MITSUBISHI IGBT MODULES CM1000DU-34NF HIGH POWER SWITCHING USE CM1000DU-34NF ● IC ................................................................ 1000A ● VCES .......................................................... 1700V ● Insulated Type ● 2-elements in a pack APPLICATION General purpose inverters Servo controls, etc OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm A,B HOUSING Type (J. S. T. Mfg. Co. Ltd) A : VHR-2N B : VHR-5N 150 137.5±0.25 42 14 14 Tc measured point (The side of Cu 12 2 base plate) 34.6 +1.0 –0.5 4 E1 PPS 10.5 E2 E2 1.9 ±0.2 14 14 14 14 14 14 42 42 L A B E L 34.6 +1.0 –0.5 E2 G2 9-M6 NUTS 12 C2 C2E1 E2 C1 C1 G1 E1 18 15.7 5.5 C1 25.1 8-f6.5 MOUNTING HOLES G1 G2 B 129.5 166 C1 C2E1 C2 A 21 11 19 38±0.25 42.5±0.25 38±0.25 74±0.25 74±0.25 15.7 Tc measured point (The side of Cu base plate) CIRCUIT DIAGRAM Sep. 2004 MITSUBISHI IGBT MODULES CM1000DU-34NF HIGH POWER SWITCHING USE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) Tj Tstg Viso Parameter Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature*3 Isolation voltage — Torque strength — Weight Conditions G-E Short C-E Short TC’ = 104°C Pulse TC = 25°C Pulse TC’ = 25°C Ratings 1700 ±20 1000 2000 1000 2000 8900 –40 ~ +150 –40 ~ +125 3500 3.5 ~ 4.5 3.5 ~ 4.5 1400 (Note 2) (Note 2) Main terminal to base plate, AC 1 min. Main terminal M6 Mounting holes M6 Typical value Unit V V A A W °C °C V N•m N•m g ELECTRICAL CHARACTERISTICS (Tj = 25°C) Symbol Parameter Test conditions ICES Collector cutoff current VGE(th) Gate-emitter threshold voltage IC = 100mA, VCE = 10V IGES Gate leakage current VCE(sat) (chip) Collector-emitter saturation voltage (without lead resistance) R(lead) Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) Module lead resistance Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge VEC(Note 1) Emitter-collector voltage (without lead resistance) (chip) Rth(j-c’)Q Rth(j-c’)R Rth(c-f) RG Thermal resistance*1 Contact thermal resistance*2 External gate resistance VCE = VCES, VGE = 0V VGE = VGES, VCE = 0V Tj = 25°C IC = 1000A, VGE = 15V Tj = 125°C Ic = 1000A, terminal-chip (Note 4) VCE = 10V VGE = 0V VCC = 1000V, IC = 1000A, VGE = 15V VCC = 1000V, IC = 1000A VGE1 = VGE2 = 15V RG = 0.47Ω, Inductive load switching operation IE = 1000A IE = 1000A, VGE = 0V IGBT part (1/2 module) FWDi part (1/2 module) Case to fin, Thermal compound applied (1/2 module) Min. — Limits Typ. — Max. 1 5.5 7 8.5 V — — — — — — — — — — — — — — — 2.2 2.45 0.286 — — — 6000 — — — — — 90 5 2.8 — — 220 25 4.7 — 600 150 900 200 450 — µA — 2.3 3 — — — 0.47 — — 0.016 — 0.014 0.023 — 4.7 Unit mA V mΩ nF nC ns ns µC V °C/W Ω Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi). 2. Pulse width and repetition rate should be such that the device junction temp. (Tj) dose not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. Pulse width and repetition rate should be such as to cause neglible temperature rise. *1 : Tc measured point is just under the chips. If you use this value, Rth(f-a) should be measured just under the chips. *2 : Typical value is measured by using Shin-etsu Silicone “G-746”. *3 : The operation temperature is restrained by the permission temperature of female connector. Sep. 2004 MITSUBISHI IGBT MODULES CM1000DU-34NF HIGH POWER SWITCHING USE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) VGE = 20V 1600 12V 1200 11V 800 10V 400 8V 0 0 4 6 1200 800 400 Tj = 25°C Tj = 125°C 9V 8 0 10 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 10 VGE = 15V COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 2 1600 COLLECTOR-EMITTER VOLTAGE VCE (V) 5 4 3 2 1 Tj = 25°C Tj = 125°C 0 104 EMITTER CURRENT IE (A) VCE = 10V 13V COLLECTOR CURRENT (A) 15V 2000 Tj = 25°C 0 500 1000 1500 2000 8 IC = 400A IC = 2000A IC = 1000A 6 4 2 0 0 4 8 12 16 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE–VCE CHARACTERISTICS (TYPICAL) 103 7 5 3 2 103 7 5 3 2 102 Tj = 25°C COLLECTOR CURRENT IC (A) CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR CURRENT IC (A) 2000 Tj = 25°C Tj = 125°C 1 2 3 4 EMITTER-COLLECTOR VOLTAGE VEC (V) 7 5 3 2 20 Cies 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2 Coes Cres VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Sep. 2004 MITSUBISHI IGBT MODULES CM1000DU-34NF HIGH POWER SWITCHING USE SWITCHING TIMES (ns) 104 7 5 3 2 td(off) 103 7 5 3 2 td(on) tf 102 tr 7 5 3 2 101 2 10 Conditions: VCC = 1000V VGE = ±15V RG = 0.47Ω Tj = 125°C Inductive load 2 3 5 7 103 2 3 5 7 104 REVERSE RECOVERY TIME trr (ns) REVERSE RECOVERY CURRENT lrr (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 104 7 5 3 2 103 7 5 Irr 3 trr 2 102 2 10 COLLECTOR CURRENT IC (A) 2 3 3 2 10–1 7 5 3 2 10–2 10–2 10–3 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 7 5 TC’ measured 3 point is just 2 under the chips 7 5 3 2 VCC = 800V 16 VCC = 1000V 12 8 4 0 2000 4000 6000 8000 TIME (s) GATE CHARGE QG (nC) IC-ESW (TYPICAL) RG-ESW (TYPICAL) 10000 103 3 2 Eoff Err 102 Eon 7 5 3 2 Conditions: VCC = 1000V VGE = ±15V RG = 0.47Ω Tj = 125°C Inductive load 101 7 5 3 2 2 3 5 7 103 IC (A) 2 3 5 7 104 Eon, Eoff, Err (mJ/pulse) 7 5 Eon, Eoff, Err (mJ/pulse) IC = 1000A 0 103 100 2 10 5 7 104 3 20 GATE-EMITTER VOLTAGE VGE (V) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c’) (°C/W) 7 5 3 2 7 5 3 2 2 GATE CHARGE CHARACTERISTICS (TYPICAL) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 101 10–1 5 7 103 EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part & FWDi part) Single Pulse IGBT part: Per unit base = Rth(j–c’) = 0.014°C/W FWDi part: Per unit base = Rth(j–c’) = 0.023°C/W 100 7 5 3 2 Conditions: VCC = 1000V VGE = ±15V RG = 0.47Ω Tj = 25°C Inductive load 7 5 Eon 3 Eoff 2 Err 102 7 5 Conditions: VCC = 1000V VGE = ±15V IC = 1000A Tj = 125°C Inductive load 3 2 101 0 1 2 3 4 5 RG (Ω) Sep. 2004