MITSUBISHI IGBT MODULES CM300DU-12NFH HIGH POWER SWITCHING USE CM300DU-12NFH ¡IC ................................................................... 300A ¡VCES ............................................................ 600V ¡Insulated Type ¡2-elements in a pack APPLICATION High frequency switching use (30kHz to 60kHz). Gradient amplifier, Induction heating, power supply, etc. OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm TC measured point 108 93 ±0.25 14 14 E2 G2 14 E2 C2E1 G1 E1 CIRCUIT DIAGRAM C1 E2 25 C1 62 CM 48 ±0.25 6 6 15 E2 G2 G1 E1 C2E1 25 21.5 2.5 3-M6 NUTS 4-φ6. 5 MOUTING HOLES 4 18 2.8 29 +1.0 –0.5 LABEL 0.5 0.5 4 7 8.5 18 0.5 22 7 7.5 18 0.5 Feb.2004 MITSUBISHI IGBT MODULES CM300DU-12NFH HIGH POWER SWITCHING USE MAXIMUM RATINGS Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) PC’ (Note 3) Tj Tstg Viso — — — (Tj = 25°C) Parameter Collector current Emitter current Maximum collector dissipation Maximum collector dissipation Junction temperature Storage temperature Isolation voltage Mounting torque Weight ELECTRICAL CHARACTERISTICS Symbol Conditions Collector-emitter voltage Gate-emitter voltage G-E Short C-E Short Operation Pulse Operation Pulse TC = 25°C TC’ = 25°C*4 Ratings 600 ±20 300 600 300 600 780 1250 –40 ~ +150 –40 ~ +125 2500 3.5 ~ 4.5 3.5 ~ 4.5 400 (Note 2) (Note 2) Main Terminal to base plate, AC 1 min. Main Terminal M6 Mounting holes M6 Typical value Unit V V A A A A W W °C °C V N•m N•m g (Tj = 25°C) Test conditions Parameter Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 30mA, VCE = 10V 5 6 7 V IGES Gate leakage current Collector-emitter saturation voltage (Note 4) Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge Emitter-collector voltage VGE = VGES, VCE = 0V Tj = 25°C IC = 300A, VGE = 15V Tj = 125°C — — — — — — — — — — — — — — — — — — 2.1 — 2.0 1.95 — — — 1860 — — — — — 5.5 — — — 0.04 — — 0.5 2.7 — 83 5.4 3.0 — 350 150 700 150 200 — 2.6 0.16 0.24 — µA VCE(sat) Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) VEC(Note 1) Rth(j-c)Q Rth(j-c)R Rth(c-f) Rth(j-c’)Q RG Thermal resistance*1 Contact thermal resistance Thermal resistance External gate resistance VCE = 10V VGE = 0V VCC = 300V, IC = 300A, VGE = 15V VCC = 300V, IC = 300A VGE1 = VGE2 = 15V RG = 4.2Ω, Inductive load switching operation IE = 300A IE = 300A, VGE = 0V IGBT part (1/2 module) FWDi part (1/2 module) Case to fin, Thermal compound Applied*2 (1/2 module) Tc measured point is just under the chips (1/2 module) 0.10*3 21 mA V nF nF nF nC ns ns ns ns ns µC V °C/W °C/W °C/W °C/W Ω *1 : TC measured point is shown in page OUTLINE DRAWING. *2 : Typical value is measured by using Shin-etsu Silicone “G-746”. *3 : If you use this value, Rth(f-a) should be measured just under the chips. *4 : TC’ measured point is just under the chips. Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi). 2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. No short circuit capability is designed. Feb.2004 MITSUBISHI IGBT MODULES CM300DU-12NFH HIGH POWER SWITCHING USE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 500 11 VGE = 20V 400 10 Tj = 25°C 9.5 9 8.5 8 300 200 7.5 100 7 0 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 13 15 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VGE = 15V 2.5 2 1.5 1 0.5 0 Tj = 25°C Tj = 125°C 0 100 200 300 400 500 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) 5 4.5 7 4 3.5 3 IC = 600A 2.5 IC = 300A 2 1.5 IC = 120A 1 0.5 0 6 8 10 12 14 16 18 2 102 7 5 3 2 Tj = 25°C Tj = 125°C 0 0.5 1 1.5 2 2.5 3 EMITTER-COLLECTOR VOLTAGE VEC (V) CAPACITANCE–VCE CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) 103 7 Cies 101 7 5 Coes 100 7 5 3 GATE-EMITTER VOLTAGE VGE (V) 3 2 3 2 5 101 20 Cres 3 2 VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) SWITCHING TIME (ns) 7 5 600 103 Tj = 25°C 102 CAPACITANCE Cies, Coes, Cres (nF) 3 COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER CURRENT IE (A) COLLECTOR CURRENT IC (A) 600 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) 5 td(off) 3 td(on) 2 tf tr 102 7 Conditions: VCC = 300V VGE = ±15V RG = 4.2Ω Tj = 125°C Inductive load 5 3 2 101 1 10 2 3 5 7 102 2 3 5 7 103 COLLECTOR CURRENT IC (A) Feb.2004 MITSUBISHI IGBT MODULES CM300DU-12NFH TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part ) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 7 5 3 2 Irr trr 102 7 5 3 2 101 1 10 2 3 5 7 102 Conditions: VCC = 300V VGE = ±15V RG = 4.2Ω Tj = 25°C Inductive load 2 3 5 7 103 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c) REVERSE RECOVERY TIME trr (ns) REVERSE RECOVERY CURRENT lrr (A) HIGH POWER SWITCHING USE 7 5 3 2 Single Pulse TC = 25°C 10–1 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 Per unit base = 2 Rth(j–c) = 0.16°C/W 10–3 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi part) GATE CHARGE CHARACTERISTICS (TYPICAL) Single Pulse TC = 25°C 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 Per unit base = 2 Rth(j–c) = 0.24°C/W 10–3 7 5 3 2 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TIME (s) 20 GATE-EMITTER VOLTAGE VGE (V) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 10–1 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TIME (s) EMITTER CURRENT IE (A) 7 5 3 2 7 5 3 2 IC = 300A 16 VCC = 200V VCC = 300V 12 8 4 0 0 500 1000 1500 2000 2500 GATE CHARGE QG (nC) Feb.2004