MITSUBISHI S40B

PC133 SDRAM (Rev.0.5)
Oct. '99
PRELIMINARY
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Some of contents are described for general products and are
subject to change without notice.
DESCRIPTION
M2V64S20BTP is organized as 4-bank x4,194,304-word x 4-bit,and M2V64S30BTP is organized
as 4-bank x 2097152-word x 8-bit ,and M2V64S40BTP is organized as 4-bank x 1048576-word x 16-bit
Synchronous DRAM with LVTTL interface. All inputs and outputs are referenced to the rising edge of
CLK. M2V64S20BTP,M2V64S30BTP,M2V64S40BTP achieves very high speed data rates up to
133MHz, and is suitable for main memory or graphic memory in computer systems.
FEATURES
M2V64S20TP
M2V64S30TP
M2V64S40TP
-6
ITEM
tCLK
Clock Cycle Time
tRAS
Active to Precharge Command Period
(Min.)
45ns
tRCD
Row to Column Delay
(Min.)
20.0ns
tAC
Access Time from CLK
(Max.) (CL=3)
tRC
Ref/Active Command Period
(Min.)
Icc1
Icc6
(Min.)
7.5ns
Operation Current (Max.) [Single Bank]
5.4ns
67.5ns
120mA
Self Refresh Current
(Max.)
- Single 3.3V ±0.3V power supply
- Max. Clock frequency
-6 : 133MHz [PC133<3-3-3> ]
- Fully synchronous operation referenced to clock rising edge
- 4-bank operation controlled by BA0,BA1(Bank Address)
- /CAS latency- 2/3 (programmable)
- Burst length- 1/2/4/8/FP (programmable)
- Burst type- Sequential and interleave burst (programmable)
- Random column access
- Auto precharge / All bank precharge controlled by A10
- Auto and self refresh
- 4096 refresh cycles /64ms
- LVTTL Interface
- Package 400-mil, 54-pin Thin Small Outline (TSOP II) with 0.8mm lead pitch
MITSUBISHI ELECTRIC
1
1mA
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
PIN CONFIGURATION (TOP VIEW)
M2V64S20BTP
M2V64S30BTP
M2V64S40BTP
Vdd
NC
VddQ
NC
DQ0
VssQ
NC
NC
VddQ
NC
DQ1
VssQ
NC
Vdd
NC
/WE
/CAS
/RAS
/CS
BA0(A13)
BA1(A12)
A10
A0
A1
A2
A3
Vdd
Vdd
DQ0
VddQ
NC
DQ1
VssQ
NC
DQ2
VddQ
NC
DQ3
VssQ
NC
Vdd
NC
/WE
/CAS
/RAS
/CS
BA0(A13)
BA1(A12)
A10
A0
A1
A2
A3
Vdd
Vdd
DQ0
VddQ
DQ1
DQ2
VssQ
DQ3
DQ4
VddQ
DQ5
DQ6
VssQ
DQ7
Vdd
DQML
/WE
/CAS
/RAS
/CS
BA0(A13)
BA1(A12)
A10
A0
A1
A2
A3
Vdd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
Vss
DQ15
VssQ
DQ14
DQ13
VddQ
DQ12
DQ11
VssQ
DQ10
DQ9
VddQ
DQ8
Vss
NC
DQMU
CLK
CKE
NC
A11
A9
A8
A7
A6
A5
A4
Vss
CLK
: Master Clock
CKE
: Clock Enable
/CS
: Chip Select
/RAS
: Row Address Strobe
/CAS
: Column Address Strobe
/WE
: Write Enable
DQ0-3(x4), DQ0-7(x8), DQ0-15(x16)
DQM (x4, x8) ,DQML/U (x16)
Vss
DQ7
VssQ
NC
DQ6
VddQ
NC
DQ5
VssQ
NC
DQ4
VddQ
NC
Vss
NC
DQM
CLK
CKE
NC
A11
A9
A8
A7
A6
A5
A4
Vss
: Data I/O
: Output Disable/ Write Mask
A0-11
: Address Input
BA0,1
: Bank Address
Vdd
: Power Supply
VddQ
: Power Supply for Output
Vss
: Ground
VssQ
: Ground for Output
MITSUBISHI ELECTRIC
2
Vss
NC
VssQ
NC
DQ3
VddQ
NC
NC
VssQ
NC
DQ2
VddQ
NC
Vss
NC
DQM
CLK
CKE
NC
A11
A9
A8
A7
A6
A5
A4
Vss
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
BLOCK DIAGRAM
DQ0-3 (x4)
DQ0-7 (x8)
DQ0-15 (x16)
I/O Buffer
Memory Array Memory Array Memory Array Memory Array
Bank #0
Bank #1
Bank #2
Bank #3
Mode
Register
Control Circuitry
Address Buffer
Control Signal Buffer
Clock Buffer
A0-11 BA0,1
CLK
/CS /RAS /CAS /WE DQM
CKE
Type Designation Code
This rule is applied only to Synchronous DRAM families beyond 64M B-version.
M2 V 64 S 2 0 B TP - 7
Access Item
Package Type TP: TSOP(II)
Process Generation
Function 0: Random Column
Organization 2n 2: x4, 3: x8, 4: x16
Synchronous DRAM
Density 64:64M bits
Interface S: SSTL, V:LVTTL
Mitsubishi Semiconductor Memory
MITSUBISHI ELECTRIC
3
PC133 SDRAM (Rev.0.5)
Oct. '99
64M bit Synchronous DRAM
MITSUBISHI LSIs
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
PIN FUNCTION
CLK
CKE
Input
Input
Master Clock: All other inputs are referenced to the rising edge of CLK.
Clock Enable: CKE controls internal clock. When CKE is low, internal clock
for the following cycle is ceased. CKE is also used to select auto / self
refresh. After self refresh mode is started, CKE becomes asynchronous
input. Self refresh is maintained as long as CKE is low.
/CS
Input
Chip Select: When /CS is high, any command means No Operation.
Input
Combination of /RAS, /CAS, /WE defines basic commands.
A0-11
Input
A0-11 specify the Row / Column Address in conjunction with BA0,1. The
Row Address is specified by A0-11. The Column Address is specified by
A0-A9(x4), A0-A8(x8), A0-7(x16) . A10 is also used to indicate precharge
option. When A10 is high at a read / write command, an auto precharge
is performed. When A10 is high at a precharge command, all banks are
precharged.
BA0,1
Input
Bank Address: BA0,1 specifies one of four banks to which a command is
applied. BA0,1 must be set with ACT, PRE, READ, WRITE commands.
DQ0-3(x4),
DQ0-7(x8),
DQ0-15(x16)
Input / Output
/RAS, /CAS, /WE
DQM(x4,x8),
DQMU/L(x16)
Input
Data In and Data out are referenced to the rising edge of CLK.
Din Mask / Output Disable: When DQMU/L is high in burst write, Din for the
current cycle is masked. When DQMU/L is high in burst read,
Dout is disabled at the next but one cycle.
