SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Some of contents are subject to change without notice. DESCRIPTION M2V56S20TP is a 4-bank x 16777216-word x 4-bit, M2V56S30TP is a 4-bank x 8388608-word x 8-bit, M2V56S40TP is a 4-bank x 4194304-word x 16-bit, synchronous DRAM, with LVTTL interface. All inputs and outputs are referenced to the rising edge of CLK. The M2V56S20/30/40TP achieve very high speed data rate up to 100MHz (-7/-8) , 133MHz (-6), and are suitable for main memory or graphic memory in computer systems. FEATURES - Single 3.3v±0.3V power supply - Max. Clock frequency 100MHz(-7/-8), 133MHz (-6) - Fully Synchronous operation referenced to clock rising edge - Single Data Rate - 4 bank operation controlled by BA0, BA1 (Bank Address) - /CAS latency- 2/3 (programmable) - Burst length- 1/2/4/8/full page (programmable) - Burst type- sequential / interleave (programmable) - Random column access - Auto precharge / All bank precharge controlled by A10 - 8192 refresh cycles /64ms (4 banks concurrent refresh) - Auto refresh and Self refresh - Row address A0-12 / Column address A0-9,11(x4)/ A0-9(x8)/ A0-8(x16) - LVTTL Interface - 400-mil, 54-pin Thin Small Outline Package (TSOP II) with 0.8mm lead pitch Max. Frequency @CL2 Max. Frequency @CL3 Standard M2V56S20/30/40TP-6 100MHz 133MHz PC133 (CL3) M2V56S20/30/40TP-7 100MHz 100MHz PC100 (CL2) M2V56S20/30/40TP-8 77MHz 100MHz PC100 (CL3) MITSUBISHI ELECTRIC 1 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM PIN CONFIGURATION (TOP VIEW) x4 x8 Vdd Vdd NC DQ0 VddQ VddQ NC NC DQ0 DQ1 VssQ VssQ NC NC NC DQ2 VddQ VddQ NC NC DQ1 DQ3 VssQ VssQ NC NC Vdd Vdd NC NC /WE /WE /CAS /CAS /RAS /RAS /CS /CS BA0 BA0 BA1 BA1 A10/AP A10/AP A0 A0 A1 A1 A2 A2 A3 A3 Vdd Vdd Vdd DQ0 VddQ DQ1 DQ2 VssQ DQ3 DQ4 VddQ DQ5 DQ6 VssQ DQ7 Vdd LDQM /WE /CAS /RAS /CS BA0 BA1 A10/AP A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 CLK CKE /CS /RAS /CAS /WE DQ0-15 DQM, DQMU/L A0-12 BA0,1 Vdd VddQ Vss VssQ 400mil x 875mil 54pin 0.8mm pitch TSOP(II) x16 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 Vss DQ15 VssQ DQ14 DQ13 VddQ DQ12 DQ11 VssQ DQ10 DQ9 VddQ DQ8 Vss NC UDQM CLK CKE A12 A11 A9 A8 A7 A6 A5 A4 Vss Vss DQ7 VssQ NC DQ6 VddQ NC DQ5 VssQ NC DQ4 VddQ NC Vss NC DQM CLK CKE A12 A11 A9 A8 A7 A6 A5 A4 Vss Vss NC VssQ NC DQ3 VddQ NC NC VssQ NC DQ2 VddQ NC Vss NC DQM CLK CKE A12 A11 A9 A8 A7 A6 A5 A4 Vss : Master Clock : Clock Enable : Chip Select : Row Address Strobe : Column Address Strobe : Write Enable : Data I/O : Output Disable / Write Mask : Address Input : Bank Address Input : Power Supply : Power Supply for Output : Ground : Ground for Output MITSUBISHI ELECTRIC 2 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM BLOCK DIAGRAM DQ0-3 (x4), 0-7 (x8), 0 - 15 (x16) I/O Buffer Memory Array Bank #0 Memory Array Bank #2 Memory Array Bank #1 Memory Array Bank #3 Mode Register Control Circuitry Address Buffer Control Signal Buffer Clock Buffer A0-12 BA0,1 Type Designation Code M 2 V 56 S 4 0 CLK CKE /CS /RAS /CAS /WE DQMU/L This rule is applied to only Synchronous DRAM family. TP - 8 Speed Grade 6: 133MHz@CL3, 100MHz@CL2 7: 100MHz@CL2 8: 100MHz@CL3 Package Type TP: TSOP(II) Process Generation Function Reserved for Future Use Organization 2n 2: x4, 3: x8, 4: x16 SDRAM Data Rate Type S:Single Data Rate Density 56: 256M bits Interface V:LVTTL Memory Style (DRAM) Mitsubishi Main Designation MITSUBISHI ELECTRIC 3 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM PIN FUNCTION CLK Input Master Clock: All other inputs are referenced to the rising edge of CLK. CKE Input Clock Enable: CKE controls internal clock. When CKE is low, internal clock for the following cycle is ceased. CKE is also used to select auto / self refresh. After self refresh mode is started, CKE becomes asynchronous input. Self refresh is maintained as long as CKE is low. /CS Input Chip Select: When /CS is high, any command means No Operation. /RAS, /CAS, /WE Input Combination of /RAS, /CAS, /WE defines basic commands. A0-12 Input A0-12 specify the Row / Column Address in conjunction with BA0,1. The Row Address is specified by A0-12. The Column Address is specified by A0-9,11. A10 is also used to indicate precharge option. When A10 is high at a read / write command, an auto precharge is performed. When A10 is high at a precharge command, all banks are precharged. BA0,1 Input Bank Address: BA0,1 specifies one of four banks to which a command is applied. BA0,1 must be set with ACT, PRE, READ, WRITE commands. DQ0-15 Input / Output DQM DQMU/L Input Vdd, Vss Power Supply Power Supply for the memory array and peripheral circuitry. VddQ, VssQ Power Supply VddQ and VssQ are supplied to the Output Buffers only. Data In and Data out are referenced to the rising edge of CLK. Din Mask / Output Disable: When DQMU/L is high in burst write, Din