FUJITSU MB89PV650ACF

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-12530-1E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89650AR Series
MB89653AR/655AR/656AR/657AR/P657A
MB89PV650A
■ DESCRIPTION
The MB89650AR series has been developed as a general-purpose version of the F2MC*-8L family consisting
of proprietary 8-bit, single-chip microcontrollers.
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as
dual-clock control system, five operating speed control stages, timers, PWM timers, a serial interface, an A/D
converter, external interrupts, an LCD controller/driver, and a watch prescaler.
*: F2MC stands for FUJITSU Flexible Microcontroller.
■ FEATURES
•
•
•
•
•
•
•
•
•
•
•
F2MC-8L family CPU core
Dual-clock control system
Maximum memory space: 64 Kbytes
Minimum execution time: 0.4 µs/10 MHz
Interrupt processing time: 3.6 µs/10 MHz
I/O ports: max. 64 channels
21-bit time-base counter
8-bit PWM timers: 2 channels (A maximum of 4 channels can be used for output.)
8/16-bit timer/counter: 4 channels (16 bits × 2 channels)
8-bit serial I/O: 1 channel
8-bit A/D converter: 8 channels
(Continued)
■ PACKAGE
100-pin Plastic SQFP
(FPT-100P-M05)
100-pin Plastic QFP
(FPT-100P-M06)
100-pin Ceramic MQFP
(MQP-100C-P02)
MB89650AR Series
(Continued)
• External interrupt 1
Four independent channels with edge detection function
• External interrupt 2 (wake-up function)
Twelve “L” level-interrupt channels
• Watch prescaler
• LCD controller/driver: 16 to 32 segments × 2 to 4 commons
• Power-on reset function
• Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
• SQFP-100 and QFP-100 packages
■ PRODUCT LINEUP
Part number
MB89653AR MB89655AR
MB89656AR
MB89657AR
MB89P657A
MB89PV650A
One-time
PROM product
Piggyback/
evaluation product
(for evaluation and
development)
Parameter
Classification
Mass production products
(mask ROM products)
ROM size
8 K × 8 bits
(internal
mask
ROM)
RAM size
256 × 8 bits
16 K × 8 bits
24 K × 8 bits 32 K × 8 bits
(internal
(internal
(internal
mask
mask
mask
ROM)
ROM)
ROM)
512 × 8 bits
768 × 8 bits
LCD display
RAM
32 K × 8 bits
(internal PROM,
programming
with generalpurpose EPROM
programmer)
32 K × 8 bits
(external ROM)
1 K × 8 bits
16 × 8 bits
CPU functions
Number of instructions:
Instruction bit length:
Instruction length:
Data bit length:
Minimum execution time:
Interrupt processing time:
136
8 bits
1 to 3 bytes
1, 8, 16 bits
0.4 µs/10 MHz to 6.4 µs/10 MHz, 61.0 µs/32.768 kHz
3.6 µs/10 MHz to 57.6 µs/10 MHz, 549.3 µs/32.768 kHz
Ports
Input ports:
Output ports:
I/O ports:
Total:
8 (All also serve as peripherals.)
8 (All also serve as peripherals.)
48 (All also serve as peripherals.)
64
8-bit timer 1,
8-bit timer 2
8-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 µs)
16-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 µs)
2 output channels are enabled when operating as an 8-bit timer.
8-bit timer 3,
8-bit timer 4
8-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 µs)
16-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 µs)
2 output channels are enabled when operating as an 8-bit timer.
Clock timer
21 bits × 1 (in main clock mode)/15 bits × 1 (at 32.768 kHz)
8-bit PWM
timer 1,
8-bit PWM
timer 2
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs to 3.3 ms)
8-bit resolution PWM operation (conversion cycle: 102 µs to 839 ms)
Both 8-bit PWM timer 1 and 8-bit PWM timer 2 can output 2 channels.
(Continued)
2
MB89650AR Series
(Continued)
Part number
MB89653AR MB89655AR
Parameter
8-bit serial I/O
MB89656AR
MB89657AR
MB89P657A
MB89PV650A
8 bits
LSB first/MSB first selectability
One clock selectable from four transfer clocks
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)
8-bit A/D
converter
8-bit resolution × 8 channels
A/D conversion mode (conversion time: 18 µs)
Sense mode (conversion time: 5 µs)
Continuous activation by an internal timer capable
Reference voltage input
External
interrupt 1
4 independent channels (edge selection)
Rising edge/falling edge selectability
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)
External
interrupt 2
(wake-up
function)
“L” level interrupt × 12 channels
Standby mode
Subclock mode, sleep mode, watch mode, and stop mode
Process
CMOS
Operating
voltage*
2.2 V to 6.0 V
EPROM for use
2.7 V to 6.0 V

MBM27C256A20TVM
* : Varies with conditions such as the operating frequency. (See section “■ Electrical Characteristics.”)
In the case of the MB89PV650A, the voltage varies with the restrictions of the EPROM for use.
■ PACKAGE AND CORRESPONDING PRODUCTS
MB89653AR
MB89655AR
MB89656AR
MB89657AR
MB89P657A
Package
MB89PV650A
FPT-100P-M05
×
FPT-100P-M06
×
MQP-100C-P02
: Available
×
× : Not available
Note: For more information about each package, see section “■ Package Dimensions.”
3
MB89650AR Series
■ DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.
Take particular care on the following points:
• On the MB89653AR, the upper half of the register bank cannot be used.
• On the MB89P657A, the program area starts from address 8006H but on the MB89PV650A and MB89657AR
starts from 8000H.
(On the MB89P657A, addresses 8000H to 8005H comprise the option setting area, option settings can be read
by reading these addresses. On the MB89PV650A and MB89657A, addresses 8000H to 8005H could also be
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the
MB89P657A.)
• The stack area, etc., is set at the upper limit of the RAM.
2. Current Consumption
• In the case of the MB89PV650A, add the current consumed by the EPROM which is connected to the top socket.
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume
more current than the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same. (For more information, see sections
“■ Electrical Characteristics” and “■ Example Characteristics.”)
3. Mask Options
Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section “■ Mask Options.”
Take particular care on the following points:
• A pull-up resistor cannot be set for P70 to P75 on the MB89P657A. On this product, a pull-up resistor must
be selected in a group of four bits for P14 to P17, P40 to P43, and P44 to P47.
• A pull-up resistor is not selectable for P30 to P37 and P40 to P47 if they are used as LCD pins.
• Options are fixed on the MB89PV650A.
4. Differences between the MB89650A and MB89650AR Series
• Electrical specifications/electrical characteristics
Electrical specifications of the MB89650AR series are the same with that of the MB89650A series.
Electrical characteristics of both series are much the same.
• Oscillation circuit type
In the MB89650A series, the circuit type of using an external clock differs from that of using a crystal or ceramic
resonator as follows.
Circuit type of the MB89650AR series is a circuit type in using external clock even when crystal or ceramic
resonator is selected.
• Memory access area and other specifications of both the MB89650A and MB89650AR series are the same.
4
MB89650AR Series
• I/O circuit type
Type
A
Circuit
Remarks
• Crystal or ceramic oscillation type (main clock)
MB89PV650A and MB89P657A, external clock input
selection versions of MB89653A/655A/656A/657A
At an oscillation feedback resistor of approximately
1 MΩ/5.0 V
X1
X0
Standby control signal
• Crystal or ceramic oscillation type (main clock)
Crystal or ceramic oscillation selection versions of
MB89653A/655A/656A/657A
At an oscillation feedback resistor of approximately
1 MΩ/5.0 V
X1
X0
Standby control signal
■ CORRESPONDENCE BETWEEN THE MB89650A AND MB89650AR SERIES
• The MB89650AR series is the reduction version of the MB89650A series.
• The MB89650A and MB89650AR series consist of the following products:
MB89650A series
MB89653A
MB89655A
MB89656A
MB89657A
MB89650AR
series
MB89653A
R
MB89655A
R
MB89656A
R
MB89657A
R
MB89P657
A
MB89PV650
A
5
P24/SI
P25/SO
P26/SCK
P30/SEG31
P31/SEG30
P32/SEG29
P33/SEG28
P34/SEG27
P35/SEG26
P36/SEG25
P37/SEG24
P40/SEG23
P41/SEG22
P42/SEG21
P43/SEG20
P44/SEG19
P45/SEG18
P46/SEG17
P47/SEG16
SEG15
SEG14
VCC
SEG13
SEG12
SEG11
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
X0A
X1A
VCC
P75
P74
P73
P72/BUZ
P71/EC2
P70/EC1
AVR
AVCC
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
P60/AN0
AVSS
P57/TO22
P56/TO21/HCLK
P55/TO12
P54/TO11/LCLK
P53/PWM22
MB89650AR Series
■ PIN ASSIGNMENT
(Top view)
MOD0
MOD1
X0
X1
VSS
RST
P00/INT20
P01/INT21
P02/INT22
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14/INT28
P15/INT29
P16/INT2A
P17/INT2B
P20
P21
P22
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
(FPT-100P-M05)
P52/PWM21
P51/PWM12
P50/PWM11
COM3/P81
COM2/P80
COM1
COM0
V0
V1
V2
V3
P83
P82
SEG00
SEG01
SEG02
SEG03
SEG04
SEG05
VSS
SEG06
SEG07
SEG08
SEG09
SEG10
MB89650AR Series
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
P75
P74
P73
P72/BUZ
P71/EC2
P70/EC1
AVR
AVCC
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
P60/AN0
AVSS
P57/TO22
P56/TO21/HCLK
P55/TO12
(Top view)
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P54/TO11/LCLK
P53/PWM22
P52/PWM21
P51/PWM12
P50/PWM11
COM3/P81
COM2/P80
COM1
COM0
V0
V1
V2
V3
P83
P82
SEG00
SEG01
SEG02
SEG03
SEG04
SEG05
VSS
SEG06
SEG07
SEG08
SEG09
SEG10
SEG11
SEG12
SEG13
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
P26/SCK
P30/SEG31
P31/SEG30
P32/SEG29
P33/SEG28
P34/SEG27
P35/SEG26
P36/SEG25
P37/SEG24
P40/SEG23
P41/SEG22
P42/SEG21
P43/SEG20
P44/SEG19
P45/SEG18
P46/SEG17
P47/SEG16
SEG15
SEG14
VCC
VCC
X1A
X0A
MOD0
MOD1
X0
X1
VSS
RST
P00/INT20
P01/INT21
P02/INT22
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14/INT28
P15/INT29
P16/INT2A
P17/INT2B
P20
P21
P22
P24/SI
P25/SO
(FPT-100P-M06)
7
MB89650AR Series
O7
O6
O5
O4
VSS
O3
O2
O1
119
118
117
116
115
114
113
N.C.
OE
125
108
N.C.
N.C.
126
107
A3
A11
127
106
A4
A9
128
105
A5
104
109
A6
124
103
N.C.
A7
A2
102
110
A12
123
101
A10
VPP
A1
132
111
VCC
122
131
CE
A14
A0
130
112
A13
121
129
O8
A8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
P52/PWM21
P51/PWM12
P50/PWM11
COM3/P81
COM2/P80
COM1
COM0
V0
V1
V2
V3
P83
P82
SEG00
SEG01
SEG02
SEG03
SEG04
SEG05
VSS
SEG06
SEG07
SEG08
SEG09
SEG10
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P24/SI
P25/SO
P26/SCK
P30/SEG31
P31/SEG30
P32/SEG29
P33/SEG28
P34/SEG27
P35/SEG26
P36/SEG25
P37/SEG24
P40/SEG23
P41/SEG22
P42/SEG21
P43/SEG20
P44/SEG19
P45/SEG18
P46/SEG17
P47/SEG16
SEG15
SEG14
VCC
SEG13
SEG12
SEG11
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
MOD0
MOD1
X0
X1
VSS
RST
P00/INT20
P01/INT21
P02/INT22
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14/INT28
P15/INT29
P16/INT2A
P17/INT2B
P20
P21
P22
120
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
X0A
X1A
VCC
P75
P74
P73
P72/BUZ
P71/EC2
P70/EC1
AVR
AVCC
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
P60/AN0
AVSS
P57/TO22
P56/TO21/HCLK
P55/TO12
P54/TO11/LCLK
P53/PWM22
(Top view)
(MQP-100C-P02)
• Pin assignment on package top (MB89PV650A only)
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
101
VPP
109
N.C.
117
O4
125
OE
102
A12
110
A2
118
O5
126
N.C.
103
A7
111
A1
119
O6
127
A11
104
A6
112
A0
120
O7
128
A9
105
A5
113
O1
121
O8
129
A8
106
A4
114
O2
122
CE
130
A13
107
A3
115
O3
123
A10
131
A14
108
N.C.
116
VSS
124
N.C.
132
VCC
N.C.: Internally connected. Do not use.
8
MB89650AR Series
■ PIN DESCRIPTION
Pin no.
Pin name
QFP*1
MQFP*2
SQFP*3
4
1
MOD0
5
2
MOD1
6
3
X0
7
4
X1
8
5
9
6
10 to 17
Circuit
type
Function
J
Operating mode selection pins
Connect to VSS (GND) when using.
A
Main clock crystal oscillator pins (max. 10 MHz)
VSS