Vdd, Vss
Power Supply
Power Supply for the memory array and peripheral circuitry.
VddQ, VssQ
Power Supply
VddQ and VssQ are supplied to the Output Buffers only.
MITSUBISHI ELECTRIC
4
PC133 SDRAM (Rev.0.5)
Oct. '99
64M bit Synchronous DRAM
MITSUBISHI LSIs
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
BASIC FUNCTIONS
The M2V64S20(30,40)BTP provides basic functions, bank (row) activate, burst read / write,
bank (row) precharge, and auto / self refresh.
Each command is defined by control signals of /RAS, /CAS and /WE at CLK rising edge. In
addition to 3 signals, /CS ,CKE and A10 are used as chip select, refresh option, and
precharge option, respectively. To know the detailed definition of commands, please see the
command truth table.
CLK
/CS
Chip Select : L=select, H=deselect
/RAS
Command
/CAS
Command
/WE
Command
CKE
Refresh Option @refresh command
A10
Precharge Option @precharge or read/write command
define basic commands
Activate (ACT) [/RAS =L, /CAS =/WE =H]
ACT command activates a row in an idle bank indicated by BA.
Read (READ) [/RAS =H, /CAS =L, /WE =H]
READ command starts burst read from the active bank indicated by BA. First output data
appears after /CAS latency. When A10 =H at this command, the bank is deactivated after the
burst read (auto-precharge,READA).
Write (WRITE) [/RAS =H, /CAS =/WE =L]
WRITE command starts burst write to the active bank indicated by BA. Total data length to be
written is set by burst length. When A10 =H at this command, the bank is deactivated after the
burst write (auto-precharge, WRITEA).
Precharge (PRE) [/RAS =L, /CAS =H, /WE =L]
PRE command deactivates the active bank indicated by BA. This command also terminates
burst read /write operation. When A10 =H at this command, both banks are deactivated
(precharge all, PREA).
Auto-Refresh (REFA) [/RAS =/CAS =L, /WE =CKE =H]
REFA command starts auto-refresh cycle. Refresh address including bank address are
generated inter-nally. After this command, the banks are precharged automatically.
MITSUBISHI ELECTRIC
5
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
COMMAND TRUTH TABLE
COMMAND
MNEMONIC
CKE
CKE
n-1
n
/CS
/RAS
/CAS
/WE
BA0,1
A11
A10
A0-9
Deselect
DESEL
H
X
H
X
X
X
X
X
X
X
No Operation
NOP
H
X
L
H
H
H
X
X
X
X
Row Address Entry &
Bank Activate
ACT
H
X
L
L
H
H
V
V
V
V
Single Bank Precharge
PRE
H
X
L
L
H
L
V
X
L
X
Precharge All Banks
PREA
H
X
L
L
H
L
X
X
H
X
Column Address Entry
& Write
WRITE
H
X
L
H
L
L
V
X
L
V
WRITEA
H
X
L
H
L
L
V
X
H
V
READ
H
X
L
H
L
H
V
X
L
V
& Read with AutoPrecharge
READA
H
X
L
H
L
H
V
X
H
V
Auto-Refresh
REFA
H
H
L
L
L
H
X
X
X
X
Self-Refresh Entry
REFS
H
L
L
L
L
H
X
X
X
X
Self-Refresh Exit
REFSX
L
H
H
X
X
X
X
X
X
X
L
H
L
H
H
H
X
X
X
X
Column Address Entry
& Write with AutoPrecharge
Column Address Entry
& Read
Column Address Entry
Burst Terminate
TBST
H
X
L
H
H
L
X
X
X
X
Mode Register Set
MRS
H
X
L
L
L
L
L
L
L
V*1
H=High Level, L=Low Level, V=Valid, X=Don't Care, n=CLK cycle number
NOTE:
1. A7-A9 =0, A0-A6 =Mode Address
MITSUBISHI ELECTRIC
6
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
FUNCTION TRUTH TABLE
Current State
/CS
/RAS
/CAS
/WE
IDLE
H
X
X
X
X
DESEL
NOP
L
H
H
H
X
NOP
NOP
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
L
L
L
L
H
X
X
X
X
DESEL
NOP
L
H
H
H
X
NOP
NOP
L
H
H
L
BA
TBST
NOP
L
H
L
H
BA, CA, A10
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
Bank Active / ILLEGAL*2
L
L
H
L
BA, A10
PRE / PREA
Precharge / Precharge All
L
L
L
H
X
L
L
L
L
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
Terminate Burst
ROW ACTIVE
READ
Address
Op-Code,
Mode-Add
Op-Code,
Mode-Add
Command
Action
READ / WRITE ILLEGAL*2
Bank Active, Latch RA
NOP*4
REFA
Auto-Refresh*5
MRS
Mode Register Set*5
READ / READA
Begin Read, Latch CA,
Determine Auto-Precharge
WRITE /
Begin Write, Latch CA,
WRITEA
Determine Auto-Precharge
REFA
ILLEGAL
MRS
ILLEGAL
Terminate Burst, Latch CA,
L
H
L
H
BA, CA, A10
READ / READA Begin New Read, Determine
Auto-Precharge*3
L
H
L
L
BA, CA, A10
WRITE /
WRITEA
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
L
L
L
L
Op-Code,
Mode-Add
Begin Write, Determine AutoPrecharge*3
Bank Active / ILLEGAL*2
Terminate Burst, Precharge
REFA
ILLEGAL
MRS
ILLEGAL
MITSUBISHI ELECTRIC
7
Terminate Burst, Latch CA,
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
FUNCTION TRUTH TABLE (continued)
Current State
/CS
/RAS
/CAS
/WE
Address
Command
Action
WRITE
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
Terminate Burst
Terminate Burst, Latch CA,
L
H
L
H
BA, CA, A10
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
L
L
L
L
READ with
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
AUTO
PRECHARGE
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
H
BA, CA, A10
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
WRITE with
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
AUTO
PRECHARGE
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
H
BA, CA, A10
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
Op-Code,
Mode-Add
READ / READA Begin Read, Determine AutoPrecharge*3
WRITE /
WRITEA
Begin Write, Determine AutoPrecharge*3
Bank Active / ILLEGAL*2
Terminate Burst, Precharge
REFA
ILLEGAL
MRS
ILLEGAL
READ / READA ILLEGAL
WRITE /
WRITEA
ILLEGAL
Bank Active / ILLEGAL*2
ILLEGAL*2
READ / READA ILLEGAL
WRITE /
WRITEA
MITSUBISHI ELECTRIC
8
Terminate Burst, Latch CA,
ILLEGAL
Bank Active / ILLEGAL*2
ILLEGAL*2
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
FUNCTION TRUTH TABLE (continued)
Current State
/CS
/RAS
/CAS
/WE
Address
PRE -
H
X
X
X
X
DESEL
NOP (Idle after tRP)
CHARGING
L
H
H
H
X
NOP
NOP (Idle after tRP)
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
L
L
L
L
ROW
H
X
X
X
X
DESEL
NOP (Row Active after tRCD)
ACTIVATING
L
H
H
H
X
NOP
NOP (Row Active after tRCD)
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL*2
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL*2
L
L
L
H
X
L
L
L
L
WRITE RE-
H
X
X
X
X
DESEL
NOP
COVERING
L
H
H
H
X
NOP
NOP
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL*2
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL*2
L
L
L
H
X
L
L
L
L
Op-Code,
Mode-Add
Op-Code,
Mode-Add
Op-Code,
Mode-Add
Command
READ / WRITE ILLEGAL*2
ILLEGAL*2
NOP*4 (Idle after tRP)
REFA
ILLEGAL
MRS
ILLEGAL
READ / WRITE ILLEGAL*2
REFA
ILLEGAL
MRS
ILLEGAL
READ / WRITE ILLEGAL*2
REFA
ILLEGAL
MRS
ILLEGAL
MITSUBISHI ELECTRIC
9
Action
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
FUNCTION TRUTH TABLE (continued)
Current State
/CS
/RAS
/CAS
/WE
Address
Command
Action
RE-
H
X
X
X
X
DESEL
NOP (Idle after tRC)
FRESHING
L
H
H
H
X
NOP
NOP (Idle after tRC)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
MRS
ILLEGAL
MODE
H
X
X
X
X
DESEL
NOP (Idle after tRSC)
REGISTER
L
H
H
H
X
NOP
NOP (Idle after tRSC)
SETTING
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
MRS
ILLEGAL
READ / WRITE ILLEGAL
Op-Code,
Mode-Add
READ / WRITE ILLEGAL
Op-Code,
Mode-Add
ABBREVIATIONS:
H=High Level, L=Low Level, X=Don't Care
BA=Bank Address, RA=Row Address, CA=Column Address, NOP=No OPeration
NOTES:
1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle.
2. ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the
state of that bank.
3. Must satisfy bus contention, bus turn around, write recovery requirements.
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA.
5. ILLEGAL if any bank is not idle.
ILLEGAL = Device operation and/or data-integrity are not guaranteed.
MITSUBISHI ELECTRIC
10
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
FUNCTION TRUTH TABLE for CKE
CKE
CKE
n-1
n
SELF-
H
X
X
X
REFRESH*1
L
H
H
L
H
L
Current State
/CS
/RAS /CAS
/WE
Add
Action
X
X
X
INVALID
X
X
X
X
Exit Self-Refresh (Idle after tRC)
L
H
H
H
X
Exit Self-Refresh (Idle after tRC)
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL
L
L
X
X
X
X
X
NOP (Maintain Self-Refresh)
POWER
H
X
X
X
X
X
X
INVALID
DOWN
L
H
X
X
X
X
X
Exit Power Down to Idle
L
L
X
X
X
X
X
NOP (Maintain Self-Refresh)
ALL BANKS
H
H
X
X
X
X
X
Refer to Function Truth Table
IDLE*2
H
L
L
L
L
H
X
Enter Self-Refresh
H
L
H
X
X
X
X
Enter Power Down
H
L
L
H
H
H
X
Enter Power Down
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
X
X
X
ILLEGAL
L
X
X
X
X
X
X
ANY STATE
H
H
X
X
X
X
X
other than
H
L
X
X
X
X
X
Begin CLK Suspend at Next Cycle*3
listed above
L
H
X
X
X
X
X
Exit CLK Suspend at Next Cycle*3
L
L
X
X
X
X
X
Maintain CLK Suspend
Refer to Current State =Power Down
Refer to Function Truth Table
ABBREVIATIONS:
H=High Level, L=Low Level, X=Don't Care
NOTES:
1. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup
time must be satisfied before any command other than EXIT.
2. Power-Down and Self-Refresh can be entered only from the All Banks Idle State.
3. Must be legal command.
MITSUBISHI ELECTRIC
11
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
SIMPLIFIED STATE DIAGRAM
SELF
REFRESH
REFS
REFSX
MODE
REGISTER
SET
MRS
AUTO
REFRESH
REFA
IDLE
CKEL
CLK
SUSPEND
CKEH
ACT
POWER
DOWN
CKEL
CKEH
TBST (for Full Page)
TBST (for Full Page)
ROW
ACTIVE
WRITE
WRITE
SUSPEND
READ
WRITEA
CKEL
WRITE
READA
READ
WRITE
CKEH
READA
WRITEA
POWER
APPLIED
READ
SUSPEND
CKEH
WRITEA
WRITEA
SUSPEND
CKEL
READ
READA
CKEL
CKEL
PRE
WRITEA
CKEH
PRE
POWER
ON
PRE
READA
PRE
READA
SUSPEND
CKEH
PRE
CHARGE
Automatic Sequence
Command Sequence
MITSUBISHI ELECTRIC
12
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
POWER ON SEQUENCE
Before starting normal operation, the following power on sequence is necessary to prevent a
SDRAM from damaged or malfunctioning.
1.Clock will be applied at power up along with power. Attempt to maintain CKE high,
DQM (x4,x8), DQMU/L (x16) high and NOP condition at the inputs along with power.
2. Maintain stable power, stable clock, and NOP input conditions for a minimum of 200us.
3. Issue precharge commands for all banks. (PRE or PREA)
4. After all banks become idle state (after tRP), issue 8 or more auto-refresh commands.
5. Issue a mode register set command to initialize the mode register.
After these sequence, the SDRAM is idle state and ready for normal operation.
MODE REGISTER
Burst Length, Burst Type and /CAS Latency can be
CLK
programmed by setting the mode register (MRS). The mode
/CS
register stores these data until the next MRS command, which
/RAS
/CAS
may be issued when both banks are in idle state. After tRSC
/WE
from a MRS command, the SDRAM is ready for new command.
BA0 BA1 A11 A10 A9
0
0
0
CL
LATENCY
MODE
WRITE
MODE
0
WM
A8
A7
0
0
R
R
010
011
100
101
110
111
2
3
R
R
R
R
0
A5
A4
LTMODE
A3
A2
BT
A1
BURST
LENGTH
BURST
SINGLE BIT
BURST
TYPE
A0
BL
BT= 0
BT= 1
000
001
010
011
100
1
2
4
8
R
1
2
4
8
R
101
110
111
R
R
FP
R
R
R
0
1
SEQUENTIAL
INTERLEAVE
R: Reserved for Future Use
FP: Full Page
MITSUBISHI ELECTRIC
13
V
BL
/CAS LATENCY
000
001
1
A6
BA0,1 A11-A0
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
[ /CAS LATENCY ]
/CAS latency, CL, is used to synchronize the first output data with the CLK frequency, i.e., the
speed of CLK determines which CL should be used. First output data is available after CL
cycles from READ command.
