MICREL SY69952

OC-3/STS-3
CLOCK RECOVERING
TRANSCEIVER
FEATURES
SY69952
DESCRIPTION
■ A complete ATM compatible single chip Transmitter
and Receiver
■ Seamless operation with PMC-Sierra PM5345, VLSI
VNS67200, IgT WAC-013-B/WAC-413-A and NEC
µPD98402 UNI Processors
■ Supports clock and data recovery from 51.84 Mbit/s
or 155.52 Mbit/s NRZ or NRZI data stream
■ 155.52MHz clock multiplication from 19.44MHz
source or 51.84MHz clock multiplication from
6.48MHz source
■ Line Receiver Inputs: No external buffering needed
■ Differential output buffering
■ Link Status Indication
■ Loop-back testing
■ 100K ECL compatible I/O
■ Single +5 volt power supply
■ Replacement for Cypress CY7B952
■ The SY69952 complies with Bellcore, ITU/CCITT &
ANSI specifications
■ Available in 28-pin SOIC package
Micrel-Synergy's SY69952 contains fully integrated
transmitter and receiver functions designed to provide
clock recovery and generation for either 51.84Mbit/s OC/
STS-1 or 155.52Mbit/s OC/STS-3 SONET/SDH
(SY69952) and ATM applications.
On-chip clock generation is performed by a low-jitter
phase-locked loop (PLL) allowing use of 19.44MHz
reference for 155.52MHz generation or a 6.48MHz
reference for 51.84MHz generation. Clock recovery is
performed by synchronizing the on-chip VCO directly to
the incoming data stream.
The SY69952 meets the jitter compliance criteria of
Bellcore, ITU/CCITT and ANSI standards. Low jitter is
ensured by Micrel-Synergy's advanced PLL technology
and positive ECL (PECL) I/O.
Micrel-Synergy's circuit design techniques coupled with
ASSET™ bipolar technology result in ultra-fast
performance with low noise and low power dissipation.
PIN CONFIGURATION
FUNCTIONAL BLOCK DIAGRAM
LOOP
PLL2+
PLL2-
MODE
ROUT+
ROUTRIN+
ROUT+
ROUT-
RINRIN+
RINPLL
CD
RCLK+
RCLK-
MODE
VCC
RSER+
RSER-
CD
LOOP
LFI
RECEIVE
TRANSMIT
TSER+
TSER-
TOUT+
TOUTPLL
x8
REFCLK+
REFCLK-
1
2
3
4
5
6
7
TOP VIEW
SOIC
28
27
26
RCLKRCLK+
RSER-
25
RSER+
LFI
VCC
24
23
22
21
REFCLKREFCLK+
TOUT-
8
9
10
11
TOUT+
PLL1+
12
13
19
18
17
16
PLL1-
14
15
20
VEE
VCC
TCLKTCLK+
TSER+
TSERPLL2+
PLL2-
TCLK+
TCLK-
PLL1+
PLL1-
Rev.: M
1
Amendment: /0
Issue Date: October, 1998
Micrel
SY69952
PIN DESCRIPTIONS
RSER± – Differential PECL Output
Recovered Serial Data. These Positive ECL 100K outputs
(+5V referenced) represent the recovered data from the
input data stream (RIN±). This recovered data is aligned
with the recovered clock (RCLK±) with a sampling window
compatible with most data processing devices.
INPUTS
RIN± – Differential PECL Input
Receive Input. These built-in line receiver inputs are
connected to the differential Receive serial input data stream.
An internal Receive PLL recovers the embedded clock
(RCLK±) and data (RSER±) information. The incoming data
rate can be within one of two frequency ranges depending
on the state of the MODE pin.
RCLK± – Differential PECL Output
Recovered Clock. These Positive ECL 100K outputs (+5V
referenced) represent the recovered clock from the input
data stream (RIN±). This recovered clock is used to sample
the recovered data (RSER±) and has timing compatible
with most data processing devices.