Power supply (GND) pin
RST
J
Reset input pin
7 to 14
P00/INT20 to
P07/INT27
F
General-purpose I/O ports
Also serve as an external interrupt 2 input (wake-up
function).
External interrupt 2 input (INT20 to INT27) is
hysteresis input while port input (P00 to P07) is
CMOS input.
18 to 21
15 to 18
P10/INT10 to
P13/INT13
F
General-purpose I/O ports
Also serve as an external interrupt 1 input.
External interrupt 1 input (INT10 to INT13) is
hysteresis input while port input (P10 to P13) is
CMOS input.
22 to 25
19 to 22
P14/INT28 to
P15/INT2B
F
General-purpose I/O ports
Also serve as an external interrupt 2 input (wake-up
function).
External interrupt 2 input (INT28 to INT2B) is
hysteresis input while port input (P14 to P17) is
CMOS input.
26 to 28
23 to 25
P20 to P22
C
General-purpose I/O ports
29,
30,
31
26,
27,
28
P24/SI,
P25/SO,
P26/SCK
F
General-purpose I/O ports
The output type can be switched between N-ch opendrain and CMOS. These ports also serve as an 8-bit
serial I/O.
The P26/SCK pin is a CMOS input type when it
functions as the port input (P26) while the pin is a
hysteresis input type when it functions as the serial
clock input (SCK).
32 to 47
29 to 44
P36/SEG31 to
P47/SEG26
H
General-purpose I/O ports
Also serve as an LCD controller/driver segment
output.
48,
49
45,
46
SEG15,
SEG14
I
LCD controller/driver segment output pins
*1: FPT-100P-M06
*2: FPT-100P-M05
*3: MQP-100C-P02
(Continued)
9
MB89650AR Series
(Continued)
Pin no.
Circuit
type
Function
MQFP*2
SQFP*3
50
47
51 to 58
48 to 55
59
56
60 to 65
57 to 62
66,
67
63,
64
68 to 71
65 to 68
72,
73
69,
70
COM0,
COM1
I
LCD controller/driver common output pins
74,
75
71,
72
COM2/P80,
COM3/P81
H
General-purpose I/O ports
Also serve as an LCD controller/driver common output.
76 to 79
73 to 76
P50/PWM11 to
P53/PWM22
G
General-purpose output ports
Also serve as an 8-bit PWM timer.
80,
81,
82,
83
77,
78,
79,
80
P54/TO11/LCLK,
P55/TO12,
P56/TO21/HCLK,
P57/TO22
G
General-purpose output ports
Also serve as an 8/16-bit timer.
P54 and P56 also serve as a 32.768 kHz oscillation
output/10 MHz divide-by-two output.
84
81
AVSS

A/D converter power supply (GND) pin
85 to 92
82 to 89
P60/AN0 to
P67/AN7
E
General-purpose input ports
Also serve as an analog input.
93
90
AVCC

A/D converter power supply pin
94
91
AVR

A/D converter reference voltage input pin
95,
96
92,
93
P70/EC1,
P71/EC2
K
General-purpose N-ch open-drain I/O ports
Also serve as an 8/16-bit timer to input hysteresis.
97,
98 to 100
94,
95 to 97
P72/BUZ,
P73 to P75
D
General-purpose N-ch open-drain I/O ports
P72 also serves as a buzzer output.
1
98
VCC

Power supply pin
2
99
X1A
B
Subclock crystal oscillator pins (32.768 kHz)
3
100
X0A
*1: FPT-100P-M06
*2: FPT-100P-M05
*3: MQP-100C-P02
10
Pin name
QFP*1
VCC
SEG13 to
SEG06
VSS

I

Power supply pin
LCD controller/driver segment output pins
Power supply (GND) pin
SEG05 to
SEG00
I
LCD controller/driver segment output pins
P82,
P83
C
General-purpose I/O ports
V3 to V0

