PC133 SDRAM (Rev.0.5) Oct. '99 PRELIMINARY MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Some of contents are described for general products and are subject to change without notice. DESCRIPTION M2V64S20BTP is organized as 4-bank x4,194,304-word x 4-bit,and M2V64S30BTP is organized as 4-bank x 2097152-word x 8-bit ,and M2V64S40BTP is organized as 4-bank x 1048576-word x 16-bit Synchronous DRAM with LVTTL interface. All inputs and outputs are referenced to the rising edge of CLK. M2V64S20BTP,M2V64S30BTP,M2V64S40BTP achieves very high speed data rates up to 133MHz, and is suitable for main memory or graphic memory in computer systems. FEATURES M2V64S20TP M2V64S30TP M2V64S40TP -6 ITEM tCLK Clock Cycle Time tRAS Active to Precharge Command Period (Min.) 45ns tRCD Row to Column Delay (Min.) 20.0ns tAC Access Time from CLK (Max.) (CL=3) tRC Ref/Active Command Period (Min.) Icc1 Icc6 (Min.) 7.5ns Operation Current (Max.) [Single Bank] 5.4ns 67.5ns 120mA Self Refresh Current (Max.) - Single 3.3V ±0.3V power supply - Max. Clock frequency -6 : 133MHz [PC133<3-3-3> ] - Fully synchronous operation referenced to clock rising edge - 4-bank operation controlled by BA0,BA1(Bank Address) - /CAS latency- 2/3 (programmable) - Burst length- 1/2/4/8/FP (programmable) - Burst type- Sequential and interleave burst (programmable) - Random column access - Auto precharge / All bank precharge controlled by A10 - Auto and self refresh - 4096 refresh cycles /64ms - LVTTL Interface - Package 400-mil, 54-pin Thin Small Outline (TSOP II) with 0.8mm lead pitch MITSUBISHI ELECTRIC 1 1mA MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) PIN CONFIGURATION (TOP VIEW) M2V64S20BTP M2V64S30BTP M2V64S40BTP Vdd NC VddQ NC DQ0 VssQ NC NC VddQ NC DQ1 VssQ NC Vdd NC /WE /CAS /RAS /CS BA0(A13) BA1(A12) A10 A0 A1 A2 A3 Vdd Vdd DQ0 VddQ NC DQ1 VssQ NC DQ2 VddQ NC DQ3 VssQ NC Vdd NC /WE /CAS /RAS /CS BA0(A13) BA1(A12) A10 A0 A1 A2 A3 Vdd Vdd DQ0 VddQ DQ1 DQ2 VssQ DQ3 DQ4 VddQ DQ5 DQ6 VssQ DQ7 Vdd DQML /WE /CAS /RAS /CS BA0(A13) BA1(A12) A10 A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 Vss DQ15 VssQ DQ14 DQ13 VddQ DQ12 DQ11 VssQ DQ10 DQ9 VddQ DQ8 Vss NC DQMU CLK CKE NC A11 A9 A8 A7 A6 A5 A4 Vss CLK : Master Clock CKE : Clock Enable /CS : Chip Select /RAS : Row Address Strobe /CAS : Column Address Strobe /WE : Write Enable DQ0-3(x4), DQ0-7(x8), DQ0-15(x16) DQM (x4, x8) ,DQML/U (x16) Vss DQ7 VssQ NC DQ6 VddQ NC DQ5 VssQ NC DQ4 VddQ NC Vss NC DQM CLK CKE NC A11 A9 A8 A7 A6 A5 A4 Vss : Data I/O : Output Disable/ Write Mask A0-11 : Address Input BA0,1 : Bank Address Vdd : Power Supply VddQ : Power Supply for Output Vss : Ground VssQ : Ground for Output MITSUBISHI ELECTRIC 2 Vss NC VssQ NC DQ3 VddQ NC NC VssQ NC DQ2 VddQ NC Vss NC DQM CLK CKE NC A11 A9 A8 A7 A6 A5 A4 Vss PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) BLOCK DIAGRAM DQ0-3 (x4) DQ0-7 (x8) DQ0-15 (x16) I/O Buffer Memory Array Memory Array Memory Array Memory Array Bank #0 Bank #1 Bank #2 Bank #3 Mode Register Control Circuitry Address Buffer Control Signal Buffer Clock Buffer A0-11 BA0,1 CLK /CS /RAS /CAS /WE DQM CKE Type Designation Code This rule is applied only to Synchronous DRAM families beyond 64M B-version. M2 V 64 S 2 0 B TP - 7 Access Item Package Type TP: TSOP(II) Process Generation Function 0: Random Column Organization 2n 2: x4, 3: x8, 4: x16 Synchronous DRAM Density 64:64M bits Interface S: SSTL, V:LVTTL Mitsubishi Semiconductor Memory MITSUBISHI ELECTRIC 3 PC133 SDRAM (Rev.0.5) Oct. '99 64M bit Synchronous DRAM MITSUBISHI LSIs M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) PIN FUNCTION CLK CKE Input Input Master Clock: All other inputs are referenced to the rising edge of CLK. Clock Enable: CKE controls internal clock. When CKE is low, internal clock for the following cycle is ceased. CKE is also used to select auto / self refresh. After self refresh mode is started, CKE becomes asynchronous input. Self refresh is maintained as long as CKE is low. /CS Input Chip Select: When /CS is high, any command means No Operation. Input Combination of /RAS, /CAS, /WE defines basic commands. A0-11 Input A0-11 specify the Row / Column Address in conjunction with BA0,1. The Row Address is specified by A0-11. The Column Address is specified by A0-A9(x4), A0-A8(x8), A0-7(x16) . A10 is also used to indicate precharge option. When A10 is high at a read / write