for the current cycle is masked. When DQMU/L is high in burst read, Dout is disabled at the next but one cycle. MITSUBISHI ELECTRIC 4 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM BASIC FUNCTIONS The M2V56S20/30/40TP provides basic functions, bank (row) activate, burst read / write, bank (row) precharge, and auto / self refresh. Each command is defined by control signals of /RAS, /CAS and /WE at CLK rising edge. In addition to 3 signals, /CS ,CKE and A10 are used as chip select, refresh option, and precharge option, respectively. To know the detailed definition of commands, please see the command truth table. CLK /CS Chip Select : L=select, H=deselect /RAS Command /CAS Command /WE Command CKE Refresh Option @refresh command A10 Precharge Option @precharge or read/write command define basic commands Activate (ACT) [/RAS =L, /CAS =/WE =H] ACT command activates a row in an idle bank indicated by BA. Read (READ) [/RAS =H, /CAS =L, /WE =H] READ command starts burst read from the active bank indicated by BA. First output data appears after /CAS latency. When A10 =H at this command, the bank is deactivated after the burst read (autoprecharge,READA) Write (WRITE) [/RAS =H, /CAS =/WE =L] WRITE command starts burst write to the active bank indicated by BA. Total data length to be written is set by burst length. When A10 =H at this command, the bank is deactivated after the burst write (autoprecharge, WRITEA). Precharge (PRE) [/RAS =L, /CAS =H, /WE =L] PRE command deactivates the active bank indicated by BA. This command also terminates burst read /write operation. When A10 =H at this command, all banks are deactivated (precharge all, PREA). Auto-Refresh (REFA) [/RAS =/CAS =L, /WE =CKE =H] REFA command starts auto-refresh cycle. Refresh address are generated internally. After this command, the banks are precharged automatically. MITSUBISHI ELECTRIC 5 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM COMMAND TRUTH TABLE COMMAND MNEMONIC CKE n-1 CKE n /CS /RAS /CAS Deselect DESEL H X H X X X X X X No Operation NOP H X L H H H X X X Row Address Entry & Bank Activate ACT H X L L H H V V V Single Bank Precharge PRE H X L L H L V L X Precharge All Banks PREA H X L L H L X H X Column Address Entry & Write WRITE H X L H L L V L V Column Address Entry & Write with Auto-Precharge WRITEA H X L H L L V H V Column Address Entry & Read READ H X L H L H V L V Column Address Entry & Read with Auto-Precharge READA H X L H L H V H V Auto-Refresh REFA H H L L L H X X X Self-Refresh Entry REFS H L L L L H X X X Self-Refresh Exit REFSX L H H X X X X X X L H L H H H X X X Burst Terminate TBST H X L H H L X X X Mode Register Set MRS H X L L L L L L V /WE BA0,1 A10 /AP A0-9, note 11-12 H=High Level, L=Low Level, V=Valid, X=Don't Care, n=CLK cycle number NOTE: 1. A7-9,11-12=L, A0-A6 =Mode Address MITSUBISHI ELECTRIC 6 1 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM FUNCTION TRUTH TABLE Current State /CS /RAS /CAS /WE IDLE H X X X X DESEL NOP L H H H X NOP NOP L H H L X TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H L L L L X Op-Code, Mode-Add H X X X X DESEL NOP L H H H X NOP NOP L H H L X TBST NOP L H L H BA, CA, A10 READ / READA Begin Read, Latch CA, Determine Auto-Precharge L H L L BA, CA, A10 WRITE / WRITEA Begin Write, Latch CA, Determine Auto-Precharge L L H H BA, RA ACT Bank Active / ILLEGAL*2 L L H L BA, A10 PRE / PREA Precharge / Precharge All L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L X TBST Terminate Burst ROW ACTIVE READ L H L H Address BA, CA, A10 Command Action READ / WRITE ILLEGAL*2 Bank Active, Latch RA NOP*4 REFA Auto-Refresh*5 MRS Mode Register Set*5 Terminate Burst, Latch CA, READ / READA Begin New Read, Determine Auto-Precharge*3 WRITE / WRITEA Terminate Burst, Latch CA, Begin Write, Determine AutoPrecharge*3 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL Bank Active / ILLEGAL*2 Terminate Burst, Precharge MITSUBISHI ELECTRIC 7 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM FUNCTION TRUTH TABLE (continued) Current State /CS /RAS /CAS /WE WRITE H X X X L H H L H H READ with AUTO PRECHARGE WRITE with AUTO PRECHARGE Address Command Action X DESEL NOP (Continue Burst to END) H X NOP NOP (Continue Burst to END) L X TBST Terminate Burst Terminate Burst, Latch CA, READ / READA Begin Read, Determine AutoPrecharge*3 L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L X TBST ILLEGAL L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L X TBST ILLEGAL L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL WRITE / WRITEA Terminate Burst, Latch CA, Begin Write, Determine AutoPrecharge*3 Bank Active / ILLEGAL*2 Terminate Burst, Precharge READ / READA ILLEGAL WRITE / WRITEA ILLEGAL Bank Active / ILLEGAL*2 ILLEGAL*2 READ / READA ILLEGAL WRITE / WRITEA ILLEGAL Bank Active / ILLEGAL*2 ILLEGAL*2 