CD – PECL/TTL Input
Carrier Detect. This input controls the recovery function
of the Receive PLL and can be driven by the carrier detect
output from optical modules or from external transition
detection circuitry. When this input is at an ECL HIGH, the
input data stream (RIN±) is recovered normally by the
Receive PLL. When this input is at an ECL LOW, the
Receive PLL no longer aligns to RIN±, but instead aligns
with the REFCLKx8 frequency. Also, the Link Fault Indicator
(LFI) will transition LOW, and the recovered data outputs
(RSER) will remain LOW regardless of the signal level on
the Receive data stream inputs (RIN). When the CD input
is at a TTL LOW (≤0.8V), the internal transition detection
circuitry is disabled.
LFI – TTL Output
Link Fault Indicator. This input indicates the status of the
input data stream (RIN±). It is controlled by three functions;
the Carrier Detect (CD) input, the internal Transition Detector,
and the Out of Lock (OOL) detector. The Transition Detector
determines if RIN± contains enough transitions to be
accurately recovered by the Receive PLL. The Out of Lock
detector determines if RIN± is within the frequency range of
the Receive PLL. When CD is HIGH and RIN± has sufficient
transitions and is within the frequency range of the Receive
PLL, the LFI input will be high. If CD is at an ECL LOW or
RIN± does not contain sufficient transitions or RIN± is outside
the frequency range of the Receive PLL then the LFI output
will be LOW. If CD is at a TTL LOW then the LFI output will
only transition LOW when the frequency of RIN± is outside
the range of the Receive PLL.
TSER± – Differential PECL Input
Transmit Serial Data. These built-in line receiver inputs
are connected to the differential Transmit serial input data
stream. These inputs can receive very low amplitude signals
and are compatible with all PECL signal levels.
REFCLK± – Differential PECL/TTL Input
Reference Clock. This input is the clock frequency
reference for the clock and data recovery Receive PLL.
REFCLK is multiplied internally by eight and sets the
approximate center frequency for the internal Receive PLL
to track the incoming bit stream. This input is also multiplied
by eight by the frequency multiplier Transmit PLL to produce
the bit rate Transmit Clock (TCLK±). REFCLK can be
connected to either a differential PECL or single-ended TTL
frequency source. When either REFCLK+ or REFCLK- is at
a TTL LOW, the opposite REFCLK signal becomes a TTL
level input.
TOUT± – Differential PECL Output
Transmit Output. These Positive ECL 100K outputs (+5V
referenced) represent the buffered version of the Transmit
data stream (TSER±). This Transmit path is used to take
weak input signals and rebuffer them to drive low impedance
copper media.
TCLK± – Differential PECL Output
Transmit Clock. These Positive ECL 100K outputs (+5V
referenced) provide the bit rate frequency source for external
Transmit data processing devices. This output is synthesized
by the Transmit PLL and is derived by multiplying the
REFCLK frequency by eight.
OUTPUTS
LOOP – TTL Input
Loop Back Select. This input is used to select the input
data stream source that the Receive PLL used for clock
and data recovery. When the LOOP input is HIGH, the
Receive input data stream (RIN±) is used for clock and
data recovery. When LOOP is LOW, the Transmit input
data stream (TSER±) is used by the Receive PLL for clock
and data recovery.
ROUT± – Differential PECL Output
Receive Output. These Positive ECL 100K outputs (+5V
referenced) represent the buffered version of the input data
stream (RIN±). This output pair can be used for Receiver
input data equalization in copper based systems, reducing
the system impact of data dependent jitter. All PECL outputs
can be powered down by connecting both outputs to VCC
or leaving them both unconnected.
2
Micrel
SY69952
PIN DESCRIPTIONS
PLL1±, PLL2± – Loop Filter Inputs
These pins are used to connect the external loop filters
for the two on-board PLLs. See below:
MODE – 3 Level Input
Frequency Mode Select. This three-level input selects
the frequency range for the clock and data recovery receive
PLL and the frequency multiplier transmit PLL. When the
input is held PECL HIGH (VCC –0.9 typ.), the two PLLs
operate at the SONET (SDH) STS-3 (STM-1) line rate of
155.52MHz. When this input is held TTL LOW (connected
to GND), the two PLLs operate at one SONET STS-1 line
rate of 51.84MHz. The REFCLK± frequency in both operating
modes is 1/8 of the operating frequency. When the MODE
input is ECL LOW (VCC – 1.7 typ), the device enters into
test mode, the TSER± inputs substitue for the internal PLL
VCO for use in factory testing.
