MITSUBISHI BCR8UM

MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8UM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
OUTLINE DRAWING
2.8 ± 0.2
BCR8UM
10.2
4.5
15.5
1.27
✽
φ3.8 ± 0.2
1.4
4.2 MAX
13.0 MIN
TYPE
NAME
VOLTAGE
CLASS
Dimensions
in mm
0.8
2.54
2.54
2.6 ± 0.4
4.5
0.6
➀➁➂
✽ Measurement point of
case temperature
➁
¡IT (RMS) ........................................................................ 8A
¡VDRM ..............................................................400V/600V
¡IFGT !, I RGT !, IRGT # ........................................... 15mA
¡Viso ........................................................................ 1500V
➀
➀ T1 TERMINAL
➁ T2 TERMINAL
➂ ➂ GATE TERMINAL
TO-220
APPLICATION
Light dimmer
MAXIMUM RATINGS
Symbol
Voltage class
Parameter
8
12
Unit
VDRM
Repetitive peak off-state voltage ✽1
400
600
V
VDSM
Non-repetitive peak off-state voltage ✽1
500
720
V
Symbol
Conditions
Parameter
IT (RMS)
RMS on-state current
Commercial frequency, sine full wave 360° conduction, Tc=94°C ✽3
ITSM
Surge on-state current
I2t
I2t
PGM
Peak gate power dissipation
PG (AV)
Average gate power dissipation
VGM
for fusing
Ratings
Unit
8
A
60Hz sinewave 1 full cycle, peak value, non-repetitive
80
A
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
26
A2s
5
W
0.5
W
Peak gate voltage
10
V
IGM
Peak gate current
2
Tj
Junction temperature
Storage temperature
Tstg
—
Viso
Weight
Typical value
Isolation voltage
Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case
A
–40 ~ +125
°C
–40 ~ +125
°C
2.3
g
1500
V
✽1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8UM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Limits
Test conditions
Min.
Typ.
Max.
Unit
IDRM
Repetitive peak off-state current
Tj=125°C, V DRM applied
—
—
2.0
mA
VTM
On-state voltage
Tc=25°C, ITM=12A, Instantaneous measurement
—
—
1.5
V
—
—
1.5
V
—
—
1.5
V
!
VFGT !
VRGT !
Gate trigger voltage ✽2
@
Tj=25°C, VD =6V, RL=6Ω, RG=330Ω
VRGT #
#
—
—
1.5
V
IFGT !
!
—
—
15
mA
—
—
15
mA
—
—
15
mA
0.2
—
—
V
—
—
3.0
°C/W
IRGT !
Gate trigger current ✽2
@
Tj=25°C, VD =6V, RL=6Ω, RG=330Ω
#
IRGT #
VGD
Gate non-trigger voltage
Tj=125°C, VD=1/2VDRM
R th (j-c)
Thermal resistance
Junction to case ✽3 ✽4
✽2. Measurement using the gate trigger characteristics measurement circuit.
✽3. Case temperature is measured at the T2 terminal 1.5mm away from the molded case.
✽4. The contact thermal resistance R th (c-f) in case of greasing is 1.0°C/W.