MITSUBISHI ELECTRIC 8 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM FUNCTION TRUTH TABLE (continued) Current State /CS /RAS /CAS /WE PRE CHARGING H X X X X DESEL NOP (Idle after tRP) L H H H X NOP NOP (Idle after tRP) L H H L X TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Row Active after tRCD) L H H H X NOP NOP (Row Active after tRCD) L H H L X TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL*2 L L H L BA, A10 PRE / PREA ILLEGAL*2 L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP L H H H X NOP NOP L H H L X TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL*2 L L H L BA, A10 PRE / PREA ILLEGAL*2 L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL ROW ACTIVATING WRITE RECOVERING Address Command Action READ / WRITE ILLEGAL*2 ILLEGAL*2 NOP*4 (Idle after tRP) READ / WRITE ILLEGAL*2 READ / WRITE ILLEGAL*2 MITSUBISHI ELECTRIC 9 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM FUNCTION TRUTH TABLE (continued) Current State /CS /RAS /CAS /WE REFRESHING H X X X X DESEL NOP (Idle after tRC) L H H H X NOP NOP (Idle after tRC) L H H L X TBST ILLEGAL L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL L L H L BA, A10 PRE / PREA ILLEGAL L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Idle after tRSC) L H H H X NOP NOP (Idle after tRSC) L H H L X TBST ILLEGAL L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL L L H L BA, A10 PRE / PREA ILLEGAL L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL MODE REGISTER SETTING Address Command Action READ / WRITE ILLEGAL READ / WRITE ILLEGAL ABBREVIATIONS: H=High Level, L=Low Level, X=Don't Care BA=Bank Address, RA=Row Address, CA=Column Address, NOP=No OPeration NOTES: 1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle. 2. ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the state of that bank. 3. Must satisfy bus contention, bus turn around, write recovery requirements. 4. NOP to bank precharging or in idle state. May precharge bank indicated by BA. 5. ILLEGAL if any bank is not idle. ILLEGAL = Device operation and/or data-integrity are not guaranteed. MITSUBISHI ELECTRIC 10 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM FUNCTION TRUTH TABLE for CKE Current State SELFREFRESH*1 POWER DOWN ALL BANKS IDLE*2 ANY STATE other than listed above CKE n-1 CKE n /CS H X X X L H H L H L /RAS /CAS /WE Add Action X X X INVALID X X X X Exit Self-Refresh (Idle after tRC) L H H H X Exit Self-Refresh (Idle after tRC) H L H H L X ILLEGAL L H L H L X X ILLEGAL L H L L X X X ILLEGAL L L X X X X X NOP (Maintain Self-Refresh) H X X X X X X INVALID L H X X X X X Exit Power Down to Idle L L X X X X X NOP (Maintain Power Down) H H X X X X X Refer to Function Truth Table H L L L L H X Enter Self-Refresh H L H X X X X Enter Power Down H L L H H H X Enter Power Down H L L H H L X ILLEGAL H L L H L X X ILLEGAL H L L L X X X ILLEGAL L X X X X X X Refer to Current State =Power Down H H X X X X X Refer to Function Truth Table H L X X X X X Begin CLK Suspend at Next Cycle*3 L H X X X X X Exit CLK Suspend at Next Cycle*3 L L X X X X X Maintain CLK Suspend ABBREVIATIONS: H=High Level, L=Low Level, X=Don't Care NOTES: 1. CKE Low to High transition will re-enable CLK and other inputs asynchronously . A minimum setup time must be satisfied before any command other than EXIT. 2. Self-Refresh can be entered only from the All Banks Idle State. 3. Must be legal command. MITSUBISHI ELECTRIC 11 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM SIMPLIFIED STATE DIAGRAM SELF REFRESH REFS REFSX MODE REGISTER SET MRS AUTO REFRESH REFA IDLE CKEL CLK SUSPEND CKEH ACT POWER DOWN CKEL CKEH ROW ACTIVE TBST WRITE READ WRITEA CKEL TBST READA READ WRITE WRITE SUSPEND CKEH WRITE CKEL READ CKEH WRITEA READA WRITEA READA CKEL WRITEA WRITEA SUSPEND CKEH POWER APPLIED POWER ON READ SUSPEND PRE CKEL PRE PRE READA PRE CKEH READA SUSPEND PRE CHARGE Automatic Sequence Command Sequence MITSUBISHI ELECTRIC 12 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM POWER ON SEQUENCE Before starting normal operation, the following power on sequence is necessary to prevent a SDRAM from damaged or malfunctioning. 1. Apply power and start clock. Attempt to maintain CKE high, DQM high and NOP condition at the inputs. 2. Maintain stable power, stable clock, and NOP input conditions for a minimum of 200µs. 3. Issue precharge commands for all banks. (PRE or PREA) 4. After all banks become idle state (after tRP), issue 8 or more auto-refresh commands. 