MITSUBISHI CM100TU-24F

MITSUBISHI IGBT MODULES
CM100TU-24F
HIGH POWER SWITCHING USE
CM100TU-24F
¡IC ................................................................... 100A
¡VCES ......................................................... 1200V
¡Insulated Type
¡6-elements in a pack
APPLICATION
General purpose inverters & Servo controls, etc
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
107
90 ±0.25
23
12
4–φ5.5
MOUNTING HOLES
CM
G
E
12
11
G
E
V
12
23
21.7
GuN
EuN
GvN
EvN
GwN
EwN
E
G
E
W
23
11
12
21.7
0.5
G
48.5
11 14.4
21.7
E
3.75
G
U
5–M5NUTS
Tc measured point 2.8
11
21.7
E
+1
29 –0.5
0.8
11
Tc measured point
8.1
7.1
4
LABEL
26
102
80 ±0.25
11
G
17
P
N
GuP
EuP
GvP
EvP
GwP
EwP
(4)
3.75
12
P
G UP
G VP
RTC
EUP
U
GUN
RTC
EUN
GWP
RTC
E VP
V
GVN
RTC
E VN
RTC
E WP
W
G WN
RTC
E WN
N
CIRCUIT DIAGRAM
Aug. 1999
MITSUBISHI IGBT MODULES
CM100TU-24F
HIGH POWER SWITCHING USE
MAXIMUM RATINGS (Tj = 25°C)
Symbol
VCES
VGES
IC
ICM
IE (Note 1)
IEM (Note 1)
PC (Note 3)
Tj
Tstg
Viso
Parameter
Collector-emitter voltage
Gate-emitter voltage
Collector current
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
—
Torque strength
—
Weight
Conditions
G-E Short
C-E Short
TC = 25°C
Pulse
TC = 25°C
Pulse
TC = 25°C
Ratings
1200
±20
100
200
100
200
500
–40 ~ +150
–40 ~ +125
2500
2.5 ~ 3.5
2.5 ~ 3.5
680
(Note 2)
(Note 2)
Main terminal to base plate, AC 1 min.
Main Terminal M5
Mounting holes M5
Typical value
Unit
V
V
A
A
W
°C
°C
V
N•m
N•m
g
ELECTRICAL CHARACTERISTICS (Tj = 25°C)
Parameter
Symbol
Test conditions
Limits
Typ.
—
Max.
1
Unit
ICES
Collector cutoff current
VCE = VCES, VGE = 0V
Min.
—
VGE(th)
Gate-emitter threshold voltage
IC = 10mA, VCE = 10V
5
6
7
V
IGES
Gate leakage current
Collector-emitter saturation voltage
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (Note 1)
Qrr (Note 1)
VEC(Note 1)
Rth(j-c)Q
Rth(j-c)R
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
Emitter-collector voltage
Rth(c-f)
Rth(j-c’)Q
RG
Contact thermal resistance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
3.1
—
1.8
1.9
—
—
—
1100
—
—
—
—
—
4.1
—
—
—
0.09
—
—
20
2.4
—
39
1.7
1.0
—
100
50
400
300
150
—
3.2
0.25
0.35
—
µA
VCE(sat)
VGE = VCES, VCE = 0V
Tj = 25°C
IC = 100A, VGE = 15V
Tj = 125°C
Thermal
resistance*1
Thermal resistance
External gate resistance
VCE = 10V
VGE = 0V
VCC = 600V, I C = 100A, VGE = 15V
VCC = 600V, IC = 100A
VGE1 = VGE2 = 15V
RG = 3.1Ω, Inductive load switching operation
IE = 100A
IE = 100A, VGE = 0V
IGBT part (1/6 module)
FWDi part (1/6 module)
Case to fin, Thermal compoundapplied*2 (1/6 module)
Tc measured point is just under the chips
0.18✽3
31
mA
V
nF
nC
ns
ns
µC
V
°C/W
Ω
Note 1. IE, VEC, t rr, Q rr, die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. (FWDi).
2. Pulse width and repetition rate should be such that the device junction temp. (T j) does not exceed Tjmax rating.
3. Junction temperature (Tj) should not increase beyond 150°C.
4. Pulse width and repetition rate should be such as to cause negligible temperature rise.
*1 : Tc measured point is indicated in OUTLINE DRAWING.
*2 : Typical value is measured by using Shin-etsu Silicone “G-746”.
*3 : If you use this value, Rth(f-a) should be measured just under the chips.
Aug. 1999
MITSUBISHI IGBT MODULES
CM100TU-24F
HIGH POWER SWITCHING USE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
140
120
9
100
8.5
80
60
40
8
20
0
0.5
1
1.5
2
2.5
3
3.5
3
VGE = 15V
Tj = 25°C
2.5
Tj = 125°C
2
1.5
1
0.5
0
4
0
40
80
120
160
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
5
4
3
IC = 200A
IC = 100A
2
IC = 40A
1
0
6
8
10
200
103
Tj = 25°C
12
14
16
18
EMITTER CURRENT IE (A)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
VGE = 20V
15
11
10
160
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
180
0
CAPACITANCE Cies, Coes, Cres (nF)
9.5
Tj = 25°C
7
5
3
2
Tj = 25°C
102
7
5
3
2
101
7
5
3
2
100
0.5
20
1
1.5
2
2.5
3
3.5
GATE-EMITTER VOLTAGE VGE (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
CAPACITANCE–VCE
CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
102
103
7
5
7
5
3
2
Cies
3
2
101
7
5
3
2
100
Coes
7
5
3
2
Cres
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
COLLECTOR-EMITTER VOLTAGE VCE (V)
SWITCHING TIMES (ns)
COLLECTOR CURRENT IC (A)
200
tf
td(off)
102
7
5
3
2
td(on)
tr
Conditions:
VCC = 600V
VGE = ±15V
RG = 3.1Ω
Tj = 125°C
Inductive load
101
7
5
3
2
100 1
10
2
3
5 7 102
2
3
5 7 103
COLLECTOR CURRENT IC (A)
Aug. 1999
MITSUBISHI IGBT MODULES
CM100TU-24F
HIGH POWER SWITCHING USE
103
7
5
3
2
102
Irr
trr
7
5
3
2
101 0
10
2
3
5 7 101
Conditions:
VCC = 600V
VGE = ±15V
RG = 3.1Ω
Tj = 25°C
Inductive load
2
3
5 7 102
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part & FWDi part)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j–c) (°C/W)
REVERSE RECOVERY TIME trr (ns)
REVERSE RECOVERY CURRENT lrr (A)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 IGBT part:
5 Per unit base = Rth(j–c) = 0.25°C/W
3 FWDi part:
2 Per unit base = Rth(j–c) = 0.35°C/W
100
7
5
3
2
3
2
10–1
10–1
10–2
10–2
7
5
3
2
7
5
3
2
10–3
7
5
3
2
7
5
3
2
Single Pulse
TC = 25°C
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
TMIE (s)
GATE CHARGE
CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE VGE (V)
20
IC = 100A
18
16
14
VCC = 400V
12
VCC = 600V
10
8
6
4
2
0
0
500
1000
1500
GATE CHARGE QG (nC)
Aug. 1999