TOP VIEW
0.1µf
Transmit
Filter
500Ω
0.1µf
PLL1+
PLL1-
PLL2+
PLL2-
Receiver
Filter
120Ω
Figure 1. Suggested Loop Filter Values
DESCRIPTION
lowest operating range of the device is selected. A 6.48MHz
± 1% source must drive the REFCLK inputs and the two
PLLs will multiply this rate by 8 to provide output clocks that
operate at 51.84MHz ± 1%.
General
The SY69952 Serial SONET/SDH Transceiver is used in
SONET/SDH and ATM applications to recover clock and
data information from a 155.52MHz or 51.84MHz NRZ (Non
Return to Zero) or NRZI (Non Return to Zero Invert on
ones) serial data stream. This device also provides a bitrate Transmit clock, from a byte rate source through the
use of a frequency multiplier PLL, and differential data
buffering for the Transmit side of the system. This device is
compliant with all relevant SONET/SDH specifications
including ANSI T1X1.6/91-022, ANSI T1X1.3/93-006R1 Draft
and ITU/CCITT G958.
Transmit Functions
The transmit section of the SY69952 contains a PLL that
takes a REFCLK input and multiplies it by 8 (REFCLKx8) to
produce a PECL (Positive ECL) differential output clock
(TCLK±). The transmitter has two operating ranges that are
selectable with the three-level MODE pin as explained
above. The SY69952 Transmit frequency multiplier PLL
allows low-cost byte rate clock sources to be used to time
the upstream serial data transmitter.
The REFCLK± input can be configured three ways. When
both REFCLK+ and REFCLK- are connected to a differential
100K-compatible PECL source, the REFCLK input will
behave as a differential PECL input. When either the
REFCLK+ or the REFCLK- input is at a TTL LOW, the
other REFCLK input becomes a TTL-level input allowing it
to be connected to a low-cost TTL crystal oscillator. The
REFCLK input structure, therefore, can be used as a
differential PECL input, a single TTL input, or as a dual TTL
clock multiplexing input.
Operating Frequency
The SY69952 operates at either of two frequency ranges.
The MODE input selects which of the two frequency ranges
the Transmit frequency multiplier PLL and the Receive clock
and data recovery PLL will operate. When MODE is
connected to VCC, the highest operating range of the device
is selected. A 19.44MHz ± 1% source must drive the
REFCLK input and the two PLLs will multiply this rate by 8
to provide output clocks that operate at 155.52MHz ± 1%.
When the MODE input is connected to ground (GND), the
3
Micrel
SY69952
DESCRIPTION
The Transmit PECL differential input pair (TSER±) is
buffered by the SY69952 yielding the differential data outputs
(TOUT±). These outputs can be used to directly drive
transmission media such as Printed Circuit Board (PCB)
traces, optical drivers, twisted pair, or coaxial cable.
with the REFCLKx8 frequency and the recovered data
outputs (RSER) will remain LOW regardless of the signal
level on the Receive data-stream inputs (RIN).
In addition, the SY69952 has a built-in transitions detector
that also checks the quality of the incoming data stream.
The absence of data transitions can be caused by a broken
transmission media, a broken transmitter, or a problem with
the transmit or receive media coupling. The SY69952 will
detect a quiet link by counting the number of bit times that
have passed without a data transition. A bit time is defined
as the period of RCLK±. When 512 bit times have passed
without a data transition on RIN±, LFI will transition LOW.
The receiver will assume that the serial data stream is invalid
and, instead of allowing the RCLK± frequency to wander in
the absence of data, the PLL will lock to the REFCLKx8
frequency. This will insure that RCLK± is as close to the
correct link operating frequency as the REFCLK accuracy.
LFI will be driven HIGH again and the receiver will recover
clock and data from the incoming data stream when the
transition detection circuitry determines that adequate
transitions to ensure reliable clock and data recovery have
been detected within 512 bit-times.
The Transition Detector can be turned off by pulling the
CD input to a TTL LOW (≤0.8V). When CD is pulled to a
TTL LOW the LFI will only be driven LOW if the recovered
clock is not locked to the incoming data stream. LFI LOW in
this will only indicate that the Receiver PLL is Out of Lock
(OOL). The CD pin should not be left unconnected.