command, an auto precharge is performed. When A10 is high at a precharge command, all banks are precharged. BA0,1 Input Bank Address: BA0,1 specifies one of four banks to which a command is applied. BA0,1 must be set with ACT, PRE, READ, WRITE commands. DQ0-3(x4), DQ0-7(x8), DQ0-15(x16) Input / Output /RAS, /CAS, /WE DQM(x4,x8), DQMU/L(x16) Input Data In and Data out are referenced to the rising edge of CLK. Din Mask / Output Disable: When DQMU/L is high in burst write, Din for the current cycle is masked. When DQMU/L is high in burst read, Dout is disabled at the next but one cycle. Vdd, Vss Power Supply Power Supply for the memory array and peripheral circuitry. VddQ, VssQ Power Supply VddQ and VssQ are supplied to the Output Buffers only. MITSUBISHI ELECTRIC 4 PC133 SDRAM (Rev.0.5) Oct. '99 64M bit Synchronous DRAM MITSUBISHI LSIs M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) BASIC FUNCTIONS The M2V64S20(30,40)BTP provides basic functions, bank (row) activate, burst read / write, bank (row) precharge, and auto / self refresh. Each command is defined by control signals of /RAS, /CAS and /WE at CLK rising edge. In addition to 3 signals, /CS ,CKE and A10 are used as chip select, refresh option, and precharge option, respectively. To know the detailed definition of commands, please see the command truth table. CLK /CS Chip Select : L=select, H=deselect /RAS Command /CAS Command /WE Command CKE Refresh Option @refresh command A10 Precharge Option @precharge or read/write command define basic commands Activate (ACT) [/RAS =L, /CAS =/WE =H] ACT command activates a row in an idle bank indicated by BA. Read (READ) [/RAS =H, /CAS =L, /WE =H] READ command starts burst read from the active bank indicated by BA. First output data appears after /CAS latency. When A10 =H at this command, the bank is deactivated after the burst read (auto-precharge,READA). Write (WRITE) [/RAS =H, /CAS =/WE =L] WRITE command starts burst write to the active bank indicated by BA. Total data length to be written is set by burst length. When A10 =H at this command, the bank is deactivated after the burst write (auto-precharge, WRITEA). Precharge (PRE) [/RAS =L, /CAS =H, /WE =L] PRE command deactivates the active bank indicated by BA. This command also terminates burst read /write operation. When A10 =H at this command, both banks are deactivated (precharge all, PREA). Auto-Refresh (REFA) [/RAS =/CAS =L, /WE =CKE =H] REFA command starts auto-refresh cycle. Refresh address including bank address are generated inter-nally. After this command, the banks are precharged automatically. MITSUBISHI ELECTRIC 5 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) COMMAND TRUTH TABLE COMMAND MNEMONIC CKE CKE n-1 n /CS /RAS /CAS /WE BA0,1 A11 A10 A0-9 Deselect DESEL H X H X X X X X X X No Operation NOP H X L H H H X X X X Row Address Entry & Bank Activate ACT H X L L H H V V V V Single Bank Precharge PRE H X L L H L V X L X Precharge All Banks PREA H X L L H L X X H X Column Address Entry & Write WRITE H X L H L L V X L V WRITEA H X L H L L V X H V READ H X L H L H V X L V & Read with AutoPrecharge READA H X L H L H V X H V Auto-Refresh REFA H H L L L H X X X X Self-Refresh Entry REFS H L L L L H X X X X Self-Refresh Exit REFSX L H H X X X X X X X L H L H H H X X X X Column Address Entry & Write with AutoPrecharge Column Address Entry & Read Column Address Entry Burst Terminate TBST H X L H H L X X X X Mode Register Set MRS H X L L L L L L L V*1 H=High Level, L=Low Level, V=Valid, X=Don't Care, n=CLK cycle number NOTE: 1. A7-A9 =0, A0-A6 =Mode Address MITSUBISHI ELECTRIC 6 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) FUNCTION TRUTH TABLE Current State /CS /RAS /CAS /WE IDLE H X X X X DESEL NOP L H H H X NOP NOP L H H L BA TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X L L L L H X X X X DESEL NOP L H H H X NOP NOP L H H L BA TBST NOP L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT Bank Active / ILLEGAL*2 L L H L BA, A10 PRE / PREA Precharge / Precharge All L L L H X L L L L H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L BA TBST Terminate Burst ROW ACTIVE READ Address Op-Code, Mode-Add Op-Code, Mode-Add Command Action READ / WRITE ILLEGAL*2 Bank Active, Latch RA NOP*4 REFA Auto-Refresh*5 MRS Mode Register Set*5 READ / READA Begin Read, Latch CA, Determine Auto-Precharge WRITE / Begin Write, Latch