LCD driving power supply pins
MB89650AR Series
• External EPROM pins (MB89PV650A only)
Pin no.
Pin name
I/O
Function
101
VPP
O
“H” level output pin
102
103
104
105
106
107
110
111
112
A12
A7
A6
A5
A4
A3
A2
A1
A0
O
Address output pins
113
114
115
O1
O2
O3
I
Data input pins
116
VSS
O
Power supply (GND) pin
117
118
119
120
121
O4
O5
O6
O7
O8
I
Data input pins
122
CE
O
ROM chip enable pin
Outputs “H” during standby.
123
A10
O
Address output pin
125
OE
O
ROM output enable pin
Outputs “L” at all times.
127
128
129
A11
A9
A8
O
Address output pins
130
A13
O
Address output pin
131
A14
O
Address output pin
132
VCC
O
EPROM power supply pin
108
109
124
126
N.C.
—
Internally connected pins
Be sure to leave them open.
11
MB89650AR Series
■ I/O CIRCUIT TYPE
Type
A
Circuit
Remarks
• Crystal or ceramic oscillation type (main clock)
MB89PV650A and MB89P657A, external clock input
selection versions of MB89653AR/655AR/656AR/
657AR
At an oscillation feedback resistor of approximately
1 MΩ/5.0 V
X1
X0
Standby control signal
B
• Crystal or ceramic oscillation type (subclock)
MB89PV650A, MB89P657A
At an oscillation feedback resistor of approximately
4.5 MΩ/5.0 V
X1A
X0A
Standby control signal
• Crystal or ceramic oscillation type (subclock)
MB89653AR/655AR/656AR/657AR
At an oscillation feedback resistor of approximately
4.5 MΩ/5.0 V
X1A
X0A
Standby control signal
C
• CMOS I/O
R
P-ch
P-ch
N-ch
• Pull-up resistor optional (except P82 and P83)
D
• N-ch open-drain I/O
• CMOS input
R
P-ch
N-ch
• Pull-up resistor optional
E
• A/D converter input
• CMOS input
R
P-ch
Ain
N-ch
• Pull-up resistor optional
(Continued)
12
MB89650AR Series
(Continued)
Type
Circuit
F
R
P-ch
P-ch
N-ch
Remarks
• CMOS I/O (when selected as general-purpose ports)
P24 to P26 outputs can be switched between CMOS
and N-ch open-drain.
• When toggled as hysteresis input peripherals.
However, SI input excluded.
• Pull-up resistor optional
G
• CMOS output
P-ch
N-ch
H
P-ch
R
• LCD controller/driver output
• CMOS I/O
N-ch
P-ch
N-ch
P-ch
N-ch
• Pull-up resistor optional
I
P-ch
• LCD controller/driver output
N-ch
P-ch
N-ch
J
K
R
• Hysteresis input
• N-ch open-drain output
P-ch
N-ch
• Pull-up resistor optional
13
MB89650AR Series
■ HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum
Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When
using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital
power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down
resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and
wake-up from stop mode.
14
MB89650AR Series
■ PROGRAMMING TO THE EPROM ON THE MB89P657A
The MB89P657A is an OTPROM version of the MB89650A series.
1. Features
• 32-Kbyte PROM on chip
• Options can be set using the EPROM programmer.
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)
2. Memory Space
Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.
Address
Single chip
EPROM mode
(Corresponding addresses on the EPROM programmer)
0000 H
I/O
0080 H
RAM
0480 H
Not available
8000 H
0000 H
Not available
8006 H
Option area
0006 H
PROM
32 KB
FFFFH
EPROM
32 KB
7FFFH
3. Programming to the EPROM
In EPROM mode, the MB89P657A functions equivalent to the MBM27C256A. This allows the PROM to be
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by
using the dedicated socket adapter.
When the operating ROM area for a single chip is 32 Kbytes (8006H to FFFFH) the PROM can be programmed
as follows:
• Programming procedure
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006H to 7FFFH (note that addresses 8006H to FFFFH
while operating as a single chip assign to 0006H to 7FFFH in EPROM mode).
Load option data into addresses 0000H to 0005H of the EPROM programmer. (For information about each
corresponding option, see “7. Setting OTPROM Options.”)
(3) Program to 0000H to 7FFFH with the EPROM programmer.
15
MB89650AR Series
4. Recommended Screening Conditions
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked
OTPROM microcomputer program.
Program, verify
Aging
+150°C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter
Package
Compatible socket adapter
FPT-100P-M05
ROM-100SQF-28DP-8L
FPT-100P-M06
ROM-100QF-28DP-8L2
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: Connect the ROM-100SQF-28DP-8L jumper pin to VSS when using.
Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or
VCC and VSS can stabilize programming operations.
16
MB89650AR Series
7. Setting OTPROM Options
The programming procedure is the same as that for the PROM. Options can be set by programming values at
the addresses shown on the memory map. The relationship between bits and options is shown on the following
bit map:
• OTPROM option bit map
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
0000H Readable
and
writable
Readable
and
writable
Readable
and
writable
Readable
and
writable
Readable
and
writable
P07
Pull-up
0001H
1: No
0: Yes
P06
Pull-up
1: No
0: Yes
P05
Pull-up
1: No
0: Yes
P04
Pull-up
1: No
0: Yes
P37
Pull-up
0002H
1: No
0: Yes
P36
Pull-up
1: No
0: Yes
P35
Pull-up
1: No
0: Yes
P67
Pull-up
0003H
1: No
0: Yes
P66
Pull-up
1: No
0: Yes
P47 to P44
Pull-up
0004H
1: No
0: Yes
Vacancy
0005H Readable
and
writable
Bit 2
Bit 1
Bit 0
P81
Pull-up
1: No
0: Yes
P80
Pull-up
1: No
0: Yes
Single/dualclock system
1: Dual clock
2: Single
clock
P03
Pull-up
1: No
0: Yes
P02
Pull-up
1: No
0: Yes
P01
Pull-up
1: No
0: Yes
P00
Pull-up
1: No
0: Yes
P34
Pull-up
1: No
0: Yes
P33
Pull-up
1: No
0: Yes
P32
Pull-up
1: No
0: Yes
P31
Pull-up
1: No
0: Yes
P30
Pull-up
1: No
0: Yes
P65
Pull-up
1: No
0: Yes
P64
Pull-up
1: No
0: Yes
P63
Pull-up
1: No
0: Yes
P62
Pull-up
1: No
0: Yes
P61
Pull-up
1: No
0: Yes
P60
Pull-up
1: No
0: Yes
P43 to P40
Pull-up
1: No
0: Yes
P26
Pull-up
1: No
0: Yes
P25
Pull-up
1: No
0: Yes
P24
Pull-up
1: No
0: Yes
P22
Pull-up
1: No
0: Yes
P21
Pull-up
1: No
0: Yes
P20
Pull-up
1: No
0: Yes
Vacancy
Vacancy
Readable
and
writable
Readable
and
writable
P17 to P14
Pull-up
1: No
0: Yes
P13
Pull-up
1: No
0: Yes
P12
Pull-up
1: No
0: Yes
P11
Pull-up
1: No
0: Yes
P10
Pull-up
1: No
0: Yes
Notes: • Set each bit to 1 to erase.
• Do not write 0 to the vacant bit.
The read value of the vacant bit is 1, unless 0 is written to it.
17
MB89650AR Series
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C256A-20TVM
2. Programming Socket Adapter
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato
Co., Ltd.) listed below.
Package
Adapter socket part number
LCC-32(Rectangle)
ROM-32LC-28DP-YG
LCC-32(Square)
ROM-32LC-28DP-S
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
3. Memory Space
Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.
Address
Single chip
Corresponding addresses on the EPROM programmer
0000 H
I/O
0080 H
RAM
0480 H
Not available
8000 H
0000 H
Not available
8006 H
Option area
0006 H
PROM
32 KB
FFFFH
EPROM
32 KB
7FFFH
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006H to 7FFFH.
(3) Program to 0000H to 7FFFH with the EPROM programmer.
18
MB89650AR Series
■ BLOCK DIAGRAM
Output port
Time-base timer
Main clock
oscillator
X0
X1
X0A
X1A
Subclock oscillator
(32.768 kHz)
RST
Reset circuit
P30/SEG31
to P37/SEG24
8
P40/SEG23
to P47/SEG16
8
SEG00
to SEG15
16
COM0, COM1
COM2/P80,
COM3/P81
V0 to V3
I/O port
32
2
2
2
2
Internal bus
Clock controller
8-bit PWM
timer 1
P50/PWM11
8-bit PWM
timer 2
P52/PWM21
8-bit timer/
counter 4
P57/TO22
P51/PWM12
P53/PWM22
P56/TO21
/HCLK
8-bit timer/
counter 3
P71/EC2
8-bit timer/
counter 2
LCD
controller/driver
4
P55/TO12
P54/TO11
/LCLK
8-bit timer/
counter 1
P70/EC1
3
Buzzer output
2
LCD display RAM (16 × 8 bits)
8-bit serial I/O
RAM
External interrupt 2
(wake-up function)
F2MC-8L
CPU
P72/BUZ
P73 to P75
P82, P83
P24/SI
P25/SO
P26/SCK
8
8
4
4
4
4
External interrupt 1
P00/INT20
to P07/INT27
P14/INT28
to P17/INT2B
P10/INT10
to P13/INT13
3
P20 to P22
ROM
Other pins
MOD × 2, VCC × 2
VSS × 2
AVCC, AVSS, AVR
I/O port
8-bit A/D converter
8
8
P60/AN0
to P67/AN7
Input port
19
MB89650AR Series
■ CPU CORE
1. Memory Space
The microcontrollers of the MB89650AR series offer a memory space of 64 Kbytes for storing all of I/O, data,
and program areas. The I/O area is located at the lowest address. The data area is provided immediately above
the I/O area. The data area can be divided into register, stack, and direct areas according to the application.
The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables
of interrupt reset vectors and vector call instructions toward the highest address within the program area. The
memory space of the MB89650AR series is structured as illustrated below.
Memory Space
0000H
MB89PV650A
MB89P657A
I/O
0080H
0100H
0000H
I/O
0080H
RAM
1 KB
Register
MB89655AR
MB89653AR
0000H
0100H
I/O
0080H
RAM
256 B
0100H
Register
01FFH
0280H
I/O
I/O
0100H
0080H
RAM
768 B
0100H
Register
Register
0180H
01FFH
0000H
0080H
RAM
512 B
MB89657AR
MB89656AR
0000H
RAM
1 KB
Register
01FFH
01FFH
0380H
0480H
0480H
Not available
Not available
Not available
Not available
Not available
8006H
8006H
A000H
C000H
External
ROM*
32 KB
E000H
FFFFH
FFFFH
ROM
8 KB
ROM
24 KB
ROM
16 KB
FFFFH
FFFFH
ROM
32 KB
FFFFH
*: This is an internal PROM on the MB89P657A.
Since addresses 8000H to 8005H for the MB89P657A comprise an option area, do not use this area
for the MB89PV650A.
20
MB89650AR Series
2. Registers
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers
in the memory. The following dedicated registers are provided:
Program counter (PC):
A 16-bit register for indicating instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the
instruction is an 8-bit data processing instruction, the lower byte is used.
Temporary accumulator (T):
A 16-bit register which performs arithmetic operations with the accumulator
When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code
16 bits
Initial value
FFFDH
: Program counter
PC
A
: Accumulator
Undefined
T
: Temporary accumulator
Undefined
IX
: Index register
Undefined
EP
: Extra pointer
Undefined
SP
: Stack pointer
Undefined
PS
: Program status
I-flag = 0, IL1, 0 = 11
Other bits are undefined.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for
use as a condition code register (CCR). (See the diagram below.)
Structure of the Program Status Register
15
PS
14
13
12
RP
11
10
9
8
Vacancy Vacancy Vacancy
RP
7
6
H
I
5
4
IL1, 0
3
2
1
0
N
Z
V
C
CCR
21
MB89650AR Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents
and the actual address is based on the conversion rule illustrated below.
Rule for Conversion of Actual Addresses of the General-purpose Register Area
Lower OP codes
RP
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
b1
b0
↓
↓
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and
bits for control of CPU operations at the time of an interrupt.
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared
otherwise. This flag is for decimal adjustment instructions.
I-flag:
Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0
when reset.
IL1, 0:
Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is
higher than the value indicated by this bit.
IL1
IL0
Interrupt level
0
0
0
1
1
0
2
1
1
3
1
High-low
High
Low = no interrupt
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.
Z-flag:
Set when an arithmetic operation results in 0. Cleared otherwise.
V-flag:
Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does
not occur.
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.
Set to the shift-out value in the case of a shift instruction.
22
MB89650AR Series
The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains
eight registers and up to a total of 16 banks can be used on the MB89653AR (RAM 256 × 8 bits). The bank
currently in use is indicated by the register bank pointer (RP).
Note: The number of register banks that can be used varies with the RAM size. Up to a total of 32 banks can
be used on other than the MB89653AR.
Register Bank Configuration
This address = 0100H + 8 × (RP)
R0
R1
R2
R3
R4
R5
R6
R7
16 banks
Memory area
23
MB89650AR Series
■ I/O MAP
Address
Read/write
Register name
00H
(R/W)
PDR0
Port 0 data register
01H
(W)
DDR0
Port 0 data direction register
02H
(R/W)
PDR1
Port 1 data register
03H
(W)
DDR1
Port 1 data direction register
04H
(R/W)
PDR2
Port 2 data register
05H
(R/W)
DDR2
Port 2 data direction register
06H
Register description
Vacancy
07H
(R/W)
SCC
System clock control register
08H
(R/W)
SMC
System mode control register
09H
(R/W)
WDTC
Watchdog time control register
0AH
(R/W)
TBTC
Time-base timer control register
0BH
(R/W)
WCR
Watch prescaler control register
0CH
(R/W)
PDR3
Port 3 data register
0DH
(R/W)
DDR3
Port 3 data direction register
0EH
(R/W)
PDR4
Port 4 data register
0FH
(R/W)
DDR4
Port 4 data direction register
10H
(R/W)
T4CR
Timer 4 control register
11H
(R/W)
T3CR
Timer 3 control register
12H
(R/W)
T4DR
Timer 4 data register
13H
(R/W)
T3DR
Timer 3 data register
14H
Vacancy
15H
Vacancy
16H
(R/W)
PDR5
Port 5 data register
17H
Vacancy
18H
Vacancy
19H
Vacancy
1AH
(W)
ICR6
Port 6 input control register
1BH
(R)
PDR6
Port 6 data register
1CH
(R/W)
PDR7
Port 7 data register
1DH
(R/W)
CHG2
Port 2 switching register
1EH
(R/W)
CNTR1
PWM 0/1 control register
1FH
(W)
COMP1
PWM 0/1 compare register
(Continued)
24
MB89650AR Series
(Continued)
Address
Read/write
Register name
Register description
20H
(R/W)
CNTR2
PWM 2/3 control register
21H
(W)
COMP2
PWM 2/3 compare register
22H
Vacancy
23H
Vacancy
24H
(R/W)
T2CR
Timer 2 control register
25H
(R/W)
T1CR
Timer 1 control register
26H
(R/W)
T2DR
Timer 2 data register
27H
(R/W)
T1DR
Timer 1 data register
28H
(R/W)
SMR
Serial mode register
29H
(R/W)
SDR
Serial data register
2AH
Vacancy
2BH
Vacancy
2CH
Vacancy
2DH
(R/W)
ADC1
A/D converter control register 1
2EH
(R/W)
ADC2
A/D converter control register 2
2FH
(R/W)
ADCD
A/D converter data register
30H
(R/W)
EIE1
External interrupt 1 enable register
31H
(R/W)
EIF1
External interrupt 1 flag register
32H
(R/W)
EIE2
External interrupt 2 enable register
33H
(R/W)
EIF2
External interrupt 2 flag register
34H to 5FH
Vacancy
60H to 6FH
(R/W)
VRAM
Display data RAM
70H
(R/W)
LCR1
LCD controller/driver control register 1
71H
(R/W)
LCR2
LCD controller/driver control register 2
72H
(R/W)
PDR8
Port 8 data register
73H
(W)
DDR8
Port 8 data direction register
74H to 7BH
Vacancy
7CH
(W)
ILR1
Interrupt level setting register 1
7DH
(W)
ILR2
Interrupt level setting register 2
7EH
(W)
ILR3
Interrupt level setting register 3
7FH
Vacancy
Note: Do not use vacancies.
25
MB89650AR Series
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
(AVSS = VSS = 0.0 V)
Parameter
Symbol
Value
Min.
Max.
Unit
Remarks
Power supply voltage
VCC
AVCC
VSS – 0.3
VSS + 7.0
V
A/D converter reference input
voltage
AVR
VSS – 0.3
VSS + 7.0
V
LCD power supply voltage
V0 to V3
VSS – 0.3
VSS + 7.0
V
V0 to V3 must not exceed VCC.
VI
VSS – 0.3
VCC + 0.3
V
Except P70 to P75*2
VI2
VSS – 0.3
VSS + 7.0
V
P70 to P75
VO
VSS – 0.3
VCC + 0.3
V
Except P70 to P75*2
VO2
VSS – 0.3
VSS + 7.0
V
P70 to P75
“L” level maximum output
current
IOL

