MITSUBISHI SEMICONDUCTOR 〈THYRISTOR〉 CR12AM MEDIUM POWER USE NON-INSULATED TYPE, GLASS PASSIVATION TYPE OUTLINE DRAWING CR12AM Dimensions in mm 3.2±0.2 4.5 1.3 4 7.0 16 MAX 10.5 MAX ∗ TYPE NAME VOLTAGE CLASS φ3.6±0.2 12.5 MIN 3.8 MAX 1.0 0.8 2.5 0.5 2.6 4.5 2.5 ∗ 123 24 3 • IT (AV) ......................................................................... 12A • VDRM ..............................................................400V/600V • IGT ..........................................................................30mA 1 1 2 3 4 Measurement point of case temperature CATHODE ANODE GATE ANODE TO-220 APPLICATION Switching mode power supply, ECR, motor control MAXIMUM RATINGS Symbol Voltage class Parameter 8 12 Unit VRRM Repetitive peak reverse voltage 400 600 V VRSM Non-repetitive peak reverse voltage 500 720 V VR (DC) DC reverse voltage 320 480 V VDRM Repetitive peak off-state voltage 400 600 V VD (DC) DC off-state 320 480 V Ratings Unit 18.8 A Commercial frequency, sine half wave, 180° conduction, Tc =91°C 12.0 A Surge on-state current 60Hz sine half wave 1 full cycle, peak value, non-repetitive 360 A I2t I2t Value corresponding to 1 cycle of half wave 60Hz, surge on-state current 544 A2s PGM Peak gate power dissipation PG (AV) Average gate power dissipation VFGM Symbol Conditions Parameter IT (RMS) RMS on-state current IT (AV) Average on-state current ITSM for fusing 5 W 0.5 W Peak gate forward voltage 6 V VRGM Peak gate reverse voltage 10 V IFGM Peak gate forward current 2 Tj Junction temperature Storage temperature Tstg — Weight Typical value A –40 ~ +125 °C –40 ~ +125 °C 2.0 g Feb.1999 MITSUBISHI SEMICONDUCTOR 〈THYRISTOR〉 CR12AM MEDIUM POWER USE NON-INSULATED TYPE, GLASS PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Symbol Parameter Limits Test conditions Min. Typ. Max. Unit IRRM Repetitive peak reverse current Tj=125°C, V RRM applied — — 2.0 mA IDRM Repetitive peak off-state current Tj=125°C, V DRM applied — — 2.0 mA VTM On-state voltage Tc=25°C, ITM =40A, — — 1.6 V VGT Gate trigger voltage Tj=25°C, VD=6V, IT=1A — — 1.5 V VGD Gate non-trigger voltage Tj=125°C, VD=1/2VDRM 0.2 — — V IGT Gate trigger current Tj=25°C, VD=6V, IT=1A — — 30 mA IH Holding current Tj=25°C, VD=12V — 15 — mA R th (j-c) Thermal resistance Junction to case ✽1 — — 1.2 °C/W ✽1. The contact thermal resistance R th (c-f) is 1.0°C/W with greased. MAXIMUM ON-STATE CHARACTERISTICS 103 7 Tc = 25°C 5 3 2 102 7 5 3 2 101 7 5 3 2 100 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) RATED SURGE ON-STATE CURRENT 400 SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) PERFORMANCE CURVES 360 320 280 240 200 160 120 80 40 0 100 2 3 4 5 7 101 2 3 4 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈THYRISTOR〉 CR12AM MEDIUM POWER USE NON-INSULATED TYPE, GLASS PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE PGM = 5W PG(AV) = 0.5W VGT = 1.5V 100 7 5 3 2 IFGM = 2A IGT = 30mA 10–1 VGD = 0.2V 7 5 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 103 7 TYPICAL EXAMPLE 5 3 2 102 7 5 3 2 101 7 5 3 2 100 –40 –20 0 20 40 60 80 100 120 140 160 GATE CURRENT (mA) JUNCTION TEMPERATURE (°C) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 1.6 GATE TRIGGER VOLTAGE (V) GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) VFGM = 6V 101 7 5 3 2 1.4 ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, 1.2 DISTRIBUTION 1.0 TYPICAL EXAMPLE 0.8 0.6 0.4 0.2 0 –40 –20 0 20 40 60 80 100 120 TRANSIENT THERMAL IMPEDANCE (°C/W) GATE VOLTAGE (V) 3 2 100 (%) GATE CHARACTERISTICS 101 7 5 3 2 100 7 5 3 2 10–1 7 5 3 2 10–2 10–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 TIME (s) MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE HALF WAVE) 64 56 θ CASE TEMPERATURE (°C) AVERAGE POWER DISSIPATION (W) JUNCTION TEMPERATURE (°C) 360° 180° 120° RESISTIVE, 90° 40 INDUCTIVE 60° LOADS 32 48 θ = 30° 24 16 8 0 0 4 8 12 16 20 24 28 32 AVERAGE ON-STATE CURRENT (A) ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160 RESISTIVE, INDUCTIVE 140 θ LOADS 360° 120 100 80 θ = 30° 60 90° 60° 180° 120° 40 20 0 0 2 4 6 8 10 12 14 16 AVERAGE ON-STATE CURRENT (A) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈THYRISTOR〉 CR12AM MEDIUM POWER USE AMBIENT TEMPERATURE (°C) ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160 140 θ 360° 120 180° RESISTIVE, 120° INDUCTIVE LOADS NATURAL CONVECTION 100 80 60 θ = 30° 40 60° 90° 20 0 0 AVERAGE POWER DISSIPATION (W) NON-INSULATED TYPE, GLASS PASSIVATION TYPE 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE FULL WAVE) 64 56 360° 100 RESISTIVE LOADS 80 θ = 30° 60 90° 180° 60° 120° 40 20 0 0 4 8 12 16 20 24 28 16 θ 0 θ 360° 8 0 4 8 12 RESISTIVE LOADS 16 20 24 28 32 140 θ 120 360° 80 θ RESISTIVE 120° LOADS NATURAL CONVECTION 60 θ = 30° 40 60° 20 0 32 180° 100 AVERAGE ON-STATE CURRENT (A) 90° 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 AVERAGE ON-STATE CURRENT (A) MAXIMUM AVERAGE POWER DISSIPATION (RECTANGULAR WAVE) 64 ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (RECTANGULAR WAVE) 160 56 θ 140 48 360° CASE TEMPERATURE (°C) AVERAGE POWER DISSIPATION (W) θ = 30° 24 ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 AMBIENT TEMPERATURE (°C) CASE TEMPERATURE (°C) 120 θ 60° 32 AVERAGE ON-STATE CURRENT (A) ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 θ 90° 40 AVERAGE ON-STATE CURRENT (A) 140 180° 120° 48 RESISTIVE, INDUCTIVE LOADS 40 32 24 θ = 30° 180° 270° 120° DC 90° 60° 16 8 0 0 4 8 12 16 20 24 28 32 AVERAGE ON-STATE CURRENT (A) θ 360° 120 RESISTIVE, INDUCTIVE LOADS 100 80 60 θ = 30° 90° 180° 40 DC 60° 120° 270° 20 0 0 4 8 12 16 20 24 28 32 AVERAGE ON-STATE CURRENT (A) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈THYRISTOR〉 CR12AM MEDIUM POWER USE DC 80 270° 60 180° θ = 30° 40 60° 90° 120° 20 0 0 BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (RECTANGULAR WAVE) 160 RESISTIVE, INDUCTIVE 140 LOADS θ NATURAL 120 360° CONVECTION 100 200 180 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C) 80 # 60 40 HOLDING CURRENT VS. JUNCTION TEMPERATURE HOLDING CURRENT (mA) BREAKOVER VOLTAGE (dv/dt = vV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 100 (%) AVERAGE ON-STATE CURRENT (A) BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 Tj = 125°C TYPICAL 140 EXAMPLE 120 IGT (25°C) # 10.1mA 100 20 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) Ta = 25°C VD = 100V RL = 12Ω TYPICAL EXAMPLE IGT (25°C) # 11.2mA TURN-ON TIME (µs) 9.0 8.0 7.0 6.0 5.0 4.0 3.0 # 2.0 1.0 0 0 10 20 30 40 50 60 70 80 90 100 GATE CURRENT (mA) #2 #1 100 (%) JUNCTION TEMPERATURE (°C) REPETITIVE PEAK REVERSE VOLTAGE (Tj=t°C) REPETITIVE PEAK REVERSE VOLTAGE (Tj=25°C) 10.0 TYPICAL EXAMPLE IGT (25°C) # 1 10.6mA # 2 11.6mA 100 –40 –20 0 20 40 60 80 100 120 140 160 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 TURN-ON TIME VS. GATE CURRENT TYPICAL EXAMPLE 160 BREAKOVER VOLTAGE (T j = t°C) BREAKOVER VOLTAGE (T j = 25°C) AMBIENT TEMPERATURE (°C) NON-INSULATED TYPE, GLASS PASSIVATION TYPE REPETITIVE PEAK REVERSE VOLTAGE VS. JUNCTION TEMPERATURE 200 TYPICAL EXAMPLE 180 160 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈THYRISTOR〉 CR12AM MEDIUM POWER USE NON-INSULATED TYPE, GLASS PASSIVATION TYPE GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) 100 (%) GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 104 7 TYPICAL EXAMPLE 5 3 2 tw 0.1s 103 7 5 3 2 102 7 5 3 2 101 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 GATE CURRENT PULSE WIDTH (µs) Feb.1999