CA, WRITEA Determine Auto-Precharge REFA ILLEGAL MRS ILLEGAL Terminate Burst, Latch CA, L H L H BA, CA, A10 READ / READA Begin New Read, Determine Auto-Precharge*3 L H L L BA, CA, A10 WRITE / WRITEA L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X L L L L Op-Code, Mode-Add Begin Write, Determine AutoPrecharge*3 Bank Active / ILLEGAL*2 Terminate Burst, Precharge REFA ILLEGAL MRS ILLEGAL MITSUBISHI ELECTRIC 7 Terminate Burst, Latch CA, PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) FUNCTION TRUTH TABLE (continued) Current State /CS /RAS /CAS /WE Address Command Action WRITE H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L BA TBST Terminate Burst Terminate Burst, Latch CA, L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X L L L L READ with H X X X X DESEL NOP (Continue Burst to END) AUTO PRECHARGE L H H H X NOP NOP (Continue Burst to END) L H H L BA TBST ILLEGAL L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL WRITE with H X X X X DESEL NOP (Continue Burst to END) AUTO PRECHARGE L H H H X NOP NOP (Continue Burst to END) L H H L BA TBST ILLEGAL L H L H BA, CA, A10 L H L L BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL Op-Code, Mode-Add READ / READA Begin Read, Determine AutoPrecharge*3 WRITE / WRITEA Begin Write, Determine AutoPrecharge*3 Bank Active / ILLEGAL*2 Terminate Burst, Precharge REFA ILLEGAL MRS ILLEGAL READ / READA ILLEGAL WRITE / WRITEA ILLEGAL Bank Active / ILLEGAL*2 ILLEGAL*2 READ / READA ILLEGAL WRITE / WRITEA MITSUBISHI ELECTRIC 8 Terminate Burst, Latch CA, ILLEGAL Bank Active / ILLEGAL*2 ILLEGAL*2 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) FUNCTION TRUTH TABLE (continued) Current State /CS /RAS /CAS /WE Address PRE - H X X X X DESEL NOP (Idle after tRP) CHARGING L H H H X NOP NOP (Idle after tRP) L H H L BA TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT L L H L BA, A10 PRE / PREA L L L H X L L L L ROW H X X X X DESEL NOP (Row Active after tRCD) ACTIVATING L H H H X NOP NOP (Row Active after tRCD) L H H L BA TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL*2 L L H L BA, A10 PRE / PREA ILLEGAL*2 L L L H X L L L L WRITE RE- H X X X X DESEL NOP COVERING L H H H X NOP NOP L H H L BA TBST ILLEGAL*2 L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL*2 L L H L BA, A10 PRE / PREA ILLEGAL*2 L L L H X L L L L Op-Code, Mode-Add Op-Code, Mode-Add Op-Code, Mode-Add Command READ / WRITE ILLEGAL*2 ILLEGAL*2 NOP*4 (Idle after tRP) REFA ILLEGAL MRS ILLEGAL READ / WRITE ILLEGAL*2 REFA ILLEGAL MRS ILLEGAL READ / WRITE ILLEGAL*2 REFA ILLEGAL MRS ILLEGAL MITSUBISHI ELECTRIC 9 Action PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) FUNCTION TRUTH TABLE (continued) Current State /CS /RAS /CAS /WE Address Command Action RE- H X X X X DESEL NOP (Idle after tRC) FRESHING L H H H X NOP NOP (Idle after tRC) L H H L BA TBST ILLEGAL L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL L L H L BA, A10 PRE / PREA ILLEGAL L L L H X REFA ILLEGAL L L L L MRS ILLEGAL MODE H X X X X DESEL NOP (Idle after tRSC) REGISTER L H H H X NOP NOP (Idle after tRSC) SETTING L H H L BA TBST ILLEGAL L H L X BA, CA, A10 L L H H BA, RA ACT ILLEGAL L L H L BA, A10 PRE / PREA ILLEGAL L L L H X REFA ILLEGAL L L L L MRS ILLEGAL READ / WRITE ILLEGAL Op-Code, Mode-Add READ / WRITE ILLEGAL Op-Code, Mode-Add ABBREVIATIONS: H=High Level, L=Low Level, X=Don't Care BA=Bank Address, RA=Row Address, CA=Column Address, NOP=No OPeration NOTES: 1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle. 2. ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the state of that bank. 3. Must satisfy bus contention, bus turn around, write recovery requirements. 4. NOP to bank precharging or in idle state. May precharge bank indicated by BA. 5. ILLEGAL if any bank is not idle. ILLEGAL = Device operation and/or data-integrity are not guaranteed. MITSUBISHI ELECTRIC 10 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) FUNCTION TRUTH TABLE for CKE CKE CKE n-1 n SELF- H X X X REFRESH*1 L H H L H L Current State /CS /RAS /CAS /WE Add Action X X X INVALID X X X X Exit Self-Refresh (Idle after tRC) L H H H X Exit Self-Refresh (Idle after tRC) H L H H L X ILLEGAL L H L H L X X ILLEGAL L H L L X X X ILLEGAL L L X X X X X NOP (Maintain Self-Refresh) POWER H X X X X X X INVALID DOWN L H X X X X X Exit Power Down to Idle L L X X X X X NOP (Maintain Self-Refresh) ALL BANKS H H X X X X X Refer to Function Truth Table IDLE*2 H L L L L H X Enter Self-Refresh H L H X X X X Enter Power Down H L L H H H X Enter Power Down H L L H H L X ILLEGAL H L L H L X X ILLEGAL H L L L X X X ILLEGAL L X X X X X X ANY STATE H H X X X X X other than H L X X X X X Begin CLK Suspend at Next Cycle*3 listed above L H X X X X X Exit CLK Suspend at Next Cycle*3 L L X X X X X Maintain CLK Suspend Refer to Current State =Power Down Refer to Function Truth Table ABBREVIATIONS: H=High Level, L=Low Level, X=Don't Care NOTES: 1. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT. 2. Power-Down and Self-Refresh can be entered only from the All Banks Idle State. 3. Must be legal command. MITSUBISHI ELECTRIC 11 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) SIMPLIFIED STATE DIAGRAM SELF REFRESH REFS REFSX MODE REGISTER SET MRS AUTO REFRESH REFA IDLE CKEL CLK SUSPEND CKEH ACT POWER DOWN CKEL CKEH TBST (for Full Page) TBST (for Full Page) ROW ACTIVE WRITE WRITE SUSPEND READ WRITEA CKEL WRITE READA READ WRITE CKEH READA WRITEA POWER APPLIED READ SUSPEND CKEH WRITEA WRITEA SUSPEND CKEL READ READA CKEL CKEL PRE WRITEA CKEH PRE POWER ON PRE READA PRE READA SUSPEND CKEH PRE CHARGE Automatic Sequence Command Sequence MITSUBISHI ELECTRIC 12 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) POWER ON SEQUENCE Before starting normal operation, the following power on sequence is necessary to prevent a SDRAM from damaged or malfunctioning. 1.Clock will be applied at power up along with power. Attempt to maintain CKE high, DQM (x4,x8), DQMU/L (x16) high and NOP condition at the inputs along with power. 2. Maintain stable power, stable clock, and NOP input conditions for a minimum of 200us. 3. Issue precharge commands for all banks. (PRE or PREA) 4. After all banks become idle state (after tRP), issue 8 or more auto-refresh commands. 5. Issue a mode register set command to initialize the mode register. After these sequence, the SDRAM is idle state and ready for normal operation. MODE REGISTER Burst Length, Burst Type and /CAS Latency can be CLK programmed by setting the mode register (MRS). The mode /CS register stores these data until the next MRS command, which /RAS /CAS may be issued when both banks are in idle state. After tRSC /WE from a MRS command, the SDRAM is ready for new command. BA0 BA1 A11 A10 A9 0 0 0 CL LATENCY MODE WRITE MODE 0 WM A8 A7 0 0 R R 010 011 100 101 110 111 2 3 R R R R 0 A5 A4 LTMODE A3 A2 BT A1 BURST LENGTH BURST SINGLE BIT BURST TYPE A0 BL BT= 0 BT= 1 000 001 010 011 100 1 2 4 8 R 1 2 4 8 R 101 110 111 R R FP R R R 0 1 SEQUENTIAL INTERLEAVE R: Reserved for Future Use FP: Full Page MITSUBISHI ELECTRIC 13 V BL /CAS LATENCY 000 001 1 A6 BA0,1 A11-A0 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) [ /CAS LATENCY ] /CAS latency, CL, is used to synchronize the first output data with the CLK frequency, i.e., the speed of CLK determines which CL should be used. First output data is available after CL cycles from READ command. /CAS Latency Timing(BL=4) CLK ACT Command READ tRCD X Address Y CL=2 DQ Q0 CL=3 DQ Q1 Q2 Q3 Q0 Q1 Q2 CL=2 Q3 CL=3 [ BURST LENGTH ] The burst length, BL, determines the number of consecutive writes or reads that will be automatically performed after the initial write or read command. For BL=1,2,4,8, full page the output data is tristated (Hi-Z) after the last read. For BL=FP (Full Page), the TBST (Burst Terminate) command should be issued to stop the output of data. Burst Length Timing( CL=2 ) tRCD CLK Command Address ACT X READ Y DQ Q0 DQ Q0 Q1 DQ Q0 Q1 Q2 Q3 DQ Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 DQ Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 BL=1 BL=2 BL=4 M2V64S20B : m=1023 M2V64S30B : m=511 M2V64S40B : m=255 MITSUBISHI ELECTRIC 14 BL=8 Q8 Qm Q0 Q1 Full Page counter rolls over and continues to count. BL=FP MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) CLK Command Read Write Y Y Address Q0 DQ CL= 3 BL= 4 /CAS Latency Q1 Q2 D0 Q3 Burst Length D1 D2 D3 Burst Length Burst Type Initial Address Column Addressing BL A2 A1 A0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 1 1 2 3 4 5 6 7 0 1 0 3 2 5 4 7 6 0 1 0 2 3 4 5 6 7 0 1 2 3 0 1 6 7 4 5 0 1 1 3 4 5 6 7 0 1 2 3 2 1 0 7 6 5 4 Sequential Interleaved 8 1 0 0 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 1 0 1 5 6 7 0 1 2 3 4 5 4 7 6 1 0 3 2 1 1 0 6 7 0 1 2 3 4 5 6 7 4 5 2 3 0 