/CAS Latency Timing(BL=4)
CLK
ACT
Command
READ
tRCD
X
Address
Y
CL=2
DQ
Q0
CL=3
DQ
Q1
Q2
Q3
Q0
Q1
Q2
CL=2
Q3
CL=3
[ BURST LENGTH ]
The burst length, BL, determines the number of consecutive writes or reads that will be
automatically performed after the initial write or read command. For BL=1,2,4,8, full page the
output data is tristated (Hi-Z) after the last read. For BL=FP (Full Page), the TBST (Burst
Terminate) command should be issued to stop the output of data.
Burst Length Timing( CL=2 )
tRCD
CLK
Command
Address
ACT
X
READ
Y
DQ
Q0
DQ
Q0
Q1
DQ
Q0
Q1
Q2
Q3
DQ
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
DQ
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
BL=1
BL=2
BL=4
M2V64S20B : m=1023
M2V64S30B : m=511
M2V64S40B : m=255
MITSUBISHI ELECTRIC
14
BL=8
Q8
Qm
Q0
Q1
Full Page counter rolls over
and continues to count.
BL=FP
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
CLK
Command
Read
Write
Y
Y
Address
Q0
DQ
CL= 3
BL= 4
/CAS Latency
Q1
Q2
D0
Q3
Burst Length
D1
D2
D3
Burst Length
Burst Type
Initial Address
Column Addressing
BL
A2
A1
A0
0
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
1
1
2
3
4
5
6
7
0
1
0
3
2
5
4
7
6
0
1
0
2
3
4
5
6
7
0
1
2
3
0
1
6
7
4
5
0
1
1
3
4
5
6
7
0
1
2
3
2
1
0
7
6
5
4
Sequential
Interleaved
8
1
0
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
1
0
1
5
6
7
0
1
2
3
4
5
4
7
6
1
0
3
2
1
1
0
6
7
0
1
2
3
4
5
6
7
4
5
2
3
0
1
1
1
1
7
0
1
2
3
4
5
6
7
6
5
4
3
2
1
0
-
0
0
0
1
2
3
0
1
2
3
-
0
1
1
2
3
0
1
0
3
2
4
-
1
0
2
3
0
1
2
3
0
1
-
1
1
3
0
1
2
3
2
1
0
-
-
0
0
1
0
1
1
0
1
0
2
-
-
1
MITSUBISHI ELECTRIC
15
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
OPERATIONAL DESCRIPTION
BANK ACTIVATE
The SDRAM has four independent banks. Each bank is activated by the ACT command with
the bank addresses (BA0,1). A row is indicated by the row addresses A11-0. The minimum
activation interval between one bank and the other bank is tRRD.The number of banks which
are active concurrently is not limited.
PRECHARGE
The PRE command deactivates the bank indicated by BA0,1. When multiple banks are active,
the precharge all command (PREA, PRE + A10=H) is available to deactivate them at the same
time. After tRP from the precharge, an ACT command to the same bank can be issued.
Bank Activation and Precharge All (BL=4, CL=3)
CLK
tRCmin
Command
ACT
A0-9
Xa
A10
ACT READ
tRRD
PRE
ACT
tRAS
Xb
Y
Xa
Xb
0
A11
Xa
Xb
BA0,1
00
tRP
Xb
tRCD
01
1
Xb
Xb
00
01
DQ
Qa0
Qa1
Qa2
Qa3
Precharge all
READ
After tRCD from the bank activation, a READ command can be issued. 1st output data is
available after the /CAS Latency from the READ, followed by (BL -1) consecutive data when the
Burst Length is BL. The start address is specified by A9-0(x4), A8-0(x8), A7-0(X16), and the
address sequence of burst data is defined by the Burst Type. A READ command may be
applied to any active bank, so the row precharge time (tRP) can be hidden behind continuous
output data by interleaving the multiple banks. When A10 is high at a READ command, the autoprecharge (READA) is performed. Any command (READ, WRITE, PRE, ACT) to the same bank
is inhibited till the internal precharge is complete. The internal precharge starts at BL after
READA. The next ACT command can be issued after (BL + tRP) from the previous READA.
MITSUBISHI ELECTRIC
16
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Multi Bank Interleaving READ (BL=4, CL=3)
CLK
Command
ACT
READ ACT
READ PRE
tRCD
A0-9
Xa
Y
Xb
Y
A10
Xa
0
Xb
0
0
A11
Xa
10
00
Qa1
Qa2
BA0,1
Xb
00
00
10
DQ
Qa0
/CAS latency
Qa3
Qb0
Burst Length
READ with Auto-Precharge (BL=4, CL=3)
CLK
BL + tRP
Command
ACT
READ
A0-9
Xa
Y
Xa
A10
Xa
1
Xa
A11
Xa
tRCD
BA0,1
00
ACT
BL
tRP
Xa
00
00
Qa0
DQ
Qa1
Qa2
Qa3
Internal precharge start
READ Auto-Precharge Timing (BL=4)
CLK
Command
ACT
READ
BL
CL=3
DQ
CL=2
DQ
Qa0
Qa0
Qa1
Qa2
Qa1
Qa2
Qa3
Qa3
Internal Precharge Start Timing
MITSUBISHI ELECTRIC
17
Qb1
Qb2
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
WRITE
After tRCD from the bank activation, a WRITE command can be issued. 1st input data is set at the same
cycle as the WRITE. Following (BL -1) data are written into the RAM, when the Burst Length is BL. The start
address is specified by A9-0 (x 4), A8-0 (x 8) and A7-0 (x 16), and the address sequence of burst data is
defined by the Burst Type. A WRITE command may be applied to any active bank, so the row precharge
time (tRP) can be hidden behind continuous input data by interleaving the multiple banks. From the last
input data to the PRE command, the write recovery time (tWR) is required. When A10 is high at a WRITE
command, the auto-precharge (WRITEA) is performed. Any command (READ, WRITE, PRE, ACT) to the
same bank is inhib-ited till the internal precharge is complete. The internal precharge begins at tWR after the
last input data cycle. The next ACT command can be issued after tRP from the internal precharge timing.
