 VSIMOUT 0 0 50 5 10 15 20 t (ms) Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV) 0 −20 −40 0 2 4 6 8 10 t (µs) 35 40 45 50 Output voltage waveforms (VSIMOUT Chargepump) Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” VSIMOUT = No load AC COUPLED 20 30 t (ms) Output voltage waveforms (VSIMOUT Chargepump) 40 25 Output voltage VSIMOUT (V) 3 10 Output voltage VSIMOUT (V) Input voltage VSIM-ON (V) Input voltage VSIM-ON (V) 5 4 5 Output voltage falling waveforms (VSIMOUT Chargepump) 10 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V SIMPROG = “H” VSIMOUT = 510 Ω VSIM-ON 0 0 t (ms) Output voltage falling waveforms (VSIMOUT Chargepump) 0 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t (ms) 5 3 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 5 0 Output voltage VSIMOUT (V) 10 Input voltage VSIMPROG (V) Output voltage rising waveforms (VSIMOUT Chargepump) Output voltage VSIMOUT (V) Input voltage VSIMPROG (V) MB3891 12 14 16 18 20 Ta = +25 °C VBAT = VCC-SIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VSIMOUT = No load AC COUPLED 20 0 −20 0 2 4 6 8 10 12 14 16 18 20 t (µs) (Continued) 20 MB3891 Output voltage waveforms (VSIMOUT Chargepump) 40 20 0 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VSIMOUT = 510 Ω AC COUPLED −20 −40 0 2 4 6 8 10 12 14 16 18 Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV) Output voltage waveforms (VSIMOUT Chargepump) 20 0 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VSIMOUT = 5.1 kΩ AC COUPLED −20 20 0 2 4 6 8 10 t (µs) 40 20 0 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” VSIMOUT = 510 Ω AC COUPLED −40 0 2 4 6 8 10 16 20 18 12 14 16 18 60 40 20 0 −20 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” VSIMOUT = 5.1 kΩ AC COUPLED −40 −60 20 0 2 4 6 8 t (µs) 10 12 14 16 18 20 t (µs) Output voltage vs. input voltage (SIM Inter- Output voltage vs. input voltage (SIM Interface) 5 2.5 SIMPROG = "H" 4 SIMPROG = "L" 3 2 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" CONT1 = "L" CONT6 = OPEN 1 0 0.0 0.5 1.0 1.5 2.0 Input voltage VUPIO (V) 2.5 Output voltage VUPIO (V) Output voltage VSIMIO (V) 14 Output voltage waveforms (VSIMOUT Chargepump) Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV) Output voltage waveforms (VSIMOUT Chargepump) −20 12 t (µs) 2.0 1.5 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” or “H” CONT1 = “L” CONT6 = OPEN 1.0 0.5 0.0 0 1 2 3 4 5 Input voltage VSIMIO (V) (Continued) 21 MB3891 (Continued) Output voltage vs. ambient temperature (SIM Interface) Output voltage vs. ambient temperature (SIM Interface) 5.00 VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” 3.05 Output voltage VSIMOUT (V) Output voltage VSIMOUT (V) 3.10 3.00 2.95 2.90 2.85 2.80 −40 −20 20 0 40 60 80 100 Ambient temperature Ta ( °C) Power dissipation PD (mW) 1000 800 600 400 200 −20 0 20 40 60 80 Ambient temperature Ta ( °C) 22 4.90 4.85 4.80 4.75 4.70 −40 −20 0 20 40 60 80 Ambient temperature Ta ( °C) Power dissipation vs. ambient temperature 0 −40 VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “H” 4.95 100 100 MB3891 ■ FUNCTIONAL DESCRIPTION (1) MAIN UVLO/BACKUP UVLO Transient power-on surge states or sudden drops in supply voltage (VBAT2) can cause an IC to operate abnormally, leading to destruction or damage to system elements. To prevent this type of fault, the undervoltage lockout circuits (UVLO/ Backup UVLO) will shut off the output from OUT1 to V-BACKUP if the supply voltage falls below the UVLO circuit threshold voltage (3.0 V/2.8 V typ.). System operation is restored as soon as the supply voltage rises above