5. Issue a mode register set command to initialize the mode register. After these sequence, the SDRAM is idle state and ready for normal operation. MODE REGISTER CLK Burst Length, Burst Type and /CAS Latency can be programmed by setting the mode register (MRS). The mode register stores these data until the next MRS command, which may be issued when all banks are in idle state. After tRSC from a MRS command, the SDRAM is ready for new command. /CS /RAS /CAS /WE BA0,1 A12-A0 BA0 BA1 A12 A11 A10 A9 0 LATENCY MODE 0 0 0 CL 000 001 010 011 100 101 110 111 0 SW SW 0 1 A8 A7 0 0 A6 A5 A4 LTMODE A3 A2 BT Burst Write Single Write /CAS LATENCY R R 2 3 R R R R A1 V A0 BL BURST LENGTH BL 000 001 010 011 100 101 110 111 BURST TYPE 0 1 BT=0 1 2 4 8 R R R Full Page BT=1 1 2 4 8 R R R R SEQUENTIAL INTERLEAVED R: Reserved for Future Use MITSUBISHI ELECTRIC 13 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM CLK Command Read Write Y Y Address Q0 DQ Q1 Q2 Q3 D0 D1 D2 D3 /CAS Latency CL= 3 BL= 4 Burst Length Burst Length Burst Type Initial Address BL Column Addressing A2 A1 A0 Sequential Interleaved 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 1 1 2 3 4 5 6 7 0 1 0 3 2 5 4 7 6 0 1 0 2 3 4 5 6 7 0 1 2 3 0 1 6 7 4 5 0 1 1 3 4 5 6 7 0 1 2 3 2 1 0 7 6 5 4 8 1 0 0 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 1 0 1 5 6 7 0 1 2 3 4 5 4 7 6 1 0 3 2 1 1 0 6 7 0 1 2 3 4 5 6 7 4 5 2 3 0 1 1 1 1 7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 - 0 0 0 1 2 3 0 1 2 3 - 0 1 1 2 3 0 1 0 3 2 4 - 1 0 2 3 0 1 2 3 0 1 - 1 1 3 0 1 2 3 2 1 0 - - 0 0 1 0 1 1 0 1 0 - - 1 2 MITSUBISHI ELECTRIC 14 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM OPERATIONAL DESCRIPTION BANK ACTIVATE One of four banks is activated by an ACT command. An bank is selected by BA0-1. A row is selected by A0-12. Multiple banks can be active state concurrently by issuing multiple ACT commands. Minimum activation interval between one bank and another bank is tRRD. PRECHARGE An open bank is deactivated by a PRE command. A bank to be deactivated is designated by BA0-1. When multiple banks are active, a precharge all command (PREA, PRE + A10=H) deactivates all of open banks at the same time. BA0-1 are "Don't Care" in this case. Minimum delay time of an ACT command after a PRE command to the same bank is tRP. Bank Activation and Precharge All (BL=4, CL=3) CLK Command ACT ACT tRRD READ tRCD ACT tRP A0-9,11-12 Xa Xb Yb A10 Xa Xb 0 BA0-1 00 01 01 DQ PRE Xa 1 Xa 00 Qb0 Qb1 Qb2 Qb3 Precharge All READ A READ command can be issued to any active bank. The start address is specified by A0-9,11(x4), A09 (x8), A0-8 (x16). 1st output data is available after the /CAS Latency from the READ. The consecutive data length is defined by the Burst Length. The address sequence of the burst data is defined by the Burst Type. Minimum delay time of a READ command after an ACT command to the same bank is tRCD. When A10 is high at a READ command, auto-precharge (READA) is performed. Any command (READ, WRITE, PRE, ACT,TBST) to the same bank is inhibited till the internal precharge is complete. The internal precharge starts at the BL after READA. The next ACT command can be issued after (BL + tRP) from the previous READA. In any case, tRCD+BL ≥ tRASmin must be met. MITSUBISHI ELECTRIC 15 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Multi Bank Interleaving Read (CL=2, BL=4) CLK Command ACT READ ACT READ PRE tRCD tRCD ACT tRP A0-9,11-12 Xa Ya Xb Yb A10 Xa 0 Xb 0 0 Xa BA0-1 00 00 01 01 00 00 Qa2 Qa3 DQ Qa0 Qa1 Xa Qb0 Qb1 Qb2 Qb3 Read with Auto-Precharge (CL=2, BL=4) CLK Command ACT READ tRCD ACT BL tRP A0-9,11-12 Xa Ya Xa A10 Xa 1 Xa BA0-1 00 00 00 DQ Qa0 Qa1 Qa2 Qa3 internal precharge starts Auto-Precharge Timing (READ, BL=4) CLK Command ACT READ tRCD DQ CL=2 DQ CL=3 ACT BL Qa0 Qa1 Qa2 Qa3 Qa0 Qa1 Qa2 Qa3 internal precharge starts MITSUBISHI ELECTRIC 16 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM WRITE A WRITE command can be issued to any active bank.The start address is specified by A0-9,11(x4), A0-9 (x8), A0-8 (x16). 1st input data is set at the same cycle as the WRITE. The consecutive data length to be written is defined by the Burst Length. The address sequence of burst data is defined by the Burst Type. Minimum delay time of a WRITE command after an ACT command to the same bank is tRCD. From the last input data to the PRE command, the write recovery time (tWR) is required. When A10 is high at a WRITE command, auto-precharge (WRITEA) is performed. Any command (READ, WRITE, PRE, ACT, TBST) to the same bank is inhibited till the internal precharge is complete. The internal precharge starts at tWR after the last input data cycle. The next ACT command can be issued after (BL + tWR -1 +tRP) from the previous WRITEA. In any case, tRCD + BL + tWR -1 ≥ tRASmin must be met. Write (BL=4) CLK Command ACT Write PRE BL tRCD A0-9,11-12 Xa Ya A10 Xa 0 BA0-1 00 00 ACT tRP Xa 0 Xa 00 tWR DQ Da0 Da1 Da2 Da3 Write with Auto-Precharge (BL=4) CLK Command ACT Write ACT tRCD BL tRP A0-9,11-12 Xa Ya Xa A10 Xa 1 Xa BA0-1 00 00 00 tWR DQ Da0 Da1 Da2 Da3 internal precharge starts MITSUBISHI ELECTRIC 17 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM BURST INTERRUPTION [ Read Interrupted by Read ] Burst read operation can be interrupted by new read of any active bank. Random column access is allowed. READ to READ interval is minimum 1 CLK. Read interrupted by Read (CL=2, BL=4) CLK Command READ READ READ A0-9,11-12 Ya Yb Yc A10 0 0 0 BA0-1 00 00 10 Qa1 Qa2 DQ Qa0 Qb0 Qc0 Qc1 Qc2 Qc3 [ Read Interrupted by Write ] Burst read operation can be interrupted by write of any active bank. Random column access is allowed. In this case, the DQ should be controlled adequately by using the DQM to prevent the bus contention. The output is disabled automatically 2 cycle after WRITE assertion. Read interrupted by Write (CL=2, BL=4) CLK Command ACT READ Write A0-9,11-12 Xa Ya Ya A10 Xa 0 0 BA0-1 00 00 00 DQM DQ Qa0 Da0 Da1 Output disable by DQM Da2 Da3 by WRITE MITSUBISHI ELECTRIC 18 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM [ Read Interrupted by Precharge ] A burst read operation can be interrupted by a precharge of the same bank . READ to PRE interval is minimum 1 CLK. A PRE command to output disable latency is equivalent to the /CAS Latency. Read interrupted by Precharge (BL=4) CLK Command READ DQ Command PRE Q0 READ Q1 Q2 PRE CL=2 DQ Command Q0 READ PRE DQ Command Q0 READ PRE DQ Command Q1 READ Q0 Q1 Q0 Q1 Q2 PRE CL=3 DQ Command DQ READ PRE Q0 MITSUBISHI ELECTRIC 19 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM [ Read Interrupted by Burst Terminate ] Similarly to the precharge, a burst terminate command can interrupt the burst read operation and disable the data output. The terminated bank remains active. READ to TBST interval is minimum 1 CLK. A TBST command to output disable latency is equivalent to the /CAS Latency. Read interrupted by Terminate (BL=4) CLK Command READ DQ Command TBST Q0 READ Q1 Q2 TBST CL=2 DQ Command Q0 READ TBST DQ Command Q0 READ TBST DQ Command Q1 READ Q0 Q1 Q0 Q1 Q2 TBST CL=3 DQ Command DQ READ TBST Q0 MITSUBISHI ELECTRIC 20 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM [ Write Interrupted by Write ] Burst write operation can be interrupted by new write of any active bank. Random column access is allowed. WRITE to WRITE interval is minimum 1 CLK. Write interrupted by Write (BL=4) CLK Command Write Write Write A0-9,11-12 Ya Yb Yc A10 0 0 0 BA0-1 00 00 10 DQ Da0 Db0 Dc0 Da1 Da2 Dc1 Dc2 Dc3 [ Write Interrupted by Read ] Burst write operation can be interrupted by read of any active bank. Random column access is allowed. WRITE to READ interval is minimum 1 CLK. The input data on DQ at the interrupting READ cycle is "Don't Care". Write interrupted by Read (CL=2, BL=4) CLK Command ACT Write READ A0-9,11-12 Xa Ya Yb A10 Xa 0 0 BA0-1 00 00 00 DQ Da0 Da1 Qb0 Qb1 Qb2 Qb3 don't care MITSUBISHI ELECTRIC 21 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM [ Write Interrupted by Precharge ] Burst write operation can be interrupted by precharge of the same bank. Write recovery time (tWR) is required from the last data to PRE command. During write recovery, data inputs must be masked by DQM. Write interrupted by Precharge (BL=4) CLK Command ACT Write PRE ACT tRP A0-9,11-12 Xa Ya Xa A10 0 0 0 0 BA0-1 00 00 00 00 DQM tWR DQ Da0 Da1 [ Write Interrupted by Burst Terminate ] Burst terminate command can terminate burst write operation. In this case, the write recovery time is not required and the bank remains active. WRITE to TBST interval is minimum 1 CLK. Write interrupted by Terminate (BL=4) CLK Command ACT Write A0-9,11-12 Xa Ya Yb A10 0 0 0 BA0-1 00 00 00 DQ Da0 TBST Da1 Write Db0 Db1 Db2 Db3 MITSUBISHI ELECTRIC 22 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM [ Write with Auto-Precharge Interrupted by Write / Read to another Bank ] Burst write with auto-precharge can be interrupted by write or read to another bank. Next ACT comand can be issued after (BL+tWR-1+tRP) from the WRITEA. Auto-precharge interruption by a command to the same bank is inhibited. WRITEA interrupted by WRITE to another bank (BL=4) CLK Command Write ACT Write BL A0-9,11-12 Ya tRP Xa Yb tWR A10 1 0 Xa BA0-1 00 10 00 DQ Da0 Da1 auto-precharge Db0 Db1 Db2 Db3 interrupted activate WRITEA interrupted by READ to another bank (CL=2, BL=4) CLK Command Write ACT Read BL A0-9,11-12 Ya tRP Xa Yb tWR A10 1 0 Xa BA0-1 00 10 00 DQ Da0 Da1 auto-precharge Qb0 Qb1 Qb2 interrupted Qb3 activate MITSUBISHI ELECTRIC 23 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM [ Read with Auto-Precharge Interrupted by Read to another Bank ] Burst read with auto-precharge can be interrupted by read to another bank. Next ACT comand can be issued after (BL+tRP) from the READA. Auto-precharge interruption by a command to the same bank is inhibited. READA interrupted by READ to another bank (CL=2, BL=4) CLK Command Read Read ACT BL A0-9,11-12 tRP Ya Yb Xa A10 1 0 Xa BA0-1 00 10 00 DQ Qa0 auto-precharge Qa1 interrupted Qb0 Qb1 Qb2 Qb3 activate Full Page Burst Full page burst length is available for only the sequential burst type. Full page burst read / write is repeated untill a Precharge or a Burst Terminate command is issued. In case of the full page burst, a read / write with auto-precharge command is illegal. Single Write When sigle write mode is set, burst length for write is always one, independently of Burst Length defined by (A2-0). MITSUBISHI ELECTRIC 24 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM AUTO REFRESH Single cycle of auto-refresh is initiated with a REFA (/CS= /RAS= /CAS= L, /WE= /CKE= H) command. The refresh address is generated internally. 