1 1 1 1 7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 - 0 0 0 1 2 3 0 1 2 3 - 0 1 1 2 3 0 1 0 3 2 4 - 1 0 2 3 0 1 2 3 0 1 - 1 1 3 0 1 2 3 2 1 0 - - 0 0 1 0 1 1 0 1 0 2 - - 1 MITSUBISHI ELECTRIC 15 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) OPERATIONAL DESCRIPTION BANK ACTIVATE The SDRAM has four independent banks. Each bank is activated by the ACT command with the bank addresses (BA0,1). A row is indicated by the row addresses A11-0. The minimum activation interval between one bank and the other bank is tRRD.The number of banks which are active concurrently is not limited. PRECHARGE The PRE command deactivates the bank indicated by BA0,1. When multiple banks are active, the precharge all command (PREA, PRE + A10=H) is available to deactivate them at the same time. After tRP from the precharge, an ACT command to the same bank can be issued. Bank Activation and Precharge All (BL=4, CL=3) CLK tRCmin Command ACT A0-9 Xa A10 ACT READ tRRD PRE ACT tRAS Xb Y Xa Xb 0 A11 Xa Xb BA0,1 00 tRP Xb tRCD 01 1 Xb Xb 00 01 DQ Qa0 Qa1 Qa2 Qa3 Precharge all READ After tRCD from the bank activation, a READ command can be issued. 1st output data is available after the /CAS Latency from the READ, followed by (BL -1) consecutive data when the Burst Length is BL. The start address is specified by A9-0(x4), A8-0(x8), A7-0(X16), and the address sequence of burst data is defined by the Burst Type. A READ command may be applied to any active bank, so the row precharge time (tRP) can be hidden behind continuous output data by interleaving the multiple banks. When A10 is high at a READ command, the autoprecharge (READA) is performed. Any command (READ, WRITE, PRE, ACT) to the same bank is inhibited till the internal precharge is complete. The internal precharge starts at BL after READA. The next ACT command can be issued after (BL + tRP) from the previous READA. MITSUBISHI ELECTRIC 16 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Multi Bank Interleaving READ (BL=4, CL=3) CLK Command ACT READ ACT READ PRE tRCD A0-9 Xa Y Xb Y A10 Xa 0 Xb 0 0 A11 Xa 10 00 Qa1 Qa2 BA0,1 Xb 00 00 10 DQ Qa0 /CAS latency Qa3 Qb0 Burst Length READ with Auto-Precharge (BL=4, CL=3) CLK BL + tRP Command ACT READ A0-9 Xa Y Xa A10 Xa 1 Xa A11 Xa tRCD BA0,1 00 ACT BL tRP Xa 00 00 Qa0 DQ Qa1 Qa2 Qa3 Internal precharge start READ Auto-Precharge Timing (BL=4) CLK Command ACT READ BL CL=3 DQ CL=2 DQ Qa0 Qa0 Qa1 Qa2 Qa1 Qa2 Qa3 Qa3 Internal Precharge Start Timing MITSUBISHI ELECTRIC 17 Qb1 Qb2 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) WRITE After tRCD from the bank activation, a WRITE command can be issued. 1st input data is set at the same cycle as the WRITE. Following (BL -1) data are written into the RAM, when the Burst Length is BL. The start address is specified by A9-0 (x 4), A8-0 (x 8) and A7-0 (x 16), and the address sequence of burst data is defined by the Burst Type. A WRITE command may be applied to any active bank, so the row precharge time (tRP) can be hidden behind continuous input data by interleaving the multiple banks. From the last input data to the PRE command, the write recovery time (tWR) is required. When A10 is high at a WRITE command, the auto-precharge (WRITEA) is performed. Any command (READ, WRITE, PRE, ACT) to the same bank is inhib-ited till the internal precharge is complete. The internal precharge begins at tWR after the last input data cycle. The next ACT command can be issued after tRP from the internal precharge timing. The Mode Register can be programmed for burst read and single write. In this mode the write data is only clocked in when the WRITE command is issued and the remaining burst length is ignored. The read data burst length os unaffected while in this mode Multi Bank Interleaving WRITE (BL=4) CLK Command ACT Write ACT tRCD Write PRE PRE 0 0 0 0 10 00 10 Db0 Db1 tRCD A0-9 Xa Y Xb Y A10 Xa 0 Xb 0 A11 Xa BA0,1 00 Xb DQ 00 10 Da0 Da1 Da2 Da3 Db2 Db3 WRITE with Auto-Precharge (BL=4) CLK Command ACT Write ACT tRCD tWR tRP A0-9 Xa Y Xa A10 Xa 1 Xa A11 Xa BA0,1 00 DQ Xa 00 Da0 00 Da1 Da2 Da3 Internal precharge starts MITSUBISHI ELECTRIC 18 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) [ BURST WRITE ] A burst write operation is enabled by setting A9=0 at MRS. A burst write starts in the same cycle as a write command set. (The latency of data input is 0.) The burst length can be set