The Mode Register can be programmed for burst read and single write. In this mode the write data is only
clocked in when the WRITE command is issued and the remaining burst length is ignored. The read data
burst length os unaffected while in this mode
Multi Bank Interleaving WRITE (BL=4)
CLK
Command
ACT
Write
ACT
tRCD
Write
PRE
PRE
0
0
0
0
10
00
10
Db0
Db1
tRCD
A0-9
Xa
Y
Xb
Y
A10
Xa
0
Xb
0
A11
Xa
BA0,1
00
Xb
DQ
00
10
Da0
Da1
Da2
Da3
Db2
Db3
WRITE with Auto-Precharge (BL=4)
CLK
Command
ACT
Write
ACT
tRCD
tWR
tRP
A0-9
Xa
Y
Xa
A10
Xa
1
Xa
A11
Xa
BA0,1
00
DQ
Xa
00
Da0
00
Da1
Da2
Da3
Internal precharge starts
MITSUBISHI ELECTRIC
18
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
[ BURST WRITE ]
A burst write operation is enabled by setting A9=0 at MRS. A burst write starts in
the same cycle as a write command set. (The latency of data input is 0.) The
burst length can be set to 1,2,4,8, and full-page, like burst read operations.
tRCD
CLK
Command
ACT
WRITE
Address
DQ
D0
DQ
D0
D1
DQ
D0
D1
D2
D3
DQ
D0
D1
D2
D3
D4
D5
D6
D7
DQ
D0
D1
D2
D3
D4
D5
D6
D7
BL=1
BL=2
BL=4
BL=8
D8
M2V64S20B : m=1023
M2V64S30B : m=511
M2V64S40B : m=255
D9
D10
Dm
D0
D1
BL=FP
Full Page counter rolls over
and continues to count.
[ SINGLE WRITE ]
A single write operation is enabled by setting A9=1 at MRS. In a single write
operation, data is written only to the column address specified by the write
command set cycle without regard to the burst length setting. (The latency of data
input is 0.)
CLK
Command
ACT
WRITE
tRCD
Address
DQ
X
Y
D0
MITSUBISHI ELECTRIC
19
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
BURST INTERRUPTION
[ Read Interrupted by Read ]
Burst read operation can be interrupted by new read of any bank. Random column access
is allowed. READ to READ interval is minimum 1 CLK.
Read Interrupted by Read (BL=4, CL=3)
CLK
Command
READ READ
READ
READ
A0-9
Yi
Yj
Yk
Yl
A10
0
0
0
0
00
00
10
01
A11
BA0,1
Qai0
DQ
Qaj0
Qaj1 Qbk0 Qbk1 Qbk2
Qal0
Qal1
Qal2
Qal3
[ Read Interrupted by Write ]
Burst read operation can be interrupted by write of any bank. Random column access is
allowed. In this case, the DQ should be controlled adequately by using the DQM to prevent
the bus contention. The output is disabled automatically 1 cycle after WRITE assertion.
Read Interrupted by Write (BL=4, CL=3)
CLK
READ
Write
A0-9
Yi
Yj
A10
0
0
00
00
Command
A11
BA0,1
DQM(x4,x8)
DQMU/L(x16)
Q
D
Qai0
Daj0
Daj1
Daj2
DQM control Write control
MITSUBISHI ELECTRIC
20
Daj3
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
[ Read Interrupted by Precharge ]
Burst read operation can be interrupted by precharge of the same bank . READ to PRE
interval is mini-mum 1 CLK. A PRE command to output disable latency is equivalent to
the /CAS Latency. As a result, READ to PRE interval determines valid data length to be
output. The figure below shows examples of BL=4.
Read Interrupted by Precharge (BL=4)
CLK
Command
READ
PRE
DQ
Command
CL=3
READ
CL=2
READ
DQ
PRE
Q0
READ
Q1
Q2
PRE
Q0
DQ
Command
Q1
Q0
DQ
Command
Q0
READ PRE
DQ
Command
Q1
PRE
DQ
Command
Q0
Q1
READ PRE
Q0
MITSUBISHI ELECTRIC
21
Q2
PC133 SDRAM (Rev.0.5)
Oct. '99
64M bit Synchronous DRAM
MITSUBISHI LSIs
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
[ Read Interrupted by Burst Terminate ]
Similar to a precharge, the burst terminate command, TBST, can interrupt the burst
read operation and disable the data output. The READ to TBST interval is a minimum
of one CLK. TBST is mainly used to interrupt FP bursts. The figures below show
examples, of how the output data is terminated with TBST.
Read Interrupted by Burst Terminate(BL=4)
CLK
Command
READ
TBST
DQ
CL=3
Command
Q0
READ
Q0
Command
READ
DQ
TBST
Q0
READ
DQ
Command
Q2
Q0
DQ
CL=2
Q1
READ TBST
DQ
Command
Q2
TBST
DQ
Command
Q1
Q1
Q2
Q3
TBST
Q0
Q1
Q2
READ TBST
Q0
MITSUBISHI ELECTRIC
22
Q3
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
[ Write Interrupted by Write ]
Burst write operation can be interrupted by new write of any bank. Random column access
is allowed. WRITE to WRITE interval is minimum 1 CLK.
Write Interrupted by Write (BL=4)
CLK
Command
Write Write
Write
Write
A0-9
Yi
Yj
Yk
Yl
A10
0
0
0
0
BA0,1
00
00
10
00
DQ
Dai0
Daj0
A11
Daj1
Dbk0 Dbk1 Dbk2 Dal0
Dal1
Dal2
Dal3
[ Write Interrupted by Read ]
Burst write operation can be interrupted by read of the same or the other bank. Random
column access is allowed. WRITE to READ interval is minimum 1 CLK. The input data on
DQ at the interrupting READ cycle is "don't care".
Write Interrupted by Read (BL=4, CL=3)
CLK
Command
Write READ
Write
READ
A0-9
Yi
Yj
Yk
Yl
A10
0
0
0
0
00
00
10
00
A11
BA0,1
DQM(x4,x8)
DQMU/L(x16)
DQ
Dai0
Qaj0
Qaj1
Dbk0 Dbk1
MITSUBISHI ELECTRIC
23
Qal0
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
[ Write Interrupted by Precharge ]
Burst write operation can be interrupted by precharge of the same bank. Random
column access is allowed. Write recovery time (tWR) is required from the last data to
PRE command.
Write Interrupted by Precharge (BL=4)
CLK
Command
Write
PRE
tWR
A0-9
Yi
A10
0
ACT
tRP
Xb
0
Xb
Xb
A11
BA0,1
00
00
00
DQM(x4,x8)
DQMU/L(x16)
Dai0
DQ
Dai1
Dai2
[ Write Interrupted by Burst Terminate ]
A burst terminate command TBST can be used to terminate a burst write operation. In this
case, the write recovery time is not required and the bank remains active (Please see the
waveforms below). The WRITE to TBST minimum interval is one CLK.
Write Interrupted by Burst Terminate(BL=4)
CLK
Command
WRITE
A0-9
Yi
A10
0
BA
0
TBST
DQM(x4,x8)
DQMU/L(x16)
DQ
Dai0
Dai1
Dai2
MITSUBISHI ELECTRIC
24
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
AUTO REFRESH
Single cycle of auto-refresh is initiated with a REFA (/CS= /RAS= /CAS= L, /WE= /CKE= H)
command. The refresh address is generated internally. 4096 REFA cycles within 64ms
refresh 64Mbit memory cells. The auto-refresh is performed on 4 banks concurrently. Before
performing an auto-refresh, all banks must be in the idle state. Auto-refresh to auto-refresh
interval is minimum tRC. Any command must not be supplied to the device before tRC from
the REFA command.