Receive Functions
The primary function of the receiver is to recover clock
(RCLK±) and data (RSER±) from the incoming differential
PECL data stream (RIN±) without the need for external
buffering. These built-in line receiver inputs, as well as the
TSER± inputs mentioned above, have a wide commonmode range (2.5V) and the ability to receive signals with as
little as 50mV differential voltage. They are compatible with
all PECL signals and any copper media.
The clock recovery function is performed using an
embedded PLL. The recovered clock is not only passed to
the RCLK± outputs, but also used internally to sample the
input serial stream in order to recover the data pattern. The
Receive PLL uses the REFCLK input as a byte-rate
reference. This input is multiplied by 8 (REFCLKx8) and is
used to improve PLL lock time and to provide a center
frequency for operation in the absence of input data stream
transitions. The receiver can recover clock and data in two
different frequency ranges depending on the state of the
MODE pin as explained earlier. To insure accurate data
and clock recovery, REFCLKx8 must be within 1000 ppm of
the transmit bit rate. The standards, however, specify that
the REFCLKx8 frequency accuracy be within 20-100 ppm.
The differential input serial data (RIN±) is not only used
by the PLL to recover the clock and data, but it is also
buffered and presented as the PECL differential output pair
ROUT±. This output pair can be used as part of the
transmission line interface circuit for base line wander
compensation, improving system performance by providing
reduced input jitter and increased data eye opening.
Loop Back Testing
The TTL level LOOP pin is used to perform loop-back
testing. When LOOP is asserted (held LOW) the Transmitter
serial input (TSER±) is used by the Receiver PLL for clock
and data recovery. This allows in-system testing to be
performed on the entire device except for the differential
Transmit drivers (TOUT±) and the differential Receiver inputs
(RIN±). For example, an ATM controller can present ATM
cells to the input of the ATM cell processor and check to
see that these same cells are received. When the LOOP
input is deasserted (held HIGH) the Receive PLL is once
again connected to the Receiver serial inputs (RIN±).
The LOOP feature can also be used in applications where
clock and data recovery are to be performed from either of
two data streams. In these systems the LOOP pin is used
to select whether the TSER± or the RIN± inputs are used
by the Receive PLL for clock and data recovery. In the
Loop back testing mode, regardless of the presence of data
at the input (RIN±), the transmit serial data stream from
(TSER±) will flow through the Receive PLL to the Recovered
serial data output (RSER±).
Carrier Detect and Link Fault Indicator Functions
The Link Fault Indicator (LFI) output is a TTL-level output
that indicates the status of the receiver. This output can
used by an external controller for Loss of Signal (LOS),
Loss of Frame (LOF), or Out of Frame (OOF) indications.
LFI is controlled by the Carrier Detect input, the internal
Transitions Detector, and the PLL Out of Lock (OOL)
circuitry.
The CD input may be driven by external circuitry that is
monitoring the incoming data stream. Optical modules have
CD outputs that indicate the presence of light on the optical
fiber and some copper based systems use external threshold
detection circuitry to monitor the incoming data stream. The
CD input is a 100K PECL compatible signal that should be
held HIGH when the incoming data stream is valid. When
CD is pulled to a PECL LOW (≤2.5V max.), the LFI output
will transition LOW and the Receiver PLL will align itself
4
Micrel
SY69952
ABSOLUTE MAXIMUM RATINGS(1)
Rating
Unit
VCC, TVCC, AVCC
Symbol
Power Supply (GND, TGND, AGND = 0V)
Parameter
0 to +7
V
VI
Input Voltage (GND, TGND, AGND = 0V)
0 to VCC
V
IOUT
Output Current
50
100
mA
TA
Ambient Temperature Range
0 to +85
°C
Tstore
Storage Temperature Range
-65 to +150
°C
Continuous
Surge
NOTE:
1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied
at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended
periods may affect device reliability.
PECL DC ELECTRICAL CHARACTERISTICS
VCC = TVCC = AVCC = 4.75V to 5.25V; GND, TGND, AGND = 0V, TA = 0°C to +85°C(1)
TA = 0°C to 85°C
Symbol
Parameter
Min.
Typ.
Max.