to 1,2,4,8, and full-page, like burst read operations. tRCD CLK Command ACT WRITE Address DQ D0 DQ D0 D1 DQ D0 D1 D2 D3 DQ D0 D1 D2 D3 D4 D5 D6 D7 DQ D0 D1 D2 D3 D4 D5 D6 D7 BL=1 BL=2 BL=4 BL=8 D8 M2V64S20B : m=1023 M2V64S30B : m=511 M2V64S40B : m=255 D9 D10 Dm D0 D1 BL=FP Full Page counter rolls over and continues to count. [ SINGLE WRITE ] A single write operation is enabled by setting A9=1 at MRS. In a single write operation, data is written only to the column address specified by the write command set cycle without regard to the burst length setting. (The latency of data input is 0.) CLK Command ACT WRITE tRCD Address DQ X Y D0 MITSUBISHI ELECTRIC 19 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) BURST INTERRUPTION [ Read Interrupted by Read ] Burst read operation can be interrupted by new read of any bank. Random column access is allowed. READ to READ interval is minimum 1 CLK. Read Interrupted by Read (BL=4, CL=3) CLK Command READ READ READ READ A0-9 Yi Yj Yk Yl A10 0 0 0 0 00 00 10 01 A11 BA0,1 Qai0 DQ Qaj0 Qaj1 Qbk0 Qbk1 Qbk2 Qal0 Qal1 Qal2 Qal3 [ Read Interrupted by Write ] Burst read operation can be interrupted by write of any bank. Random column access is allowed. In this case, the DQ should be controlled adequately by using the DQM to prevent the bus contention. The output is disabled automatically 1 cycle after WRITE assertion. Read Interrupted by Write (BL=4, CL=3) CLK READ Write A0-9 Yi Yj A10 0 0 00 00 Command A11 BA0,1 DQM(x4,x8) DQMU/L(x16) Q D Qai0 Daj0 Daj1 Daj2 DQM control Write control MITSUBISHI ELECTRIC 20 Daj3 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) [ Read Interrupted by Precharge ] Burst read operation can be interrupted by precharge of the same bank . READ to PRE interval is mini-mum 1 CLK. A PRE command to output disable latency is equivalent to the /CAS Latency. As a result, READ to PRE interval determines valid data length to be output. The figure below shows examples of BL=4. Read Interrupted by Precharge (BL=4) CLK Command READ PRE DQ Command CL=3 READ CL=2 READ DQ PRE Q0 READ Q1 Q2 PRE Q0 DQ Command Q1 Q0 DQ Command Q0 READ PRE DQ Command Q1 PRE DQ Command Q0 Q1 READ PRE Q0 MITSUBISHI ELECTRIC 21 Q2 PC133 SDRAM (Rev.0.5) Oct. '99 64M bit Synchronous DRAM MITSUBISHI LSIs M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) [ Read Interrupted by Burst Terminate ] Similar to a precharge, the burst terminate command, TBST, can interrupt the burst read operation and disable the data output. The READ to TBST interval is a minimum of one CLK. TBST is mainly used to interrupt FP bursts. The figures below show examples, of how the output data is terminated with TBST. Read Interrupted by Burst Terminate(BL=4) CLK Command READ TBST DQ CL=3 Command Q0 READ Q0 Command READ DQ TBST Q0 READ DQ Command Q2 Q0 DQ CL=2 Q1 READ TBST DQ Command Q2 TBST DQ Command Q1 Q1 Q2 Q3 TBST Q0 Q1 Q2 READ TBST Q0 MITSUBISHI ELECTRIC 22 Q3 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) [ Write Interrupted by Write ] Burst write operation can be interrupted by new write of any bank. Random column access is allowed. WRITE to WRITE interval is minimum 1 CLK. Write Interrupted by Write (BL=4) CLK Command Write Write Write Write A0-9 Yi Yj Yk Yl A10 0 0 0 0 BA0,1 00 00 10 00 DQ Dai0 Daj0 A11 Daj1 Dbk0 Dbk1 Dbk2 Dal0 Dal1 Dal2 Dal3 [ Write Interrupted by Read ] Burst write operation can be interrupted by read of the same or the other bank. Random column access is allowed. WRITE to READ interval is minimum 1 CLK. The input data on DQ at the interrupting READ cycle is "don't care". Write Interrupted by Read (BL=4, CL=3) CLK Command Write READ Write READ A0-9 Yi Yj Yk Yl A10 0 0 0 0 00 00 10 00 A11 BA0,1 DQM(x4,x8) DQMU/L(x16) DQ Dai0 Qaj0 Qaj1 Dbk0 Dbk1 MITSUBISHI ELECTRIC 23 Qal0 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) [ Write Interrupted by Precharge ] Burst write operation can be interrupted by precharge of the same bank. Random column access is allowed. Write recovery time (tWR) is required from the last data to PRE command. Write Interrupted by Precharge (BL=4) CLK Command Write PRE tWR A0-9 Yi A10 0 ACT tRP Xb 0 Xb Xb A11 BA0,1 00 00 00 DQM(x4,x8) DQMU/L(x16) Dai0 DQ Dai1 Dai2 [ Write Interrupted by Burst Terminate ] A burst terminate command TBST can be used to terminate a burst write operation. In this case, the write recovery time is not required and the bank remains active (Please see the waveforms below). The WRITE to TBST minimum interval is one CLK. Write Interrupted by Burst Terminate(BL=4) CLK Command WRITE A0-9 Yi A10 0 BA 0 TBST DQM(x4,x8) DQMU/L(x16) DQ Dai0 Dai1 Dai2 MITSUBISHI ELECTRIC 24 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) AUTO REFRESH Single cycle of auto-refresh is initiated with a REFA (/CS= /RAS= /CAS= L, /WE= /CKE= H) command. The refresh address is generated internally. 