the UVLO circuits threshold voltage (3.2 V typ.). (2) LDO1 The LDO1 circuits uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the OUT1 terminal (pin 12,13). Power can be drawn from the OUT1 terminal for external use, up to a maximum load current of 120 mA. (3) XPOWERGOOD (RESET) When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), after a delay interval set by a capacitor (CDELAYCAP) connected to the DELAYCAP terminal (pin 18), the XPOWERGOOD terminal (pin 17) goes to “H” level and resets the microcomputer. At the same time, the LDO2, LDO3, and LDO4 output is controlled ON/OFF. (4) LDO2 The LDO2 circuit uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT2 terminal (pin 6,7) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is input at the CONT2 terminal (pin 16). Power can be drawn from the OUT2 terminal for external use, up to a maximum load current of 50 mA. (5) General Purpose switches Any of the OUT terminals can be connected to any SW-INPUT terminal so that when the corresponding SWON terminal is at “H” level, the OUT terminal voltage can be drawn from the associated SW-OUTPUT terminal. (6) LDO3 The LDO3 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT3 terminal (pin 3,4) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is input at the CONT3 terminal (pin 56). Power can be drawn from the OUT3 terminal for external use, up to a maximum load current of 100 mA. (7) LDO4 The LDO4 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT4 terminal (pin 40,41) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is input at the CONT3 terminal (pin 56) , and an “L” level signal is input at the CONT4 terminal (pin 44). When an “H” level signal is input at the CONT4 terminal, the output voltage at the OUT4 terminal is 2.5 V (typ.). Power can be drawn from the OUT4 terminal for external use, up to a maximum load current of 100 mA. 23 MB3891 (8) LDO5 The LDO5 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT5 terminal (pin 57) when the OUT1 terminal (pin 12,13) is in output state and an “H” level signal is input at the CONT5 terminal (pin 57). Power can be drawn from the OUT5 terminal for external use, up to a maximum load current of 50 mA. (9) LDO6 The LDO6 circuit uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the V-BACKUP terminal (pin 21). Power can be drawn for external use, from the V-BACKUP terminal, up to a maximum load current of 250 µA. (10) REF-OUT This circuit uses the reference voltage generated by the reference voltage block (1.225 V typ.) to produce a temperature compensated reference voltage (1.225 V typ.) at the REF-OUT terminal(pin 24) by means of a voltage follower. The reference voltage can also be drawn from the REF-OUT terminal for external use, up to a load current of 50 µA. (11) VSIMOUT Chargepump The VSIMOUT charge pump uses the voltage from the battery and generates 5.0 V (typ.) voltage at the VSIMOUT terminal (pin 29) when an “H” level signal is input at the SIMPROG terminal (pin 27) , or 3.0 V (typ.) voltage when an “L” level signal input at the SIMPROG terminal. This voltage can also be drawn from the VSIMOUT terminal for external use, up to a load current of 10 mA. (12) GSM/SIM Logic Translation µP Interface When a signal is input from the microprocessor to the RESET-IN terminal(pin 33) and CLK-IN terminal (pin 34), a level-shifted voltage is output from the RST terminal (pin 36) and CLK terminal (pin 37) to the SIM card. The µP-IO terminal (pin 35) and SIM-IO terminal (pin 38) are input/output pins and carry signals between the microprocessor and SIM