8192 REFA cycles within 64ms refresh 256Mbit memory cells. The auto-refresh is performed on 4 banks concurrently. Before performing an autorefresh, all banks must be in idle state. Auto-refresh to auto-refresh interval is minimum tRFC. Any command must not be issued before tRFC from the REFA command. Auto-Refresh CLK /CS NOP or DESELECT /RAS /CAS /WE CKE minimum tRFC A0-12 BA0-1 Auto Refresh on All Banks Auto Refresh on All Banks MITSUBISHI ELECTRIC 25 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM SELF REFRESH Self-refresh mode is entered by issuing a REFS command (/CS= /RAS= /CAS= L, /WE= H, CKE= L). Once the self-refresh is initiated, it is maintained as long as CKE is kept low. During the self-refresh mode, CKE is asynchronous and the only enabled input. All other inputs including CLK are disabled and ignored, so that power consumption due to synchronous inputs is saved. To exit the self-refresh, supplying stable CLK inputs, asserting DESEL or NOP command and then asserting CKE=H. After tRFC from the 1st CLK edge following CKE=H, all banks are in idle state and a new command can be issued, but DESEL or NOP commands must be asserted till then. Self-Refresh CLK Stable CLK NOP /CS /RAS /CAS /WE CKE new command A0-12 X BA0-1 00 Self Refresh Entry Self Refresh Exit minimum tRFC for recovery MITSUBISHI ELECTRIC 26 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM CLK SUSPEND and POWER DOWN CKE controls the internal CLK at the following cycle. Figure below shows how CKE works. By negating CKE, the next internal CLK is suspended. The purpose of CLK suspend is power down, output suspend or input suspend. CKE is a synchronous input except during the self-refresh mode. CLK suspend can be performed either when the banks are active or idle. A command at the suspended cycle is ignored. ext.CLK tIH tIS tIH tIS CKE int.CLK Power Down by CKE CLK Standby Power Down CKE Command PRE NOP NOP NOP Active Power Down CKE Command ACT NOP NOP NOP DQ Suspend by CKE CLK CKE Command DQ Write D0 Read D1 D2 D3 Q0 Q1 Q2 Q3 MITSUBISHI ELECTRIC 27 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM DQM CONTROL DQMU/L is a dual functional signal defined as the data mask for writes and the output disable for reads. During writes, DQMU/L masks input data word by word. DQMU/L to Data In latency is 0. During reads, DQMU/L forces output to Hi-Z word by word. DQMU/L to output Hi-Z latency is 2. DQM Function CLK Command Write Read DQMU/L DQ D0 D2 D3 masked by DQMU/L=H Q0 Q1 Q3 disabled by DQMU/L=H MITSUBISHI ELECTRIC 28 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM ABSOLUTE MAXIMUM RATINGS Symbol Parameter Conditions Ratings Unit Vdd Supply Voltage with respect to Vss -0.5 ~ 4.6 V VddQ Supply Voltage for Output with respect to VssQ -0.5 ~ 4.6 V VI Input Voltage with respect to Vss -0.5 ~ Vdd+0.5 V VO Output Voltage with respect to VssQ -0.5 ~ VddQ+0.5 V IO Output Current 50 mA Pd Power Dissipation 1000 mW Ta = 25 °C Topr Operating Temperature 0 ~ 70 °C Tstg Storage Temperature -65 ~ 150 °C RECOMMENDED OPERATING CONDITIONS (Ta=0 ~ 70°C, unless otherwise noted) Limits Symbol Parameter Vdd Unit Min. Typ. Max. Supply Voltage 3.0 3.3 3.6 V Vss Supply Voltage 0 0 0 V VddQ Supply Voltage for Output 3.0 3.3 3.6 V VssQ Supply Voltage for Output 0 0 0 V VIH High-Level Input Voltage all inputs 2.0 Vdd+0.3 V VIL Low-Level Input Voltage all inputs -0.3 0.8 V CAPACITANCE (Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3V, Vss = VssQ = 0V, unless otherwise noted) Symbol CI(A) Parameter Test Condition Input Capacitance, address pin CI(C) Input Capacitance, control pin CI(K) Input Capacitance, CLK pin CI/O Input Capacitance, I/O pin VI=1.4v f=1MHz VI=25mVrms Limits Unit Min. Max. 2.5 3.8 pF 2.5 3.8 pF 2.5 3.5 pF 4.0 6.5 pF MITSUBISHI ELECTRIC 29 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM AVERAGE SUPPLY CURRENT from Vdd (Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3V, Vss = VssQ = 0V, Output Open, unless otherwise noted) Symbol Icc1 Icc2P Icc2PS Icc2N Icc2NS Icc3P Icc3PS Icc3N Icc3NS Icc4 Parameter Operating Current (1bank) Idle Standby Current in Power Down