Auto-Refresh
CLK
/CS
NOP or DESELECT
/RAS
/CAS
/WE
CKE
minimum tRC
A0-11
BA0,1
Auto Refresh on All Banks
Auto Refresh on All Banks
MITSUBISHI ELECTRIC
25
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
SELF REFRESH
Self-refresh mode is entered by issuing a REFS command (/CS= /RAS= /CAS= L, /WE= H,
CKE= L). Once the self-refresh is initiated, it is maintained as long as CKE is kept low. During
the self-refresh mode, CKE is asynchronous and the only enabled input ,all other inputs
including CLK are disabled and ignored, so that power consumption due to synchronous
inputs is saved. To exit the self-refresh, supplying stable CLK inputs, asserting DESEL or NOP
command and then asserting CKE (REFSX) for longer than tSRX. After tRC from REFSX all
banks are in the idle state and a new command can be issued, but DESEL or NOP
commands must be asserted till then.
Self-Refresh
CLK
Stable CLK
NOP
/CS
/RAS
/CAS
/WE
CKE
tSRX
new command
X
A0-11
00
BA0,1
Self Refresh Entry
Self Refresh Exit
MITSUBISHI ELECTRIC
26
minimum tRC
+1 CLOCK
for recovery
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
CLK SUSPEND
CKE controls the internal CLK at the following cycle. Figure below shows how CKE works.
By negating CKE, the next internal CLK is suspended. The purpose of CLK suspend is power
down, output suspend or input suspend. CKE is a synchronous input except during the selfrefresh mode. CLK suspend can be performed either when the banks are active or idle. A
command at the suspended cycle is ignored.
ext.CLK
CKE
int.CLK
Power Down by CKE
CLK
Standby Power Down
CKE
Command
PRE
NOP
NOP
NOP NOP
Active Power Down
CKE
Command
NOP NOP NOP
ACT
NOP
NOP
NOP NOP NOP
NOP NOP
DQ Suspend by CKE
CLK
CKE
Command
DQ
Write
D0
READ
D1
D2
D3
Q0
MITSUBISHI ELECTRIC
27
Q1
Q2
Q3
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
DQM CONTROL
For x4/x8, DQM is a dual function signal defined as the data mask for writes and the
output disable for reads. During writes, DQM masks input data word by word. DQM to write
mask latency is 0. During reads, DQM forces output to Hi-Z word by word. DQM to output
Hi-Z latency is 2.
DQM Function
CLK
Command
Write
READ
DQM
DQ
D0
D2
D3
Q0
masked by DQM=H
Q1
Q3
disabled by DQM=H
For x16, DQMU/L are dual function signals defined as the data mask for writes and the
output disable for reads. During writes, DQMU/L mask input data word by word. DQMU/L to
write mask latency is 0. During reads, DQMU/L force outputs to Hi-Z word by word. DQMU/L
to output Hi-Z latency is 2. DQML and DQMU control lower byte (DQ0-7), and upper byte
(DQ8-15), respectively.
DQM Function
CLK
Command
Write
READ
DQML
DQMU
DQ0-7
D0
DQ8-15
D0
D1
D2
D3
Q0
Q1
D2
D3
Q0
Q1
masked by DQML=H
Q2
Q3
Q3
disabled by DQMU=H
MITSUBISHI ELECTRIC
28
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Conditions
Ratings
Supply Voltage
with respect to Vss
-0.5 - 4.6
V
Supply Voltage for Output
with respect to VssQ
-0.5 - 4.6
V
VI
Input Voltage
with respect to Vss
-0.5 - 4.6
V
VO
Output Voltage
with respect to VssQ
-0.5 - 4.6
V
IO
Output Current
Pd
Power Dissipation
Vdd
VddQ
Ta = 25ºC
Unit
50
mA
1000
mW
Topr
Operating Temperature
0 - 70
ºC
Tstg
Storage Temperature
-65 - 150
ºC
RECOMMENDED OPERATING CONDITIONS
(Ta=0 – 70ºC, unless otherwise noted )
Limits
Symbol
Parameter
Unit
Min.
Typ.
Max.
Vdd
Supply Voltage
3.0
3.3
3.6
V
Vss
Supply Voltage
0
0
0
V
VddQ
Supply Voltage for Output
3.0
3.3
3.6
V
VssQ
Supply Voltage for Output
0
0
0
V
VIH*1
High-level Input Voltage all inputs
2.0
VddQ +0.3
V
VIL*2
Low-level Input Voltage all inputs
-0.3
0.8
V
NOTES)
1. VIH(max)= Vdd+2.0V AC for pulse width less than 3ns acceptable.
2. VIL(min) = -2.0V AC for pulse width less than 3ns acceptable.
CAPACITANCE
(Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted )
Symbol
Test Condition
Parameter
CI(A)
Input Capacitance, address pin
CI(C)
Input Capacitance, contorl pin
CI(K)
Input Capacitance, CLK pin
CI/O
Input Capacitance, I/O pin
Limits (min.)
Limits (max.)
Unit
2.5
3.8
pF
2.5
3.8
pF
2.5
3.5
pF
4.0
6.5
pF
1MHz,
1.4v bias
200mV swing
MITSUBISHI ELECTRIC
29
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
AVERAGE SUPPLY CURRENT from Vdd
(Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted )
ITEM
Symbol
Organization
Limits (max.)
x4/x8
120
x16
130
operating current
tRC=min, tCLK =min,
BL=1 , CL=3,IOL=0mA
precharge standby
current in Non Power
down mode
precharge standby
current in Power down
mode
active standby current
in Non Power Down
Mode
active standby current
in Power Down Mode
single bank operation
Icc1
Note
mA
*1
tCLK = 15ns
CKE = VIHmin
Icc2N
x4/x8/x16
25
mA
*1,2
CLK = VILmax
(fixed)
CKE = VIHmin
Icc2NS
x4/x8/x16
20
mA
*1
tCLK = 15ns
CKE = VILmax
Icc2P
x4/x8/x16
2
mA
*1,2
CLK = CKE =VILmax(fixed)
Icc2PS
x4/x8/x16
1
mA
*1
CKE = /CS=VIHmin,
tCLK=15ns
Icc3N
x4/x8/x16
55
mA
*1,2
CKE = /CS=VIHmin,
CLK=VILmax (fixed)
Icc3NS
x4/x8/x16
40
mA
*1
tCLK = 15ns
CKE = VILmax
Icc3P
x4/x8/x16
2
mA
*1,2
CLK = CKE =VILmax(fixed)
Icc3PS x4/x8/x16
1
mA
*1
mA
*1
x4/x8
145
x16
160
Icc5
x4/x8/x16
150
mA
*1
Icc6
x4/x8/x16
1
mA
*1
All Bank Active,tCLK = min
BL=4, CL=3,IOL=0mA
Icc4
auto-refresh current
tRFC=min, tCLK=min
self-refresh current
CKE < 0.2V
burst current
Unit
-6
NOTE)
1. Icc(max) is specified at the output open condition.
2.Input signal are changed one time during 30ns
AC OPERATING CONDITIONS AND CHARACTERISTICS
(Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted )
Symbol
Parameter
Limits
Test Conditions
Min.