20
mA
“L” level average output current
IOLAV

4
mA
“L” level total maximum output
current
∑IOL

100
mA
“L” level total average output
current
∑IOLAV

40
mA
“H” level maximum output
current
IOH

–20
mA
“H” level average output current
IOHAV

–4
mA
“H” level total maximum output
current
∑IOH

–50
mA
“H” level total average output
current
∑IOHAV

–20
mA
Power consumption
PD

300
mW
Operating temperature
TA
–40
+85
°C
Storage temperature
Tstg
–55
+150
°C
Input voltage
Output voltage
*1
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
*1: Use AVCC and VCC set at the same voltage.
Take care so that AVR does not exceed AVCC + 0.3 V and AVCC does not exceed VCC, such as when power is
turned on.
*2: VI and VO must not exceed VCC + 0.3 V.
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this
data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
26
MB89650AR Series
2. Recommended Operating Conditions
(AVSS = VSS = 0.0 V)
Symbol
Parameter
VCC
AVCC
Power supply voltage
Value
Unit
Remarks
Min.
Max.
2.2*
6.0*
V
Normal operation assurance range*
MB89653AR/655AR/656AR/657AR
2.7*
6.0*
V
Normal operation assurance range*
MB89PV650A/P657A
1.5
6.0
V
Retains the RAM state in stop mode
A/D converter reference input
voltage
AVR
0.0
AVCC
V
LCD power supply voltage
V0 to V3
VSS
VCC
V
Operating temperature
TA
–40
+85
°C
LCD power supply range
(The optimum value is dependent on
the LCD element in use.)
* : These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1
and “5. A/D Converter Electrical Characteristics.”
6
Analog accuracy assured in the
AVCC = 3.5 V to 6.0 V range
5
Operating voltage (V)
Operation assurance range
4
3
2
1
1.0
2.0
3.0
4.0
5.0 6.0
7.0
8.0
9.0 10.0
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz)
4.0 2.0
0.8
Minimum execution time (instruction cycle) (ms)
0.4
Note: The shaded area is assured only for the MB89653A/655A/656A/657A.
Figure 1
Operating Voltage vs. Main Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the
operating speed is switched using a gear.
27
MB89650AR Series
3. DC Characteristics
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Condition
Value
Unit
Min.
Typ.
Max.