card. (13) SIM Interface 5 V (SIMPROG = “H”) When an “H” level signal is input to the SIMPROG terminal (pin 27), 5.0 V (typ.) voltage is generated from the VSIMOUT terminal (pin 29) as a power supply for the SIM card. (14) SIM Interface 3 V (SIMPROG = “L”) When an “L” level signal is input to the SIMPROG terminal (pin 27), 3.0 V (typ.) voltage is generated from the VSIMOUT terminal (pin 29) as a power supply for the SIM card. ■ SETTING THE XPOWERGOOD TIME When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), the capacitor (CDELAYCAP) connected to the DELAYCAP terminal (pin 18) starts charging, the XPOWERGOOD terminal (pin 17) voltage rises. The XPOWERGOOD terminal voltage rising time (XPOWERGOOD time) can be set by a capacitor connected to the DELAYCAP terminal. XPOWERGOOD time : TXPG (s) =: 0.8 × CDELAYCAP (µF) 24 MB3891 ■ OPERATION TIMING CHART Input VBAT1 to VBAT4, VCC-VSIM CONT1 CONT6 CONT5 CONT2 CONT3 SW1-ON SW2-ON (SW3-ON) VSIM-ON SIMPROG Output REF-OUT OUT6 2.0 V OUT1 XPOWERGOOD delay OUT5 OUT2 OUT3 (OUT4) SW1-OUTPUT SW2-OUTPUT (SW3-OUTPUT) VSIMOUT = 3 V VSIMOUT (1) (1) : Battery controlled (2) : BACKUP UVLO ON (3) : phone turned on (4) : XPOWERGOOD on (2) (3) (4) (5) (6) (7) (8) (9) VSIMOUT = 5 V (10) (11) (12) (13) (14) (15) (16) (17) (5) : OUT1 hold (6) to (12) : µP controlled (14) : Main UVLO off (16) : BACKUP UVLO off 25 MB3891 ■ APPLICATION EXAMPLE C12 1 µF 20 VBAT2 KEYPAD C11 1 µF 8 9 10 11 VBAT1 14 CONT1 µP 15 CONT6 R1 200 kΩ OUT1 12 13 C1 1 µF 16 CONT2 XPOWERGOOD 17 53 SW1-ON DELAYCAP 18 54 SW2-ON GND1 19 C2 0.033 µF 55 SW3-ON R2 200 kΩ 56 CONT3 57 CONT5 R3 200 kΩ R4 200 kΩ R5 200 kΩ 6 7 C3 1 µF SW2-INPUT 52 44 CONT4 SW2-OUTPUT 51 22 VREF C8 0.1 µF OUT2 23 VFIL 24 REF-OUT 26 VSIM-ON SW3-INPUT 48 SW3-OUTPUT 47 60 VBAT3 61 62 27 SIMPROG OUT3 3 4 33 RESET-IN 34 CLK-IN 35 µP-IO C13 1 µF C4 1 µF GND3 5 SW1-INPUT 46 SW1-OUTPUT 45 25 VCC-VSIM OUT5 58 C5 1 µF 28 OSC GND5 59 C9 10 µF 29 VSIMOUT C10 0.1 µF 30 VCAP+ 31 VCAP− 36 RST SIM 42 VBAT4 43 37 CLK OUT4 40 41 C14 1 µF C6 1 µF GND4 39 38 SIM-IO V-BACKUP 21 32 GND-VSIM C7 1 µF N.C. Pin : 1, 2, 49, 50, 63, 64 26 MB3891 ■ USAGE PRECAUTIONS • Printed circuit board ground lines should be set up with consideration for common impedance. • Take appropriate static electricity measures. • Containers for semiconductor materials should have anti-static protection or be made of conductive material. • After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers. • Work platforms, tools, and instruments should be properly grounded. • Working personal should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground. • Do not apply negative voltages The use of negative voltages below -0.3V may create parasitic transistors on LSI lines, Which can cause abnormal operation. ■ ORDERING INFORMATION Part number MB3891PFV Package Remarks 64-pin Plastic LQFP (FPT-64P-M03) 27 MB3891 ■ PACKAGE DIMENSION 64-pin plastic LQFP (FPT-64P-M03) Note : Pins width and pins thickness include plating thickness. 12.00±0.20(.472±.008)SQ 10.00±0.10(.394±.004)SQ 48 33 49 32 0.08(.003) Details of "A" part INDEX +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 64 17 "A" LEAD No. 1 0.50±0.08 (.020±.003) 0~8° 16 0.18 .007 +0.08 –0.03 +.003 –.001 0.08(.003) M 0.145±0.055 (.006±.002) 0.50±0.20 (.020±.008) 0.45/0.75 (.018/.030) C 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) 1998 FUJITSU LIMITED F64009S-3C-6 Dimensions in mm (inches) . MB3891 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 F0007 FUJITSU LIMITED Printed in Japan All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.