VOH (DC)
High-Level Output Voltage (DC)
IOH=-2mA
VOL (DC)
Low-level Output Voltage (DC)
IOL= 2mA
IOZ
Off-state Output Current
Q floating VO=0 -- VddQ
II
Input Current
VIH = 0 -- VddQ +0.3V
MITSUBISHI ELECTRIC
30
unit
Max.
V
2.4
0.4
V
-10
10
µA
-10
10
µA
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
AC TIMING REQUIREMENTS
(Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted )
Input Pulse Levels:
0.8V – 2.0V
Input Timing Measurement Level:
1.4V
Limits
Symbol
Min.
tCLK
CLK cycle time
Unit
-6
Parameter
Max.
CL=3
7.5
ns
CL=2
10
ns
tCH
CLK High pulse width
2.5
ns
tCL
CLK Low pulse width
2.5
ns
tT
Transition time of CLK
1
ns
10
tIS
Input Setup time
(all inputs)
1.5
ns
tIH
Input Hold time
(all inputs)
0.8
ns
tRC
Row Cycle time
67.5
ns
tRFC
Row Refresh Cycle time
75
ns
tRCD
Row to Column Delay
20
ns
tRAS
Row Active time
45
tRP
Row Precharge time
20
ns
tWR
Write Recovery time
15
ns
tRRD
Act to Act Delay time
15
ns
tRSC
Mode Register Set Cycle time
15
ns
tSRX
Self-refresh Exit time
7.5
ns
tPDE
Power Down Exit time
7.5
ns
tREF
Refresh Interval time
100K
64
CLK
1.4V
DQ
1.4V
ns
ms
Any AC timing is referenced
to the input signal passing
through 1.4V.
MITSUBISHI ELECTRIC
31
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
SWITCHING CHARACTERISTICS
(Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted )
Limits
Symbol
Parameter
-6
Min.
tAC
tOH
Access time from CLK
Output Hold time from CLK
Unit
Max.
CL=3
5.4
ns
CL=2
6.0
ns
CL=3
2.7
ns
CL=2
3.0
ns
ns
tOLZ
Delay time, output lowimpedance from CLK
0
tOHZ
Delay time, output highimpedance from CLK
2.7
Note
5.4
*1
ns
NOTE)
1. If clock rising time is longer than 1ns, (tr /2–0.5ns) should be added to the parameter.
Output Load Condition
CLK
VOUT
1.4V
Ext.CL=50pF
DQ
1.4V
Output Timing Measurement
Reference Point
CLK
1.4V
tOLZ
DQ
1.4V
tAC
tOH
tOHZ
MITSUBISHI ELECTRIC
32
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Burst Write (single bank) @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
tWR
CKE
DQM(U/L)
A0-9 *
X
A10
X
X
A11
X
X
BA0,1
0
Y
0
D0
DQ
ACT#0
X
0
D0
D0
WRITE#0
0
D0
Y
0
D0
PRE#0
ACT#0
D0
D0
D0
WRITE#0
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
33
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Burst Write (multi bank) @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
tWR
tWR
CKE
DQM(U/L)
A0-9 *
X
X
A10
X
A11
BA0,1
Y
X
X
X
X
X
X
X
X
X
0
1
0
D0
DQ
ACT#0
Y
D0
WRITE#0
ACT#1
D0
D0
1
0
D1
D1
0
D1
D1
PRE#0
WRITE#1
1
2
Y
0
D0
ACT#0
D0
D0
ACT#2 WRITE#0
PRE#1
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
34
D0
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Burst Read (single bank) @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
CKE
DQM(U/L)
DQM read latency =2
A0-9 *
X
A10
X
X
A11
X
X
BA0,1
0
Y
X
0
0
0
Y
0
CL=3
Q0
DQ
ACT#0
READ#0
Q0
Q0
PRE#0
Q0
Q0
ACT#0
READ#0
READ to PRE ³BL allows full data out
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
35
Q0
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Burst Read (multiple bank) @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
CKE
DQM(U/L)
DQM read latency =2
A0-9 *
X
X
A10
X
A11
BA0,1
Y
Y
X
X
X
X
X
X
X
X
X
0
1
0
1
0
Q0
Q0
CL=3
ACT#0
READ#0
ACT#1
1
2
Q1
Q1
Q1
0
CL=3
Q0
DQ
0
Y
Q0
Q1
PRE#0
READ#1
ACT#0
PRE#1
READ#0
ACT#2
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
36
Q0
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Burst Write (multi bank) with Auto-Precharge @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
/RAS
tRCD
tRCD
tRCD
/CAS
BL-1+ tWR + tRP
BL-1+ tWR + tRP
/WE
CKE
DQM(U/L)
A0-9 *
X
X
A10
X
X
X
X
A11
X
X
X
X
0
1
BA0,1
Y
0
D0
DQ
ACT#0
ACT#1
Y
X
1
D0
D0
WRITE#0 with
AutoPrecharge
D0
D1
D1
D1
Y
X
0
0
1
D1
D0
D0
ACT#0
WRITE#1 with
AutoPrecharge
Y
1
D0
D0
D1
WRITE#0
ACT#1
WRITE#1
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
37
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Burst Read (multiple bank) with Auto-Precharge @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
/RAS
tRCD
tRCD
tRCD
/CAS
BL+tRP
BL+tRP
/WE
CKE
DQM(U/L)
DQM read latency =2
A0-9 *
X
X
A10
X
X
X
X
A11
X
X
X
X
BA0,1
0
1
Y
Y
0
1
CL=3
ACT#0
ACT#1
0
0
CL=3
Q0
DQ
Y
X
READ#0 with
Auto-Precharge
Q0
Q0
X
Y
1
1
CL=3
Q0
Q1
Q1
ACT#0
READ#1 with
Auto-Precharge
Q1
Q1
Q0
Q0
READ#0
ACT#1
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
38
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Page Mode Burst Write (multi bank) @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
A0-9 *
X
X
A10
X
X
A11
X
X
BA0,1
0
1
Y
Y
Y
Y
0
0
1
0
D0
DQ
ACT#0
D0
D0
WRITE#0
ACT#1
D0
D0
D0
D0
D0
D1
D1
WRITE#0
D1
D1
D0
D0
D0
WRITE#0
WRITE#1
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
39
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Page Mode Burst Read (multi bank) @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
DQM read latency=2
A0-9 *
X
X
A10
X
X
A11
X
X
0
1
BA0,1
Y
Y
Y
Y
0
0
1
0
CL=3
CL=3
Q0
DQ
ACT#0
READ#0
ACT#1
Q0
Q0
Q0
CL=3
Q0
Q0
Q0
READ#0
Q0
Q1
Q1
Q1
Q1
READ#0
READ#1
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
40
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Write Interrupted by Write / Read @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
tCCD
/CAS
/WE
CKE
DQM(U/L)
A0-9 *
X
X
A10
X
X
A11
X
X
BA0,1
0
1
Y
Y
Y
Y
Y
0
0
0
1
0
D0
D0
CL=3
D0
DQ
ACT#0
D0
D0
D0
D1
D1
Q0
Q0
Q0
Q0
WRITE#0 WRITE#0 WRITE#0
READ#0
ACT#1
WRITE#1
Burst Write can be interrupted by Write or Read of any active bank.