0.7 VCC

VCC + 0.3
V

0.7 VCC

VSS + 6.0
V

0.8 VCC

VCC + 0.3
V

0.8 VCC

VSS + 6.0
V

VSS − 0.3

0.3 VCC
V
—
VSS − 0.3

0.2 VCC
V
Remarks
P20 to P26, P30 to P37,
VIH1
P40 to P47, P60 to P67,
P80 to P83
VIH2
“H” level input
voltage
P72 to P75
Without pullup resistor
P00 to P07, P10 to P17,
VIHS
RST,
MOD0, MOD1,
P26 (at SC input)
VIHS2
P70, P71
Without pullup resistor
P20 to P26, P30 to P37,
VIL
P40 to P47, P60 to P67,
P72 to P75, P80 to P83
“L” level input
voltage
P00 to P07, P10 to P17,
P26 (at SC input),
VIS
P70, P71,
RST,
MOD0, MOD1
Open-drain
output
pin application
voltage
VD
P24 to P26
—
VSS − 0.3

VSS +
0.3
V
VD2
P70 to P75

VSS − 0.3

VSS +
6.0
V
IOH = –2.0 mA
4.0


V
IOL = 4.0 mA


0.4
V
0.0 V < VI <
VCC


±5
µA
Without pullup resistor
VI = 0.0 V
25
50
100
kΩ
With pull-up
resistor
N-ch opendrain
P00 to P07, P10 to P17,
“H” level output
voltage
VOH
P20 to P26, P30 to P37,
P40 to P47, P50 to P57,
P80 to P83
P00 to P07, P10 to P17,
“L” level output
voltage
VOL
P20 to P26, P30 to P37,
P40 to P47, P50 to P57,
P70 to P75, P80 to P83
Input leakage
current
(Hi-z output
leakage
current)
P00 to P07, P10 to P17,
P20 to P26, P30 to P37,
ILI
P40 to P47, P60 to P67,
P70 to P75, P80 to P83,
MOD0, MOD1, RST
P00 to P07, P10 to P17,
Pull-up
resistance
RPULL
P20 to P26, P30 to P37,
P40 to P47, P60 to P67,
P70 to P75, P80 to P81
(Continued)
28
MB89650AR Series
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Pin
Value
Unit
Remarks
Min.
Typ.
Max.
—
12
20
mA
—
1.0
2
mA
MB89653AR/
655AR/656AR/
657AR/PV650A
—
1.5
2.5
mA
MB89P657A
FCH = 10 MHz
VCC = 5.0 V
tinst*2 = 0.4 µs
—
3
7
mA
FCH = 10 MHz
VCC = 3.0 V
tinst*2 = 6.4 µs
—
0.5
1.5
mA
—
50
100
µA
MB89P657A/
655AR/656AR/
657AR/PV650A
—
500
700
µA
MB89P657A
ICCLS
FCL = 32.768 kHz,
VCC = 3.0 V
Subclock sleep
mode
—
15
50
µA
ICCT
FCL = 32.768 kHz,
VCC = 3.0 V
• Watch mode
• Main clock stop
mode at dualclock system
—
3
15
µA
ICCH
TA = +25°C
• Subclock stop
mode
• Main clock stop
mode at singleclock system
—
—
1
µA
IA
FCH = 10 MHz,
when A/D
conversion is
activated
—
1.5
3
mA
FCH = 10 MHz,
TA = +25°C,
when A/D
conversion is
stopped
—
—
1
µA
ICC1
FCH = 10 MHz
VCC = 5.0 V
tinst*2 = 0.4 µs
ICC2
FCH = 10 MHz
VCC = 3.0 V
tinst*2 = 6.4 µs
ICCS1
ICCS2
ICCL
Power supply
current*1
Condition
Sleep mode
Parameter
VCC
AVCC
IAH
FCL = 32.768 kHz,
VCC = 3.0 V
Subclock mode
(Continued)
29
MB89650AR Series
(Continued)
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
LCD divided
resistance
Symbol
RLCD
Pin
Condition

Between
VCC and V0
at VCC = 5.0 V
COM0 to 3 output
RVCOM
impedance
COM0 to 3
SEG0 to 31
output
impedance
RVSEG
SEG0 to 31
ILCDL
V0 to V3,
COM0 to 3,
SEG0 to SEG31
LCD controller/
driver leakage
current
Input capacitance CIN
Other than AVCC,
AVSS, VCC, and VSS
V1 to V3 = 5.0
V

f = 1 MHz
Value
Unit
Min.
Typ.
Max.
300
500
750
kΩ
—

2.5
kΩ
—

15
kΩ
—

±1
µA
—
10

pF
Remarks
*1: The power supply current is measured at the external clock.
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”
Note: For pins which serve as the LCD and ports (P30 to P37, P40 to P47, and P80 to P81), see the port parameter
when these pins are used as ports and the LCD parameter when they are used as LCD pins.
30
MB89650AR Series
4. AC Characteristics
(1) Reset Timing
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
RST “L” pulse width
Value
Condition
tZLZH
—
Min.
Max.
48 tHCYL
—
Unit
Remarks
ns
tZLZH
RST
0.2 VCC
0.2 VCC
(2) Power-on Reset
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Power supply rising time
tR
Power supply cut-off time
tOFF
Condition
—
Value
Unit
Remarks
Min.
Max.
—
50
ms
Power-on reset function only
1
—
ms
Due to repeated operations
Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is
recommended.
tR
tOFF
2.0 V
VCC
0.2 V
0.2 V
0.2 V
31
MB89650AR Series
(3) Clock Timing
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Clock frequency
Clock cycle time
Input clock pulse
width
Input clock rising/
falling time
32
Symbol
Pin
Condition
Value
Min.
Typ.
Max.
Unit
Remarks
FCH
X0, X1
1
—
10
MHz
FCL
X0A, X1A
—
32.768
—
kHz
tHCYL
X0, X1
100
—
1000
ns
tLCYL
X0A, X1A
—
30.5
—
µs
PWH
PWL
X0
20
—
—
ns
External clock
PWLH
PWLL
X0A
—
15.2
—
µs
External clock
tCR
tCF
X0
—
—
10
ns
External clock
—
MB89650AR Series
X0 and X1 Timing and Conditions
tHCYL
PWL
P WH
tCR
tCF
0.8 VCC
0.8 VCC
X0
0.2 VCC
0.2 VCC
0.2 VCC
Main Clock Conditions
When a crystal
or
ceramic resonator is used
X0
When an external clock is used
X0
X1
X1
Open
X0A and X1A Timing and Conditions
tLCYL
PWLL
P WLH
tCR
tCF
0.8 VCC
0.8 VCC
X0A
0.2 VCC
0.2 VCC
0.2 VCC
Subclock Conditions
When a crystal
or
ceramic resonator is used
X0A
X1A
When an external clock is used
X0A
X1A
Open
33
MB89650AR Series
(4) Instruction Cycle
Parameter
Symbol
Instruction cycle
tinst
(minimum execution time)
Value (typical)
Unit
Remarks
4/FCH, 8/FCH, 16/FCH, 64/FCH
µs
(4/FCH) tinst = 0.4 µs when operating at
FCH = 10 MHz
2/FCL
µs
tinst = 61.036 µs when operating at
FCL = 32.768 kHz
Note: When operating at 10 MHz, the cycle varies with the set execution time.
(5) Serial I/O Timing
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Condition
Serial clock cycle time
tSCYC
SCK
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
Serial clock “H” pulse width
tSHSL
Serial clock “L” pulse width
tSLSH
Internal shift
clock mode
SCK
External shift
clock mode
Value
Max.
2 tinst*
—
µs
–200
200
ns
1/2 tinst*
—
µs
1/2 tinst*
—
µs
1 tinst*
—
µs
1 tinst*
—
µs
0
200
ns
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
1/2 tinst*
—
µs
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
1/2 tinst*
—
µs
* : For information on tinst, see “(4) Instruction Cycle.”
Internal Shift Clock Mode
tSCYC
SCK
2.4 V
0.8 V
0.8 V
t SLOV
2.4 V
SO
0.8 V
tIVSH
SI
tSHIX
0.7 VCC
0.7 VCC
0.3 VCC
0.3 VCC
External Shift Clock Mode
tSLSH
SCK
tSHSL
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tSLOV
SO
2.4 V
0.8 V
tIVSH
SI
34
Unit
Min.
tSHIX
0.7 VCC
0.7 VCC
0.3 VCC
0.3 VCC
Remarks
MB89650AR Series
(6) Peripheral Input Timing
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Peripheral input “H” pulse width 1
tILIH1
Peripheral input “L” pulse width 1
tIHIL1
Peripheral input “H” pulse width 2
tILIH2
Peripheral input “L” pulse width 2
tIHIL2
Value
Pin
INT10 to INT13, EC1,
EC2
INT20 to INT2B
Unit
Min.
Max.
1 tinst*
—
µs
1 tinst*
—
µs
2 tinst*
—
µs
2 tinst*
—
µs
Remarks
* : For information on tinst, see “(4) Instruction Cycle.”
tIHIL1
INT10 to INT13,
EC1, EC2
tILIH1
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tIHIL2
tILIH2
INT20 to INT2B
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
35
MB89650AR Series
5. A/D Converter Electrical Characteristics
(AVCC = VCC = +3.5 V to +6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Condition
Typ.
Max.
—
—
8
bit
—
—
±1.5
LSB
—
—
±1.0
LSB
—
—
±0.9
LSB
AVSS – 1.0 LSB
AVSS + 0.5 LSB
AVSS + 2.0 LSB
mV
AVR – 3.0 LSB
AVR – 1.5 LSB
AVR
mV
—
—
0.5
LSB
—
44 tinst*
—
µs
—
12 tinst*
—
µs
—
—
10
µA
0.0
—
AVR
V
0.0
—
AVCC
V
AVR = 5.0V,
when A/D
conversion is
activated
—
100