4096 REFA cycles within 64ms refresh 64Mbit memory cells. The auto-refresh is performed on 4 banks concurrently. Before performing an auto-refresh, all banks must be in the idle state. Auto-refresh to auto-refresh interval is minimum tRC. Any command must not be supplied to the device before tRC from the REFA command. Auto-Refresh CLK /CS NOP or DESELECT /RAS /CAS /WE CKE minimum tRC A0-11 BA0,1 Auto Refresh on All Banks Auto Refresh on All Banks MITSUBISHI ELECTRIC 25 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) SELF REFRESH Self-refresh mode is entered by issuing a REFS command (/CS= /RAS= /CAS= L, /WE= H, CKE= L). Once the self-refresh is initiated, it is maintained as long as CKE is kept low. During the self-refresh mode, CKE is asynchronous and the only enabled input ,all other inputs including CLK are disabled and ignored, so that power consumption due to synchronous inputs is saved. To exit the self-refresh, supplying stable CLK inputs, asserting DESEL or NOP command and then asserting CKE (REFSX) for longer than tSRX. After tRC from REFSX all banks are in the idle state and a new command can be issued, but DESEL or NOP commands must be asserted till then. Self-Refresh CLK Stable CLK NOP /CS /RAS /CAS /WE CKE tSRX new command X A0-11 00 BA0,1 Self Refresh Entry Self Refresh Exit MITSUBISHI ELECTRIC 26 minimum tRC +1 CLOCK for recovery MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) CLK SUSPEND CKE controls the internal CLK at the following cycle. Figure below shows how CKE works. By negating CKE, the next internal CLK is suspended. The purpose of CLK suspend is power down, output suspend or input suspend. CKE is a synchronous input except during the selfrefresh mode. CLK suspend can be performed either when the banks are active or idle. A command at the suspended cycle is ignored. ext.CLK CKE int.CLK Power Down by CKE CLK Standby Power Down CKE Command PRE NOP NOP NOP NOP Active Power Down CKE Command NOP NOP NOP ACT NOP NOP NOP NOP NOP NOP NOP DQ Suspend by CKE CLK CKE Command DQ Write D0 READ D1 D2 D3 Q0 MITSUBISHI ELECTRIC 27 Q1 Q2 Q3 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) DQM CONTROL For x4/x8, DQM is a dual function signal defined as the data mask for writes and the output disable for reads. During writes, DQM masks input data word by word. DQM to write mask latency is 0. During reads, DQM forces output to Hi-Z word by word. DQM to output Hi-Z latency is 2. DQM Function CLK Command Write READ DQM DQ D0 D2 D3 Q0 masked by DQM=H Q1 Q3 disabled by DQM=H For x16, DQMU/L are dual function signals defined as the data mask for writes and the output disable for reads. During writes, DQMU/L mask input data word by word. DQMU/L to write mask latency is 0. During reads, DQMU/L force outputs to Hi-Z word by word. DQMU/L to output Hi-Z latency is 2. DQML and DQMU control lower byte (DQ0-7), and upper byte (DQ8-15), respectively. DQM Function CLK Command Write READ DQML DQMU DQ0-7 D0 DQ8-15 D0 D1 D2 D3 Q0 Q1 D2 D3 Q0 Q1 masked by DQML=H Q2 Q3 Q3 disabled by DQMU=H MITSUBISHI ELECTRIC 28 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) ABSOLUTE MAXIMUM RATINGS Symbol Parameter Conditions Ratings Supply Voltage with respect to Vss -0.5 - 4.6 V Supply Voltage for Output with respect to VssQ -0.5 - 4.6 V VI Input Voltage with respect to Vss -0.5 - 4.6 V VO Output Voltage with respect to VssQ -0.5 - 4.6 V IO Output Current Pd Power Dissipation Vdd VddQ Ta = 25ºC Unit 50 mA 1000 mW Topr Operating Temperature 0 - 70 ºC Tstg Storage Temperature -65 - 150 ºC RECOMMENDED OPERATING CONDITIONS (Ta=0 – 70ºC, unless otherwise noted ) Limits Symbol Parameter Unit Min. Typ. Max. Vdd Supply Voltage 3.0 3.3 3.6 V Vss Supply Voltage 0 0 0 V VddQ Supply Voltage for Output 3.0 3.3 3.6 V VssQ Supply Voltage for Output 0 0 0 V VIH*1 High-level Input Voltage all inputs 2.0 VddQ +0.3 V VIL*2 Low-level Input Voltage all inputs -0.3 0.8 V NOTES) 1. VIH(max)= Vdd+2.0V AC for pulse width less than 3ns acceptable. 