Unit
VOH
Output HIGH Voltage
VCC –1.075
VCC –.955
VCC –.830
V
VOL
Output LOW Voltage
VCC –1.860
VCC –1.705
VCC –1.570
V
VIH
Input HIGH
Voltage(2)
VCC –1.165
—
VCC –.880
V
VIL
Input LOW Voltage(2)
VCC –1.810
—
VCC –1.475
V
IIL
Input LOW Current
0.5
—
—
µA
NOTES:
1. Equilibrium temperature
2. Forcing one input at a time. Apply VIH (max) or VIL (min) to all other inputs.
TTL DC ELECTRICAL CHARACTERISTICS
VCC = TVCC = AVCC = 4.75V to 5.25V; GND, TGND, AGND = 0V, TA = 0°C to +85°C
Symbol
Parameter
Min.
Max.
Unit
Condition
VOH
Output HIGH Voltage
2.4
—
V
IOH = –2mA
VOL
Output LOW Voltage
—
0.45
V
IOL = 4mA
IOS
Output Short Circuit Current
–150
–60
mA
VOUT = 0V
VIH
Input HIGH Voltage
2.0
—
V
—
VIL
Input LOW Voltage
—
0.8
V
—
(1), —
(2),TTL
(3)
ELECTRICAL
CHARACTERISTICS
DCDC
ELECTRICAL
CHARACTERISTICS
VCC = +5V ±5%; VEE = GND = 0V, TA = 0°C to +85°C
Symbol
Parameter
Min.
Typ.
Max.
Unit
IEE
Internal Operating Current
—
140
200
mA
IOUT
Termination Output Current
—
11
—
mA
Condition
50Ω to Vcc -2, 50% duty cycle
NOTES:
1. To calculate total power supply current into the VCC pins: ICC = (n * IOUT); where n = number of ECL output pins used (ie, terminated).
2. To calculate total device power dissipation; PD = [IEE * (VCC - VEE)] + [n * IOUT * 1.33](3).
3. Average ECL output voltage is calculated as VOAVG = (VOH(max) + VOH(min) + VOL(max) + VOL(min)) /4 = 1.33V.
5
Micrel
SY69952
AC ELECTRICAL CHARACTERISTICS
VCC = +5V ±5%; VEE = GND = 0V, TA = 0˚C to +85˚C
Symbol
Parameter
Min.
Typ.
Max.
Units
fREF
Reference Frequency
6.41
19.24
6.48
19.44
6.55
19.64
MHz
MHZ
MODE = 0
MODE = 1
Condition
fB
Bit Time(1)
19.5
6.50
19.3
6.43
19.1
6.36
ns
ns
MODE = 0
MODE = 1
tODC
Output Duty Cycle(2)
(TCLK±, RCLK±)
48
—
52
%
tRF
ECL Output Rise/Fall Tiime(2)
0.4
—
1.2
ns
5pf load, 50Ω to VCC –2 (20% to 80%)
tLOCK
PLL Lock Time(2)
—
—
1
µs
RIN transition density 25%
tRPWH
REFCLK Pulse Width High
3.3
10
—
—
—
—
ns
ns
MODE = 0
MODE = 1
tRPWL
REFCLK Pulse Width Low
3.3
10
—
—
—
—
ns
ns
MODE = 0
MODE = 1
tDV
Data Valid
3
—
—
ns
Prior to RCLK+ rising edge
tDH
Data Hold
1
—
—
ns
After RCLK+ rising edge
tPD
Propagation Delay(3)
(RIN to ROUT, TSER to TOUT)
—
—
10
ns
NOTES:
1. fB is calculated as 1/(fREF * 8).
2. Tested initially and after any design or process changes that may affect these parameters.
3. The ECL switching threshold is the differential zero crossing (ie, the point where + and – signals cross).
TIMING WAVEFORMS
tODC
tODC
RCLKP
tDV
tDH
RSERP/RSERN
TSERP/TSERN
RINP/RINN
tPD
ROUTP/ROUTN
PRODUCT ORDERING CODE
6
Ordering
Code
Package
Type
Operating
Range
SY69952ZC
Z28-1
Commercial
Micrel
SY69952
28 LEAD SOIC .300" WIDE (Z28-1)
Rev. 02
MICREL-SYNERGY
TEL
3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA
+ 1 (408) 980-9191
FAX
+ 1 (408) 914-7878
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
7