µA
AVR = 5.0V,
when A/D
conversion is
stopped
—
—
1
µA
Total error
—
Linearity error
Differential linearity
error
Zero transition voltage
VOT
Full-scale transition
voltage
VFST
AVR =
AVCC
—
Interchannel
disparity
A/D mode
conversion time
—
Sense mode
conversion time
Analog port input
current
Unit Remarks
Min.
—
Resolution
Value
—
IAIN
Analog input voltage
—
Reference voltage
—
AN0 to
AN7
IR
AVR
Reference voltage
supply current
IRH
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”
(1) A/D Glossary
• Resolution
Analog changes that are identifiable with the A/D converter.
When the number of bits is 8, analog voltage can be divided into 28 = 256.
• Linearity error (unit: LSB)
The deviation of the straight line connecting the zero transition point (“0000 0000” ↔ “0000 0001”) with the
full-scale transition point (“1111 1111” ↔ “1111 1110”) from actual conversion characteristics
• Differential linearity error (unit: LSB)
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
• Total error (unit: LSB)
The difference between theoretical and actual conversion values
36
MB89650AR Series
Digital output
Theoretical conversion value
1111 1111
1111 • 1110
0000
0000
0000
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Actual conversion value
(1 LSB × N + VOT)
1 LSB =
AVR
256
Linearity error =
Linearity error
Differential linearity error =
Total error =
VNT – (1 LSB × N + VOT)
1 LSB
V( N + 1 ) T – VNT – 1
1 LSB
VNT – (1 LSB × N + 1 LSB)
1 LSB
0010
0001
0000
VOT
VNT
V(N + 1)T
VFST
Analog input
(2) Precautions
• Input impedance of the analog input pins
The A/D converter used for the MB89650AR series contains a sample hold circuit as illustrated below to fetch
analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output
impedance of the external circuit low (below 10 kΩ).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about
0.1 µF for the analog input pin.
Analog Input Equivalent Circuit
Sample hold circuit
.
C =. 33 pF
Analog input pin
Comparator
If the analog input
impedance is higher
than 10 kΩ, it is
recommended to
connect an external
capacitor of approx.
0.1 µF.
.
R =. 6 kΩ
Close for 8 instruction cycles after activating
A/D conversion.
Analog channel selector
• Error
The smaller the | AVR – AVSS |, the greater the error would become relatively.
37
MB89650AR Series
■ EXAMPLE CHARACTERISTICS
(2) “H” Level Output Voltage
(1) “L” Level Output Voltage
VOL vs. IOL
VOL (V)
VCC = 2.5 V
TA = +25°C
0.5
VCC = 3.0 V
0.4
VCC = 4.0 V
VCC = 5.0 V
VCC = 6.0 V
0.3
0.2
TA = +25°C
VCC = 2.5 V
0.8
0.7
0.6
VCC = 3.0 V
0.5
VCC = 4.0 V
VCC = 5.0 V
VCC = 6.0 V
0.4
0.3
0.2
0.1
0.0
VCC – VOH vs. IOH
VCC – VOH (V)
1.0
0.9
0.1
0
1
2
3
4
5
6
7
8
9
0.0
0.0
10
IOL (mA)
(3) “H” Level Input Voltage/“L” Level Input
Voltage (CMOS Input)
VIN vs. VCC
VIN (V)
5.0
4.5
TA = +25°C
4.0
3.5
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
0.5
0.5
1
2
3
4
5
6
7
VCC (V)
–1.5
–2.0
–2.5
–3.0
IOH (mA)
VIN vs.VCC
VIN (V)
5.0
4.5
3.5
0
–1.0
(4) “H” Level Input Voltage/“L” Level Input
Voltage (Hysteresis Input)
4.0
0.0
–0.5
TA = +25°C
VIHS
VILS
0.0
0
1
2
3
4
5
6
7
VCC (V)
VIHS: Threshold when input voltage in hysteresis
characteristics is set to “H” level
VILS: Threshold when input voltage in hysteresis
characteristics is set to “L” level
38
MB89650AR Series
(5) Power Supply Current (External Clock)
ICC1 vs. VCC, ICC2 vs. VCC
ICC (mA)
16
14
ICCS (mA)
5.0
Divide
by 4 (ICC1)
FCH = 10 MHz
TA = +25°C
ICCS1 vs. VCC, ICCS2 vs. VCC
F CH = 10 MHz
TA = +25°C
4.5
4.0
12
Divide by
4 (ICCS1)
3.5
10
Divide
by 8
8
3.0
2.0
6
4
Divide
by 16
1.5
2
Divide by
64 (ICC2)
0.5
0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
VCC (V)
ICCL vs. VCC
ICCL (µA)
200
TA = +25°C
180
0
2.0
35
120
30
100
25
80
20
60
15
40
10
20
5
3.5
4.0
4.5
5.0
5.5
6.0
6.5
VCC (V)
3.0
3.5
4.0
4.5
5.0
0
2.0
5.5
6.0
6.5
VCC (V)
ICCLS vs. VCC
TA = +25°C
45
40
3.0
2.5
ICCLS (µA)
50
140
2.5
Divide
by 16
Divide by
64 (ICCS2)
1.0
160
0
2.0
Divide
by 8
2.5
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
VCC (V)
(Continued)
39
MB89650AR Series
(Continued)
ICCT vs. VCC
ICCT (µA)
20
TA = +25°C
18
1.6
14
1.4
12
1.2
10
1.0
8
0.8
6
0.6
4
0.4
2
0.2
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
0
2.0
6.5
VCC (V)
IA vs. AVCC
IA (µA)
5.0
4.0
140
120
2.5
100
2.0
80
1.5
60
1.0
40
0.5
20
3.0
3.5
4.0
4.5
3.5
5.0
5.5
6.0
40
1
0
2.0
6.5
AVCC (V)
2.5
3.0
3.5
RPULL vs. VCC
TA = +25°C
2
3
5.0
5.5
6.0
6.5
VCC (V)
TA = +25°C
100
10
4.5
IR vs. AVR
(6) Pull-up Resistance
RPULL (kΩ)
1000
4.0
160
3.0
2.5
3.0
180
3.5
0
2.0
2.5
IR (µA)
200
FCH = 10 MHz
TA = +25°C
4.5
TA = +25°C
1.8
16
0
2.0
ICCH vs. VCC
ICCH (µA)
2.0
4
5
6
VCC (V)
4.0
4.5
5.0
5.5
6.0
6.5
AVR (V)
MB89650AR Series
■ INSTRUCTIONS
Execution instructions can be divided into the following four groups:
•
•
•
•
Transfer
Arithmetic operation
Branch
Others
Table 1 lists symbols used for notation of instructions.
Table 1
Instruction Symbols
Symbol
Meaning
dir
Direct address (8 bits)
off
Offset (8 bits)
ext
Extended address (16 bits)
#vct
Vector table number (3 bits)
#d8
Immediate data (8 bits)
#d16
Immediate data (16 bits)
dir: b
Bit direct address (8:3 bits)
rel
Branch relative address (8 bits)
@
Register indirect (Example: @A, @IX, @EP)
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH
Upper 8 bits of accumulator A (8 bits)
AL
Lower 8 bits of accumulator A (8 bits)
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the
instruction in use.)
TH
Upper 8 bits of temporary accumulator T (8 bits)
TL
Lower 8 bits of temporary accumulator T (8 bits)
IX
Index register IX (16 bits)
(Continued)
41
MB89650AR Series
(Continued)
Symbol
Meaning
EP
Extra pointer EP (16 bits)
PC
Program counter PC (16 bits)
SP
Stack pointer SP (16 bits)
PS
Program status PS (16 bits)
dr
Accumulator A or index register IX (16 bits)
CCR
Condition code register CCR (8 bits)
RP
Register bank pointer RP (5 bits)
Ri
General-purpose register Ri (8 bits, i = 0 to 7)
×
Indicates that the very × is the immediate data.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)
Indicates that the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(( × ))
The address indicated by the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
Columns indicate the following:
Mnemonic:
Assembler notation of an instruction
~:
Number of instructions
#:
Number of bytes
Operation:
Operation of an instruction
TL, TH, AH:
A content change when each of the TL, TH, and AH instructions is executed. Symbols in
the column indicate the following:
• “–” indicates no change.
• dH is the 8 upper bits of operation description data.
• AL and AH must become the contents of AL and AH immediately before the instruction
is executed.
• 00 becomes 00.
N, Z, V, C:
An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.
OP code:
Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:
Example: 48 to 4F ← This indicates 48, 49, ... 4F.
42
MB89650AR Series
Table 2