Mode Idle Standby Current in Normal Mode Test Conditions Limits(max) Organiz 100 Unit Note ation 133 MHz MHz x4 90 80 x8 90 80 x16 100 90 1.5 1 mA tCLK=∞, CKE≤VILmax 1 1 mA tCLK=min, CKE≥VIHmin, /CS≥ VIHmin 25 20 mA 2,3 tCLK=∞, CKE≥VIHmin 6 6 mA 2,4 5 4 mA 4 4 mA 30 25 mA 3,5 15 15 mA 4,5 x4 110 90 x8 110 90 mA 5 x16 120 100 180 170 mA 3 3 mA tCLK=min, tRC=min, BL=1 tCLK=min, CKE≤VILmax Active Standby Current tCLK=min, CKE≤VILmax in Power Down Mode tCLK=∞, CKE≤VILmax tCLK=min, CKE≥VIHmin, Active Standby Current /CS≥ VIHmin in Normal Mode tCLK=∞, CKE≥VIHmin Burst Operating Current tCLK=min, BL=4, gapless data Icc5 Auto-Refresh Current tCLK=min, tRFC=min Icc6 Self-Refresh Current CKE≤0.2v -6/-7/-8 mA 1 2 5 Notes 1. addresses are changed 3 times during tRC, only 1 bank is active & all other banks are idle 2. all banks are idle 3. input signals are changed one time during 3xtCLK 4. input signals are stable 5. all banks are active AC OPERATING CONDITIONS AND CHARACTERISTICS (Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3V, Vss = VssQ = 0V, unless otherwise noted) Symbol Parameter Test Conditions VOH(DC) High-Level Output Voltage (DC) IOH=-2mA VOL(DC) Low-Level Output Voltage (DC) IOL= 2mA IOZ Off-state Output Current Q floating Vo=0 ~ VddQ II Input Current VIH=0 ~ VddQ+0.3V, other input pins=0V Limits Min. Max. 2.4 Unit V 0.4 V -10 10 µA -10 10 µA MITSUBISHI ELECTRIC 30 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM AC TIMING REQUIREMENTS (Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3V, Vss = VssQ = 0V, unless otherwise noted) Input Pulse Levels: 0.8V to 2.0V Input Timing Measurement Level: 1.4V Limits Symbol Parameter -6 Min. -7 Max. Min. Unit Note -8 Max. Min. Max. CL=2 10 10 13 ns CL=3 7.5 10 10 ns CLK High pulse width 2.5 3 3 ns tCL CLK Low pulse width 2.5 3 3 ns tT Transition time of CLK 1 tIS Input Setup time (all inputs) 1.5 2 2 ns tIH Input Hold time (all inputs) 0.8 1 1 ns tRC Row Cycle time 67.5 70 70 ns tCLK CLK cycle time tCH 10 1 10 1 10 ns tRFC Refresh Cycle time 75 80 80 ns tRCD Row to Column Delay 20 20 20 ns tRAS Row Active time 45 tRP Row Precharge time 20 20 20 ns tWR Write Recovery time 15 20 20 ns tRRD ACT to ACT Delay time 15 20 20 ns tRSC Mode Register Set Cycle time 15 20 20 ns tREF Average Refresh Interval CLK Signal 120000 50 120000 7.8 7.8 50 120000 7.8 ns µs 1.4V 1.4V AC timing is referenced to the input signal crossing through 1.4V. MITSUBISHI ELECTRIC 31 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM SWITCHING CHARACTERISTICS (Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3V, Vss = VssQ = 0V, unless otherwise noted) Limits Symbol Parameter -6 Min. tAC tOH -7 Max Min. Unit -8 Max Min. Max CL=2 6 6 7 ns CL=3 5.4 6 6 ns Access Time from CLK CL=2 3 3 3 ns CL=3 3 3 3 ns 0 0 ns Output Hold Time from CLK tOLZ Delay Time, Output Low impedance from CLK 0 tOHZ Delay Time, Output High impedannce from CLK 3 6 3 6 3 6 ns Note. If tr (CLK rising time) is > 1ns, (tr/2 - 0.5ns) should be added to the parameters. Output Load Condition Vout 50pF CLK 1.4V DQ 1.4V tOLZ tAC tOHZ tOH MITSUBISHI ELECTRIC 32 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Burst Write (Single Bank) [BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRC /CS tRP tRAS /RAS tRCD tRCD /CAS tWR tWR /WE CKE DQM A0-9,11 X A10 X X A12 X X BA0,1 0 DQ Y 0 D0 ACT#0 X 0 D0 WRITE#0 D0 0 D0 Y 0 D0 PRE#0 ACT#0 0 D0 WRITE#0 D0 D0 PRE#0 Italic paramater shows minimum case MITSUBISHI ELECTRIC 33 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Burst Write (Multi Bank) [BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRC tRC /CS tRAS tRP tRRD /RAS tRCD tRCD tRCD /CAS tWR tWR /WE CKE DQM A0-9,11 X A10 X X X X A12 X X X X BA0,1 0 DQ Y X 0 1 D0 D0 Y D0 ACT#0 WRITE#0 ACT#1 D0 X 1 0 D1 D1 PRE#0 D1 Y 0 0 D1 D0 ACT#0 WRITEA#1 (Auto-Precharge) X 1 D0 D0 0 D0 WRITE#0 PRE#0 ACT#1 Italic paramater shows minimum case MITSUBISHI ELECTRIC 34 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Burst Read (Single Bank) [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRC /CS tRP tRAS tRAS /RAS tRCD tRCD /CAS /WE CKE DQM A0-9,11 X A10 X X A12 X X BA0,1 0 Y X 0 DQ 0 Q0 ACT#0 READ#0 Q0 Q0 PRE#0 Y 0 0 Q0 0 Q0 ACT#0 READ#0 Q0 Q0 Q0 PRE#0 Italic paramater shows minimum case MITSUBISHI ELECTRIC 35 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Burst Read (Multi Bank) [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRC tRC /CS tRRD tRAS /RAS tRCD tRCD tRCD /CAS /WE CKE DQM A0-9,11 X A10 X X X X A12 X X X X BA0,1 0 Y X 0 Y 1 DQ X 1 Q0 Q0 Q0 0 Q0 ACT#0 READA#0 ACT#1 Y X 0 Q1 Q1 ACT#0 Q1 1 Q1 Q0 READ#0 0 Q0 Q0 Q0 PRE#0 ACT#1 READA#1 Italic paramater shows minimum case MITSUBISHI ELECTRIC 36 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Write Interrupted by Write [BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS tRRD /RAS tRCD /CAS tWR /WE CKE DQM A0-9,11 X A10 X X X A12 X X X BA0,1 0 DQ Y X 0 1 D0 D0 ACT#0 WRITE#0 ACT#1 Y Y 0 D0 D0 Y 1 D0 D1 X 0 D1 D1 WRITE#0 WRITEA#1 interrupt interrupt same bank other bank D0 0 D0 WRITE#0 interrupt other bank D0 1 D0 PRE#0 ACT#1 Italic paramater shows minimum case MITSUBISHI ELECTRIC 37 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Read Interrupted by Read [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS tRRD /RAS tRCD tRCD /CAS /WE CKE DQM A0-9,11 X A10 X X X A12 X X X BA0,1 0 Y 0 X Y 1 DQ 1 Q0 ACT#0 READ#0 ACT#1 Y Q0 Y 1 Q0 Q1 X 0 Q1 Q1 READ#1 READA#1 interrupt interrupt other bank same bank Q1 1 Q1 READ#0 interrupt other bank Q0 Q0 Q0 Q0 ACT#1 Italic paramater shows minimum case MITSUBISHI ELECTRIC 38 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Write Interrupted by Read, Read Interrupted by Write [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS tRRD /RAS tRCD tRCD /CAS tWR /WE CKE DQM A0-9,11 X X A10 X X A12 X X BA0,1 0 1 DQ Y Y Y 0 1 1 D0 ACT#0 D0 WRITE#0 Q1 READ#1 Q1 D1 1 D1 WRITE#1 D1 D1 PRE#1 ACT#1 Italic paramater shows minimum case MITSUBISHI ELECTRIC 39 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Write / Read Terminated by Precharge [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRC /CS tRP tRAS tRP /RAS tRCD tRCD /CAS tWR /WE CKE DQM A0-9,11 X A10 X X X A12 X X X BA0,1 0 DQ Y 0 D0 ACT#0 X 0 0 Y 0 D0 WRITE#0 X 0 Q0 PRE#0 ACT#0 Terminate READ#0 0 Q0 PRE#0 Terminate ACT#0 Italic paramater shows minimum case MITSUBISHI ELECTRIC 40 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Write / Read Terminated by Burst Terminate [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS /RAS tRCD /CAS tWR /WE CKE DQM A0-9,11 X A10 X A12 X BA0,1 0 DQ Y Y Y 0 0 0 D0 ACT#0 D0 Q0 WRITE#0 TBST Q0 READ#0 TBST D0 0 D0 WRITE#0 D0 D0 PRE#0 Italic paramater shows minimum case MITSUBISHI ELECTRIC 41 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Single Write Burst Read [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS /RAS tRCD /CAS /WE CKE DQM A0-9,11 X A10 X A12 X BA0,1 0 DQ Y Y 0 0 D0 ACT#0 WRITE#0 Q0 Q0 Q0 Q0 READ#0 Italic paramater shows minimum case MITSUBISHI ELECTRIC 42 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Power-Up Sequence and Intialize CLK 200µs /CS tRP tRFC tRFC tRSC /RAS /CAS /WE CKE DQM A0-9,11 MA X A10 0 X A12 0 X BA0,1 0 0 DQ NOP Power On PRE ALL REFA REFA REFA MRS ACT#0 Minimum 8 REFA cycles Italic paramater shows minimum case MITSUBISHI ELECTRIC 43 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Auto Refresh 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRFC /CS tRP /RAS tRCD /CAS /WE CKE DQM A0-9,11 X A10 X A12 X BA0,1 0 DQ Y 0 D0 PRE ALL REFA ACT#0 D0 D0 D0 WRITE#0 All banks must be idle before REFA is issued. Italic paramater shows minimum case MITSUBISHI ELECTRIC 44 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Self Refresh 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK tRFC /CS tRP /RAS /CAS /WE CKE DQM A0-9,11 X A10 X A12 X BA0,1 0 DQ PRE ALL Self Refresh Entry Self Refresh Exit ACT#0 All banks must be idle before REFS is issued. Italic paramater shows minimum case MITSUBISHI ELECTRIC 45 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM CLK Suspension [CL=2, BL=4] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS /RAS tRCD /CAS /WE CKE DQM A0-9,11 X A10 X A12 X BA0,1 0 DQ Y Y 0 0 D0 D0 D0 ACT#0 WRITE#0 internal CLK suspended D0 Q0 READ#0 Q0 Q0 Q0 internal CLK suspended Italic paramater shows minimum case MITSUBISHI ELECTRIC 46 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Power Down 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK /CS /RAS /CAS /WE Standby Power Down Active Power Down CKE DQM A0-9,11 X A10 X A12 X BA0,1 0 DQ PRE ALL ACT#0 Italic paramater shows minimum case MITSUBISHI ELECTRIC 47 MITSUBISHI LSIs SDRAM (Rev.1.1) Single Data Rate M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Revison History Rev. Date Description 1.0 July / '99 1.1 Feb. / '00 - Remove "Power-Down" from Function Truth Table for CKE Note 2 - Modify Average Supply Current from Vdd Icc2N, Icc3N Test Condition (/CS≥ VIHmin) Icc3PS Limits (from 3mA to 4mA) Icc5 Limits (from 160/150mA to 180/170mA) Icc6 Test Condition (CKE ≤0.2V) Icc6 Limits (from 2mA to 3mA) - Change Switching Characteristics tAC of -8 for CL=2 from 6ns to 7ns - Add Note to Switching Characteristics - Change Output Load Condition to 50pF only - Remove tCCD from AC Timing Requirements 1st edition MITSUBISHI ELECTRIC 48 SDRAM (Rev.1.1) Single Data Rate MITSUBISHI LSIs M2V56S20/ 30/ 40/ TP -6, -7, -8 Feb.2000 256M Synchronous DRAM Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. 2. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any thirdparty’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. MITSUBISHI ELECTRIC 49