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
41
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Read Interrupted by Read / Write @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
DQM read latency=2
A0-9 *
X
X
A10
X
X
A11
X
X
BA0,1
0
1
DQ
ACT#0
Y
Y
Y
Y
Y
Y
0
0
0
1
0
0
Q0
Q0
Q0
Q0
Q0
Q0
Q1
Q1
Q0
D0
D0
READ#0 READ#0 READ#0
READ#0
WRITE#0
ACT#1
READ#1
blank to prevent bus contention
Burst Read can be interrupted by Read or Write of any active bank.
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
42
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Write Interrupted by Precharge @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
A0-9 *
X
X
A10
X
X
X
A11
X
X
X
BA0,1
0
1
Y
0
D0
DQ
ACT#0
Y
D0
WRITE#0
ACT#1
D0
D0
X
1
0
D1
D1
1
1
1
D1
PRE#0
WRITE#1
PRE#1
Burst Write is not interrupted
by Precharge of the other bank.
Y
ACT#1
D1
D1
WRITE#1
Burst Write is interrupted by
Precharge of the same bank.
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
43
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Read Interrupted by Precharge @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
tRP
/RAS
tRCD
tRCD
/CAS
/WE
CKE
DQM(U/L)
DQM read latency=2
A0-9 *
X
X
A10
X
X
X
A11
X
X
X
0
1
BA0,1
Y
Y
0
Q0
DQ
ACT#0
READ#0
ACT#1
X
1
0
1
Q0
Q0
Q0
1
Q1
PRE#0
READ#1
PRE#1
Burst Read is not interrupted
by Precharge of the other bank.
Y
1
Q1
ACT#1
READ#1
Burst Read is interrupted
by Precharge of the same bank.
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
44
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Mode Register Setting
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRSC
tRC
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
A0-9 *
M
X
A10
X
A11
X
0
0
BA0,1
Y
0
D0
DQ
Auto-Ref (last of 8 cycles)
Mode
Register
Setting
ACT#0
D0
D0
D0
WRITE#0
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
45
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Auto-Refresh @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRC
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
A0-9 *
X
A10
X
A11
X
BA0,1
0
Y
0
D0
DQ
D0
D0
Auto-Refresh
ACT#0
Before Auto-Refresh,
all banks must be idle state.
After tRC from Auto-Refresh,
all banks are idle state.
D0
WRITE#0
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
46
PC133 SDRAM (Rev.0.5)
Oct. '99
MITSUBISHI LSIs
64M bit Synchronous DRAM
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Self-Refresh
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
CLK can be stopped
tRC+1
/CS
/RAS
/CAS
/WE
tSRX
CKE
CKE must be low to maintain Self-Refresh
DQM(U/L)
A0-9 *
X
A10
X
A11
X
BA0,1
0
DQ
Self-Refresh Entry
Self-Refresh Exit
Before Self-Refresh Entry,
all banks must be idle state.
ACT#0
After tRC from Self-Refresh Exit,
all banks are idle state.
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
47
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
DQM Write Mask @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
tRCD
/CAS
/WE
CKE
DQM(U/L)
A0-9 *
X
A10
X
A11
X
BA0,1
0
Y
Y
Y
0
0
0
masked
D0
DQ
ACT#0
D0
D0
WRITE#0
masked
D0
D0
WRITE#0
D0
D0
WRITE#0
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
48
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
DQM Read Mask @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
tRCD
/CAS
/WE
CKE
DQM read latency=2
DQM(U/L)
A0-9 *
X
A10
X
A11
X
BA0,1
0
Y
Y
Y
0
0
0
masked
Q0
DQ
ACT#0
READ#0
Q0
Q0
Q0
masked
Q0
READ#0
Q0
Q0
READ#0
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
49
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Power Down
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
/CAS
/WE
Standby Power Down
Active Power Down
CKE
CKE latency=1
DQM(U/L)
A0-9 *
X
A10
X
A11
X
0
BA0,1
DQ
Precharge All
ACT#0
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
50
MITSUBISHI LSIs
64M bit Synchronous DRAM
PC133 SDRAM (Rev.0.5)
Oct. '99
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
CLK Suspend @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
tRCD
/CAS
/WE
CKE
CKE latency=1
CKE latency=1
DQM(U/L)
A0-9 *
X
A10
X
A11
X
BA0,1
0
Y
Y
0
0
D0
DQ
ACT#0
D0
D0
D0
WRITE#0
CLK suspended
Q0
Q0
Q0
Q0
READ#0
CLK suspended
Italic parameter indicates minimum case
* A9 (x8) and A8,A9 (x16) for column address of read/write are don't care
MITSUBISHI ELECTRIC
51
PC133 SDRAM (Rev.0.5)
Oct. '99
64M bit Synchronous DRAM
MITSUBISHI LSIs
M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT)
M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT)
M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT)
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products
better and more reliable,but there is always the possibility that trouble may occur with them.
Trouble with semiconductors consideration to safety when making your circuit designs,with
appropriate measures such as (i) placement of substitutive,auxiliary circuits,(ii) use of
non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1.These materials are intended as a reference to assist our customers in the selection of the
Mitsubishi semiconductor product best suited to the customer's application;they do not convey any
license under any intellectual property rights,or any other rights,belonging to Mitsubishi
Electric Corporation or a third party.
2.Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights,originating in the use of any product data,diagrams,charts or circuit application
examples contained in these materials.
3.All information contained in these materials,including product data, diagrams and
DQM(U/L)
charts,represent information on products at the time of publication of these materials,and are
subject to change by Mitsubishi Electric Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Mitsubishi Electric
A0-9 *
Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product
information before purchasing a product listed herein.
A10
4.Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product
A11
distributor when considering the use of a product contained herein for special applications,such as
apparatus or systems for transportation, vehicular, medical,aerospace,nuclear,or undersea repeater
use.
5.The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce
in whole or in part these materials.
6.If these products or technologies are subject the Japanese export control restrictions,they must
be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination. Any diversion or reexport contrary to the export
control laws and regulations of Japan and/or the country of destination is prohibited.
7.Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
forfor
further
details
on these
materials
the products
contained therein.
* A9 product
(x8) anddistributor
A8,A9 (x16)
column
address
of read/write
areordon't
care
MITSUBISHI ELECTRIC
52