Transfer Instructions (48 instructions)
Mnemonic
~
#
Operation
TL
TH
AH
NZVC
OP code
MOV dir,A
MOV @IX +off,A
MOV ext,A
MOV @EP,A
MOV Ri,A
MOV A,#d8
MOV A,dir
MOV A,@IX +off
MOV A,ext
MOV A,@A
MOV A,@EP
MOV A,Ri
MOV dir,#d8
MOV @IX +off,#d8
MOV @EP,#d8
MOV Ri,#d8
MOVW dir,A
MOVW @IX +off,A
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
–
–
–
–
–
AL
AL
AL
AL
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
++––
++––
++––
++––
++––
++––
++––
––––
––––
––––
––––
––––
––––
45
46
61
47
48 to 4F
04
05
06
60
92
07
08 to 0F
85
86
87
88 to 8F
D5
D6
MOVW ext,A
MOVW @EP,A
MOVW EP,A
MOVW A,#d16
MOVW A,dir
MOVW A,@IX +off
5
4
2
3
4
5
3
1
1
3
2
2
–
–
–
AL
AL
AL
–
–
–
AH
AH
AH
–
–
–
dH
dH
dH
––––
––––
––––
++––
++––
++––
D4
D7
E3
E4
C5
C6
MOVW A,ext
MOVW A,@A
MOVW A,@EP
MOVW A,EP
MOVW EP,#d16
MOVW IX,A
MOVW A,IX
MOVW SP,A
MOVW A,SP
MOV @A,T
MOVW @A,T
MOVW IX,#d16
MOVW A,PS
MOVW PS,A
MOVW SP,#d16
SWAP
SETB dir: b
CLRB dir: b
XCH A,T
XCHW A,T
XCHW A,EP
XCHW A,IX
XCHW A,SP
MOVW A,PC
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
(dir) ← (A)
( (IX) +off ) ← (A)
(ext) ← (A)
( (EP) ) ← (A)
(Ri) ← (A)
(A) ← d8
(A) ← (dir)
(A) ← ( (IX) +off)
(A) ← (ext)
(A) ← ( (A) )
(A) ← ( (EP) )
(A) ← (Ri)
(dir) ← d8
( (IX) +off ) ← d8
( (EP) ) ← d8
(Ri) ← d8
(dir) ← (AH),(dir + 1) ← (AL)
( (IX) +off) ← (AH),
( (IX) +off + 1) ← (AL)
(ext) ← (AH), (ext + 1) ← (AL)
( (EP) ) ← (AH),( (EP) + 1) ← (AL)
(EP) ← (A)
(A) ← d16
(AH) ← (dir), (AL) ← (dir + 1)
(AH) ← ( (IX) +off),
(AL) ← ( (IX) +off + 1)
(AH) ← (ext), (AL) ← (ext + 1)
(AH) ← ( (A) ), (AL) ← ( (A) ) + 1)
(AH) ← ( (EP) ), (AL) ← ( (EP) + 1)
(A) ← (EP)
(EP) ← d16
(IX) ← (A)
(A) ← (IX)
(SP) ← (A)
(A) ← (SP)
( (A) ) ← (T)
( (A) ) ← (TH),( (A) + 1) ← (TL)
(IX) ← d16
(A) ← (PS)
(PS) ← (A)
(SP) ← d16
(AH) ↔ (AL)
(dir): b ← 1
(dir): b ← 0
(AL) ↔ (TL)
(A) ↔ (T)
(A) ↔ (EP)
(A) ↔ (IX)
(A) ↔ (SP)
(A) ← (PC)
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AL
AL
–
–
–
–
AH
AH
AH
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AH
–
–
–
–
dH
dH
dH
dH
–
–
dH
–
dH
–
–
–
dH
–
–
AL
–
–
–
dH
dH
dH
dH
dH
++––
++––
++––
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
++++
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
C4
93
C7
F3
E7
E2
F2
E1
F1
82
83
E6
70
71
E5
10
A8 to AF
A0 to A7
42
43
F7
F6
F5
F0
Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics
are written. (Reverse arrangement of F2MC-8 family)
43
MB89650AR Series
Table 3
Mnemonic
~
#
ADDC A,Ri
ADDC A,#d8
ADDC A,dir
ADDC A,@IX +off
ADDC A,@EP
ADDCW A
ADDC A
SUBC A,Ri
SUBC A,#d8
SUBC A,dir
SUBC A,@IX +off
SUBC A,@EP
SUBCW A
SUBC A
INC Ri
INCW EP
INCW IX
INCW A
DEC Ri
DECW EP
DECW IX
DECW A
MULU A
DIVU A
ANDW A
ORW A
XORW A
CMP A
CMPW A
RORC A
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19
21
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ROLC A
2
1
CMP A,#d8
CMP A,dir
CMP A,@EP
CMP A,@IX +off
CMP A,Ri
DAA
DAS
XOR A
XOR A,#d8
XOR A,dir
XOR A,@EP
XOR A,@IX +off
XOR A,Ri
AND A
AND A,#d8
AND A,dir
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
Arithmetic Operation Instructions (62 instructions)
Operation
TL
TH
AH
NZVC
OP code
(A) ← (A) + (Ri) + C
(A) ← (A) + d8 + C
(A) ← (A) + (dir) + C
(A) ← (A) + ( (IX) +off) + C
(A) ← (A) + ( (EP) ) + C
(A) ← (A) + (T) + C
(AL) ← (AL) + (TL) + C
(A) ← (A) − (Ri) − C
(A) ← (A) − d8 − C
(A) ← (A) − (dir) − C
(A) ← (A) − ( (IX) +off) − C
(A) ← (A) − ( (EP) ) − C
(A) ← (T) − (A) − C
(AL) ← (TL) − (AL) − C
(Ri) ← (Ri) + 1
(EP) ← (EP) + 1
(IX) ← (IX) + 1
(A) ← (A) + 1
(Ri) ← (Ri) − 1
(EP) ← (EP) − 1
(IX) ← (IX) − 1
(A) ← (A) − 1
(A) ← (AL) × (TL)
(A) ← (T) / (AL),MOD → (T)
(A) ← (A) ∧ (T)
(A) ← (A) ∨ (T)
(A) ← (A) ∀ (T)
(TL) − (AL)
(T) − (A)
→ C→A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
00
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
dH
–
–
–
–
dH
–
–
–
dH
dH
00
dH
dH
dH
–
–
–
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
+++–
––––
––––
++––
+++–
––––
––––
++––
––––
––––
++R–
++R–
++R–
++++
++++
++–+
28 to 2F
24
25
26
27
23
22
38 to 3F
34
35
36
37
33
32
C8 to CF
C3
C2
C0
D8 to DF
D3
D2
D0
01
11
63
73
53
12
13
03
C ← A←
–
–
–
++–+
02
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++++
++++
++++
++++
++++
++++
++++
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
14
15
17
16
18 to 1F
84
94
52
54
55
57
56
58 to 5F
62
64
65
(A) − d8
(A) − (dir)
(A) − ( (EP) )
(A) − ( (IX) +off)
(A) − (Ri)
Decimal adjust for addition
Decimal adjust for subtraction
(A) ← (AL) ∀ (TL)
(A) ← (AL) ∀ d8
(A) ← (AL) ∀ (dir)
(A) ← (AL) ∀ ( (EP) )
(A) ← (AL) ∀ ( (IX) +off)
(A) ← (AL) ∀ (Ri)
(A) ← (AL) ∧ (TL)
(A) ← (AL) ∧ d8
(A) ← (AL) ∧ (dir)
(Continued)
44
MB89650AR Series
(Continued)
Mnemonic
~
#
AND A,@EP
AND A,@IX +off
AND A,Ri
OR A
OR A,#d8
OR A,dir
OR A,@EP
OR A,@IX +off
OR A,Ri
CMP dir,#d8
CMP @EP,#d8
CMP @IX +off,#d8
CMP Ri,#d8
INCW SP
DECW SP
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
Operation
(A) ← (AL) ∧ ( (EP) )
(A) ← (AL) ∧ ( (IX) +off)
(A) ← (AL) ∧ (Ri)
(A) ← (AL) ∨ (TL)
(A) ← (AL) ∨ d8
(A) ← (AL) ∨ (dir)
(A) ← (AL) ∨ ( (EP) )
(A) ← (AL) ∨ ( (IX) +off)
(A) ← (AL) ∨ (Ri)
(dir) – d8
( (EP) ) – d8
( (IX) + off) – d8
(Ri) – d8
(SP) ← (SP) + 1
(SP) ← (SP) – 1
Table 4
Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN rel
BP rel
BLT rel
BGE rel
BBC dir: b,rel
BBS dir: b,rel
JMP @A
JMP ext
CALLV #vct
CALL ext
XCHW A,PC
RET
RETI
~
#
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
Mnemonic
PUSHW A
POPW A
PUSHW IX
POPW IX
NOP
CLRC
SETC
CLRI
SETI
~
#
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++++
++++
++++
++++
––––
––––
67
66
68 to 6F
72
74
75
77
76
78 to 7F
95
97
96
98 to 9F
C1
D1
Branch Instructions (17 instructions)
Operation
If Z = 1 then PC ← PC + rel
If Z = 0 then PC ← PC + rel
If C = 1 then PC ← PC + rel
If C = 0 then PC ← PC + rel
If N = 1 then PC ← PC + rel
If N = 0 then PC ← PC + rel
If V ∀ N = 1 then PC ← PC + rel
If V ∀ N = 0 then PC ← PC + reI
If (dir: b) = 0 then PC ← PC + rel
If (dir: b) = 1 then PC ← PC + rel
(PC) ← (A)
(PC) ← ext
Vector call
Subroutine call
(PC) ← (A),(A) ← (PC) + 1
Return from subrountine
Return form interrupt
Table 5
TL
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
––––
––––
––––
––––
––––
––––
––––
––––
–+––
–+––
––––
––––
––––
––––
––––
––––
Restore
FD
FC
F9
F8
FB
FA
FF
FE
B0 to B7
B8 to BF
E0
21
E8 to EF
31
F4
20
30
Other Instructions (9 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
–––R
–––S
––––
––––
40
50
41
51
00
81
91
80
90
45
L
46
B
C
D
E
F
MOV
CMP
ADDC SUBC
A,#d8
A,#d8
A,#d8
A,#d8
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
A,dir
A,dir
A,dir
A,dir
dir,A
A,dir
A,dir
A,dir dir,#d8 dir,#d8
dir: 5 dir: 5,rel
A,dir
dir,A SP,#d16
A,SP
5
ADDC
A
SUBC
A
XCH
XOR
AND
OR
A, T
A
A
A
MOV
MOV
CLRB
BBC
INCW
DECW MOVW MOVW
@A,T
A,@A
dir: 2 dir: 2,rel
IX
IX
IX,A
A,IX
CLRB
BBC
INCW
DECW MOVW MOVW
dir: 1 dir: 1,rel
SP
SP
SP,A
A,SP
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNZ
A,R4
A,R4
