MITSUBISHI CM200DU

MITSUBISHI IGBT MODULES
CM200DU-12NFH
HIGH POWER SWITCHING USE
CM200DU-12NFH
¡IC ................................................................... 200A
¡VCES ............................................................ 600V
¡Insulated Type
¡2-elements in a pack
APPLICATION
High frequency switching use (30kHz to 60kHz).
Gradient amplifier, Induction heating, power supply, etc.
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
TC measured point
94
80 ±0.25
23
4
G1E1
12
4
4 11
18
E2 G2
C1
E2
C2E1
2–φ6.5
MOUNTING HOLES
23
48
CM
24
17
13
7
13.5
2.5 16
TAB
C2E1
E2
21.2
+1
30 –0.5
LABEL
#110. t=0.5
C1
G1 E1
25
7.5
16 2.5
E2 G2
3–M5NUTS
12mm deep
CIRCUIT DIAGRAM
Feb. 2009
MITSUBISHI IGBT MODULES
CM200DU-12NFH
HIGH POWER SWITCHING USE
MAXIMUM RATINGS
Symbol
VCES
VGES
IC
ICM
IE (Note 1)
IEM (Note 1)
PC (Note 3)
PC’ (Note 3)
Tj
Tstg
Viso
—
—
—
(Tj = 25°C, unless otherwise specified)
Parameter
Collector current
Emitter current
Maximum collector dissipation
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
Mounting torque
Weight
ELECTRICAL CHARACTERISTICS
Symbol
Conditions
Collector-emitter voltage
Gate-emitter voltage
G-E Short
C-E Short
Operation
Pulse
Operation
Pulse
TC = 25°C
TC’ = 25°C*4
Ratings
600
±20
200
400
200
400
590
830
–40 ~ +150
–40 ~ +125
2500
2.5 ~ 3.5
3.5 ~ 4.5
310
(Note 2)
(Note 2)
Terminals to base plate, f = 60Hz, AC 1 minute
Main terminals M5 screw
Mounting M6 screw
Typical value
Unit
V
V
A
A
A
A
W
W
°C
°C
Vrms
N•m
N•m
g
(Tj = 25°C, unless otherwise specified)
Test conditions
Parameter
Limits
Typ.
—
Max.
1
Unit
ICES
Collector cutoff current
VCE = VCES, VGE = 0V
Min.
—
VGE(th)
Gate-emitter threshold voltage
IC = 20mA, VCE = 10V
5
6
7
V
IGES
Gate leakage current
±VGE = VGES, VCE = 0V
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
3.1
—
2.0
1.95
—
—
—
1240
—
—
—
—
—
3.5
—
—
—
0.07
—
—
0.5
2.7
—
55
3.6
2.0
—
250
150
500
150
150
—
2.6
0.21
0.35
—
µA
VCE(sat)
Collector-emitter saturation voltage
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (Note 1)
Qrr (Note 1)
VEC(Note 1)
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Rth(j-c’)Q
RG
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
Emitter-collector voltage
Thermal resistance*1
Contact thermal resistance
Thermal resistance
External gate resistance
Tj = 25°C
Tj = 125°C
IC = 200A, VGE = 15V
VCE = 10V
VGE = 0V
VCC = 300V, IC = 200A, VGE = 15V
VCC = 300V, IC = 200A
VGE = ±15V
RG = 6.3Ω, Inductive load
IE = 200A
IE = 200A, VGE = 0V
IGBT part (1/2 module)
FWDi part (1/2 module)
Case to heat sink, Thermal compound Applied*2 (1/2 module)
Case temperature measured point is just under the chips (1/2 module)
mA
V
nF
nF
nF
nC
ns
ns
ns
ns
ns
0.15*3
31
µC
V
K/W
K/W
K/W
K/W
Ω
*1 : Case temperature (TC) measured point is shown in page OUTLINE DRAWING.
*2 : Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)].
*3 : If you use this value, Rth(f-a) should be measured just under the chips.
*4 : Case temperature (TC’) measured point is just under the chips.
Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter-collector free-wheel diode (FWDi).
2. Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating.
3. Junction temperature (Tj) should not increase beyond 150°C.
4. No short circuit capability is designed.
Feb. 2009
2
MITSUBISHI IGBT MODULES
CM200DU-12NFH
HIGH POWER SWITCHING USE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
11
VGE =
20V
300
10 Tj = 25°C
9.5
9
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
350
8.5
250
8
200
150
7.5
100
7
50
0
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
13
15
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VGE = 15V
2.5
2
1.5
1
0.5
0
Tj = 25°C
Tj = 125°C
0
50 100 150 200 250 300 350 400
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
5
103
Tj = 25°C
4.5
7
4
3.5
3
IC = 400A
2.5
IC = 200A
2
1.5
IC = 80A
1
0.5
0
6
8
10
12
14
16
18
7
5
2
102
7
5
3
2
Tj = 25°C
Tj = 125°C
0
0.5
1
1.5
2
2.5
3
EMITTER-COLLECTOR VOLTAGE VEC (V)
CAPACITANCE–VCE
CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
103
7
Cies
5
SWITCHING TIME (ns)
101
7
5
3
2
7
5
3
GATE-EMITTER VOLTAGE VGE (V)
3
2
100
5
101
20
102
CAPACITANCE Cies, Coes, Cres (nF)
3
COLLECTOR-EMITTER VOLTAGE VCE (V)
EMITTER CURRENT IE (A)
COLLECTOR CURRENT IC (A)
400
Coes
Cres
3
2
td(off)
3
2
td(on)
tf
tr
102
7
Conditions:
VCC = 300V
VGE = ±15V
RG = 6.3Ω
Tj = 125°C
Inductive load
5
3
2
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
101 1
10
COLLECTOR-EMITTER VOLTAGE VCE (V)
2
3
5 7 102
2
3
5 7 103
COLLECTOR CURRENT IC (A)
Feb. 2009
3
MITSUBISHI IGBT MODULES
CM200DU-12NFH
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part )
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
103
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
100
7
5
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j–c)
REVERSE RECOVERY TIME trr (ns)
REVERSE RECOVERY CURRENT lrr (A)
HIGH POWER SWITCHING USE
3
2
102
7
5
trr
Irr
3
2
101 1
10
2
3
7 102
5
Conditions:
VCC = 300V
VGE = ±15V
RG = 6.3Ω
Tj = 25°C
Inductive load
2 3
5 7 103
7
5
3
2
Single Pulse
TC = 25°C
10–1
10–1
7
5
3
2
7
5
3
2
10–2
10–2
7
5
3
Per unit base =
2
Rth(j–c) = 0.21K/W
10–3
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi part)
GATE CHARGE
CHARACTERISTICS
(TYPICAL)
Single Pulse
TC = 25°C
10–1
7
5
3
2
7
5
3
2
10–2
10–2
7
5
3
Per unit base =
2
Rth(j–c) = 0.35K/W
10–3
20
GATE-EMITTER VOLTAGE VGE (V)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j–c)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
100
10–1
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
TIME (s)
EMITTER CURRENT IE (A)
7
5
3
2
7
5
3
2
7
5
3
2
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
IC = 200A
16
VCC = 300V
12
8
4
0
TIME (s)
VCC = 200V
0
200
400
800
1200
1600
600
1000
1400
1800
GATE CHARGE QG (nC)
Feb. 2009
4