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS
RATED SURGE ON-STATE CURRENT
100
7
5
3
2
101
7
5
3
2
Tj = 125°C
Tj = 25°C
100
7
5
3
2
10–1
0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ON-STATE VOLTAGE (V)
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
102
90
80
70
60
50
40
30
20
10
0
100
2 3 4 5 7 101
2 3 4 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8UM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
PG(AV) = 0.5W
VGM = 10V
PGM = 5W
101
7
5
3
2
IGM = 2A
VGT = 1.5V
100
7
5
3
2
IFGT I , IRGT I , IRGT III
10–1
VGD = 0.2V
7
5
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
GATE TRIGGER CURRENT (Tj = t°C)
GATE TRIGGER CURRENT (Tj = 25°C)
GATE VOLTAGE (V)
3
2
100 (%)
GATE CHARACTERISTICS
103
7
5
4
3
2
TYPICAL EXAMPLE
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
GATE CURRENT (mA)
JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO CASE)
TYPICAL EXAMPLE
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
TRANSIENT THERMAL IMPEDANCE (°C/W)
103
7
5
4
3
2
102 2 3 5 7 103
3.2
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
JUNCTION TEMPERATURE (°C)
CONDUCTION TIME
(CYCLES AT 60Hz)
MAXIMUM ON-STATE POWER
DISSIPATION
ALLOWABLE CASE TEMPERATURE
VS. RMS ON-STATE CURRENT
16
160
14
140
CASE TEMPERATURE (°C)
ON-STATE POWER DISSIPATION (W)
GATE TRIGGER VOLTAGE (Tj = t°C)
GATE TRIGGER VOLTAGE (Tj = 25°C)
100 (%)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
12 360°
CONDUCTION
10 RESISTIVE,
INDUCTIVE
8 LOADS
6
4
2
0
0
2
4
6
8
10
12
14
RMS ON-STATE CURRENT (A)
16
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
120
100
80
60
40
20
0
0
2
4
6
8
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
10 12 14 16
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8UM
MEDIUM POWER USE
60
RESISTIVE,
40 INDUCTIVE
LOADS
20 NATURAL
CONVECTION
0
0
2
4
6
10
12
14
60
40
20
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
RMS ON-STATE CURRENT (A)
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
100 (%)
HOLDING CURRENT (Tj = t°C)
HOLDING CURRENT (Tj = 25°C)
104
7
5
3
2
103
7
5
3
2
103
7
5
4
3
2
TYPICAL EXAMPLE
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
102
–60 –40 –20 0 20 40 60 80 100 120 140
102
7
5
3
2
80
RMS ON-STATE CURRENT (A)
105
7 TYPICAL EXAMPLE
5
3
2
JUNCTION TEMPERATURE (°C)
JUNCTION TEMPERATURE (°C)
LACHING CURRENT VS.
JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
100 (%)
103
7
5
3
2
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
NATURAL CONVECTION
NO FINS
140
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
120
RESISTIVE, INDUCTIVE LOADS
100
0
16
T2+, G–
TYPICAL
EXAMPLE
DISTRIBUTION
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
101
7
5
3
+
+

2 T2–, G –  TYPICAL
T2 , G  EXAMPLE
100
–40
0
40
80
120
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE (Tj = t°C)
BREAKOVER VOLTAGE (Tj = 25°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
LACHING CURRENT (mA)
8
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
ALL FINS ARE BLACK PAINTED
ALUMINUM AND GREASED
140
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
120
120 120 t2.3
100
100 100 t2.3
80
60 60 t2.3
100 (%)
AMBIENT TEMPERATURE (°C)
INSULATED TYPE, GLASS PASSIVATION TYPE
160
160
TYPICAL EXAMPLE
140
120
100
80
60
40
20
0
–60 –40 –20 0 20 40 60 80 100120 140
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8UM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
TYPICAL EXAMPLE
Tj = 125°C
BREAKOVER VOLTAGE (dv/dt = xV/µs )
BREAKOVER VOLTAGE (dv/dt = 1V/µs )
140
100 (%)
160
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
I QUADRANT
120
III QUADRANT
100
80
#2
#1
60
40
20
0
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
100 (%)
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
103
7
5
4
3
2
TYPICAL EXAMPLE
IFGT I
IRGT I
IRGT III
102
7
5
4
3
2
101 0
10
2 3 4 5 7 101
2 3 4 5 7 102
GATE CURRENT PULSE WIDTH (µs)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
6Ω
6Ω
A
6V
V
A
6V
RG
TEST PROCEDURE 1
V
RG
TEST PROCEDURE 2
6Ω
A
6V
V
RG
TEST PROCEDURE 3
Feb.1999