A,R4
A,R4
R4,A
A,R4
A,R4
A,R4 R4,#d8 R4,#d8
dir: 4 dir: 4,rel
R4
R4
#4
rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BZ
A,R5
A,R5
A,R5
A,R5
R5,A
A,R5
A,R5
A,R5 R5,#d8 R5,#d8
dir: 5 dir: 5,rel
R5
R5
#5
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BGE
A,R6
A,R6
A,R6
A,R6
R6,A
A,R6
A,R6
A,R6 R6,#d8 R6,#d8
dir: 6 dir: 6,rel
R6
R6
#6
rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BLT
A,R7
A,R7
A,R7
A,R7
R7,A
A,R7
A,R7
A,R7 R7,#d8 R7,#d8
dir: 7 dir: 7,rel
R7
R7
#7
rel
D
E
F
rel
rel
rel
rel
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16
A,EP
C
CMP
@EP,#d8
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BN
A,R3
A,R3
A,R3
A,R3
R3,A
A,R3
A,R3
A,R3 R3,#d8 R3,#d8
dir: 3 dir: 3,rel
R3
R3
#3
MOVW XCHW
IX,#d16
A,IX
B
MOVW
MOVW
A,@IX +d @IX +d,A
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BP
A,R2
A,R2
A,R2
A,R2
R2,A
A,R2
A,R2
A,R2 R2,#d8 R2,#d8
dir: 2 dir: 2,rel
R2
R2
#2
CLRB
BBC
dir: 6 dir: 6,rel
A
MOV
@EP,#d8
MOV
CMP
@IX +d,#d8 @IX +d,#d8
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BC
A,R1
A,R1
A,R1
A,R1
R1,A
A,R1
A,R1
A,R1 R1,#d8 R1,#d8
dir: 1 dir: 1,rel
R1
R1
#1
OR
A,@IX +d
9
XOR
AND
A,@IX +d A,@IX +d
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNC
A,R0
A,R0
A,R0
A,R0
R0,A
A,R0
A,R0
A,R0 R0,#d8 R0,#d8
dir: 0 dir: 0,rel
R0
R0
#0
rel
MOV @IX
+d,A
8
SUBC
A,@IX +d
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP
ADDC
A,@IX +d
7
CMP
A,@IX +d
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 4 dir: 4,rel
A,ext
ext,A A,#d16
A,PC
MOV
A,@IX +d
DAS
6
XOR
AND
OR
DAA
A,#d8
A,#d8
A,#d8
MOVW MOVW CLRB
BBC
INCW
DECW MOVW MOVW
CMPW ADDCW SUBCW XCHW XORW ANDW ORW
A
A
A, T
A
A
A
@A,T
A,@A
dir: 3 dir: 3,rel
EP
EP
EP,A
A,EP
A
A
SETC
4
A
CMP
PUSHW POPW MOV
MOVW CLRC
JMP
CALL
IX
IX
ext,A
PS,A
addr16 addr16
RORC
A
DIVU
3
CLRB
BBC
INCW
DECW JMP
MOVW
dir: 0 dir: 0,rel
A
A
@A
A,PC
A
ROLC
A
SETI
7
PUSHW POPW MOV
MOVW CLRI
A
A
A,ext
A,PS
6
9
5
8
4
2
A
RETI
3
MULU
RET
2
1
SWAP
1
NOP
0
0
H
MB89650AR Series
■ INSTRUCTION MAP
MB89650AR Series
■ MASK OPTIONS
Part number
MB89653AR
MB89655AR
MB89656AR
MB89657AR
MB89P657A
MB89PV650A
Specifying procedure
Specify
when
ordering
masking
Set with EPROM
programmer
Setting not
possible
1
Pull-up resistors
P00 to P07, P10 to P17,
P20 to P22, P24 to P26,
P30 to P37, P40 to P47,
P60 to P67, P70 to P75,
P80 to P81
Specify by
pin
Can be set per pin.
(Select in a group of
four bits for P14 to
P17, P40 to P43, and
P40 to P47.)
(P75 to P70 are
available only for
without a pull-up
resistor.)
Fixed to without
pull-up resistor
2
Power-on reset selection
With power-on reset
Without power-on reset
Selectable
With power-on reset
Fixed to with
power-on reset
3
Selection of the oscillation stabilization
time initial value
Crystal oscillator: 218/FCH
(Approx. 26.2 ms*1)
Ceramic oscillator: 213/FCH
(Approx. 26.2 ms*1)
Selectable
218/FC H
(Approx. 26.2 ms*1)
Fixed to 218/FCH
(Approx. 26.2 ms*1)
4
Selection either single- or dual-clock
system
Single clock
Dual clock
Selectable
Setting possible
Fixed to dual-clock
system
No.
Selection of a built-in booster*
5
Can be selected from
the following six
options:
-101: Without booster
2
Without booster
With booster
(Segment output switching)
16 segments:Selection of P30 to P37
and P40 to P47
20 segments:Selection of P30 to P37
and P40 to P43
24 segments:Selection of P30 to P37
28 segments:Selection of P30 to P33
32 segments:No port selection
Selectable
-102: 16 segments
Fixed to without
booster
-103: 20 segments
-104: 24 segments
-105: 28 segments
-106: 32 segments
*1: The value at FCH = 10 MHz
*2: On microcontrollers with a built-in booster, only 1/3 bias can be used. The 1/2 duty cannot be used.
Note: Reset is input asynchronized with the internal clock whether with or without power-on reset.
47
MB89650AR Series
■ ORDERING INFORMATION
Part number
MB89653APFV
MB89655APFV
MB89656APFV
MB89657APFV
MB89P657APFV-101
MB89P657APFV-102
MB89P657APFV-103
MB89P657APFV-104
MB89P657APFV-105
MB89P657APFV-106
100-pin Plastic SQFP
(FPT-100P-M05)
MB89653APF
MB89655APF
MB89656APF
MB89657APF
MB89P657APF-101
MB89P657APF-102
MB89P657APF-103
MB89P657APF-104
MB89P657APF-105
MB89P657APF-106
100-pin Plastic QFP
(FPT-100P-M06)
MB89PV650ACF
48
Package
100-pin Ceramic MQFP
(MQP-100C-P02)
Remarks
MB89650AR Series
■ PACKAGE DIMENSIONS
100-pin plastic LQFP
(FPT-100P-M05)
+0.20
16.00±0.20(.630±.008)SQ
75
1.50 –0.10
+.008
.059 –.004
51
14.00±0.10(.551±.004)SQ
76
50
12.00
(.472)
REF
15.00
(.591)
NOM
Details of "A" part
0.15(.006)
INDEX
100
0.15(.006)
26
0.15(.006)MAX
LEAD No.
1
"B"
25
0.40(.016)MAX
"A"
0.50(.0197)TYP
+0.08
0.18 –0.03
+.003
.007 –.001
+0.05
0.08(.003)
M
0.127 –0.02
+.002
.005 –.001
Details of "B" part
0.10±0.10
(STAND OFF)
(.004±.004)
0.10(.004)
C
0.50±0.20(.020±.008)
0~10°
1994 FUJITSU LIMITED F100007S-2C-2
Dimensions in mm (inches)
49
MB89650AR Series
100-pin plastic QFP
(FPT-100P-M06)
23.90±0.40(.941±.016)
80
3.35(.132)MAX
20.00±0.20(.787±.008)
0.05(.002)MIN
(STAND OFF)
51
81
50
14.00±0.20
(.551±.008)
17.90±0.40
(.705±.016)
12.35(.486)
REF
16.30±0.40
(.642±.016)
INDEX
31
100
"A"
LEAD No.
1
30
0.65(.0256)TYP
0.30±0.10
(.012±.004)
0.13(.005)
0.15±0.05(.006±.002)
M
Details of "A" part
0.25(.010)
Details of "B" part
"B"
0.10(.004)
18.85(.742)REF
22.30±0.40(.878±.016)
C
0.30(.012)
0.18(.007)MAX
0.53(.021)MAX
0 10°
0.80±0.20
(.031±.008)
1994 FUJITSU LIMITED F100008-3C-2
Dimensions in mm (inches)
50
MB89650AR Series
100-pin Ceramic MQFP
(MQP-100C-P02)
PIN No.1 INDEX
15.00±0.25 SQ
(.591±.010)
14.82±0.35 SQ
(.583±.014)
10.92(.430)
TYP
0.50±0.15
(.0197±.0060)
0.18±0.05
(.007±.002)
0.30(.012)
TYP
1.02±0.13
(.040±.005)
7.14(.281)
TYP
12.00(.472) 17.20(.667)
TYP
TYP
PAD No.1 INDEX
4.50(.177)SQ
TYP
+0.45
1.10 –0.25
+.018
.043 –.010
10.92(.430)
TYP
12.00(.472)TYP
17.20(.667)TYP
9.94(.392)MAX
0.15±0.05
(.006±.002)
C
1994 FUJITSU LIMITED M100002SC-2-2
Dimensions in mm (inches)
51
MB89650AR Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0004
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The contents of this document may not be reproduced or copied
without the permission of FUJITSU LIMITED.
FUJITSU semiconductor devices are intended for use in standard
applications (computers, office automation and other office
equipments, industrial, communications, and measurement
equipments, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or
where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters,
vehicle operating controls, medical devices for life support, etc.)
are requested to consult with FUJITSU sales representatives before
such use. The company will not be responsible for damages arising
from such use without prior approval.
Any semiconductor devices have inherently a certain rate of failure.
You must protect against injury, damage or loss from such failures
by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required for
export of those products from Japan.