2. VIL(min) = -2.0V AC for pulse width less than 3ns acceptable. CAPACITANCE (Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted ) Symbol Test Condition Parameter CI(A) Input Capacitance, address pin CI(C) Input Capacitance, contorl pin CI(K) Input Capacitance, CLK pin CI/O Input Capacitance, I/O pin Limits (min.) Limits (max.) Unit 2.5 3.8 pF 2.5 3.8 pF 2.5 3.5 pF 4.0 6.5 pF 1MHz, 1.4v bias 200mV swing MITSUBISHI ELECTRIC 29 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) AVERAGE SUPPLY CURRENT from Vdd (Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted ) ITEM Symbol Organization Limits (max.) x4/x8 120 x16 130 operating current tRC=min, tCLK =min, BL=1 , CL=3,IOL=0mA precharge standby current in Non Power down mode precharge standby current in Power down mode active standby current in Non Power Down Mode active standby current in Power Down Mode single bank operation Icc1 Note mA *1 tCLK = 15ns CKE = VIHmin Icc2N x4/x8/x16 25 mA *1,2 CLK = VILmax (fixed) CKE = VIHmin Icc2NS x4/x8/x16 20 mA *1 tCLK = 15ns CKE = VILmax Icc2P x4/x8/x16 2 mA *1,2 CLK = CKE =VILmax(fixed) Icc2PS x4/x8/x16 1 mA *1 CKE = /CS=VIHmin, tCLK=15ns Icc3N x4/x8/x16 55 mA *1,2 CKE = /CS=VIHmin, CLK=VILmax (fixed) Icc3NS x4/x8/x16 40 mA *1 tCLK = 15ns CKE = VILmax Icc3P x4/x8/x16 2 mA *1,2 CLK = CKE =VILmax(fixed) Icc3PS x4/x8/x16 1 mA *1 mA *1 x4/x8 145 x16 160 Icc5 x4/x8/x16 150 mA *1 Icc6 x4/x8/x16 1 mA *1 All Bank Active,tCLK = min BL=4, CL=3,IOL=0mA Icc4 auto-refresh current tRFC=min, tCLK=min self-refresh current CKE < 0.2V burst current Unit -6 NOTE) 1. Icc(max) is specified at the output open condition. 2.Input signal are changed one time during 30ns AC OPERATING CONDITIONS AND CHARACTERISTICS (Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted ) Symbol Parameter Limits Test Conditions Min. VOH (DC) High-Level Output Voltage (DC) IOH=-2mA VOL (DC) Low-level Output Voltage (DC) IOL= 2mA IOZ Off-state Output Current Q floating VO=0 -- VddQ II Input Current VIH = 0 -- VddQ +0.3V MITSUBISHI ELECTRIC 30 unit Max. V 2.4 0.4 V -10 10 µA -10 10 µA PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) AC TIMING REQUIREMENTS (Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted ) Input Pulse Levels: 0.8V – 2.0V Input Timing Measurement Level: 1.4V Limits Symbol Min. tCLK CLK cycle time Unit -6 Parameter Max. CL=3 7.5 ns CL=2 10 ns tCH CLK High pulse width 2.5 ns tCL CLK Low pulse width 2.5 ns tT Transition time of CLK 1 ns 10 tIS Input Setup time (all inputs) 1.5 ns tIH Input Hold time (all inputs) 0.8 ns tRC Row Cycle time 67.5 ns tRFC Row Refresh Cycle time 75 ns tRCD Row to Column Delay 20 ns tRAS Row Active time 45 tRP Row Precharge time 20 ns tWR Write Recovery time 15 ns tRRD Act to Act Delay time 15 ns tRSC Mode Register Set Cycle time 15 ns tSRX Self-refresh Exit time 7.5 ns tPDE Power Down Exit time 7.5 ns tREF Refresh Interval time 100K 64 CLK 1.4V DQ 1.4V ns ms Any AC timing is referenced to the input signal passing through 1.4V. MITSUBISHI ELECTRIC 31 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) SWITCHING CHARACTERISTICS (Ta=0 – 70ºC, Vdd= VddQ= 3.3 ± 0.3V, Vss= VssQ= 0V, unless otherwise noted ) Limits Symbol Parameter -6 Min. tAC tOH Access time from CLK Output Hold time from CLK Unit Max. CL=3 5.4 ns CL=2 6.0 ns CL=3 2.7 ns CL=2 3.0 ns ns tOLZ Delay time, output lowimpedance from CLK 0 tOHZ Delay time, output highimpedance from CLK 2.7 Note 5.4 *1 ns NOTE) 1. If clock rising time is longer than 1ns, (tr /2–0.5ns) should be added to the parameter. Output Load Condition CLK VOUT 1.4V Ext.CL=50pF DQ 1.4V Output Timing Measurement Reference Point CLK 1.4V tOLZ DQ 1.4V tAC tOH tOHZ MITSUBISHI ELECTRIC 32 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Burst Write (single bank) @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK tRC /CS tRAS tRP /RAS tRCD tRCD /CAS /WE tWR CKE DQM(U/L) A0-9 * X A10 X X A11 X X BA0,1 0 Y 0 D0 DQ ACT#0 X 0 D0 D0 WRITE#0 0 D0 Y 0 D0 PRE#0 ACT#0 D0 D0 D0 WRITE#0 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 33 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Burst Write (multi bank) @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK tRC /CS tRRD tRRD tRAS tRP /RAS tRCD tRCD /CAS /WE tWR tWR CKE DQM(U/L) A0-9 * X X A10 X A11 BA0,1 Y X X X X X X X X X 0 1 0 D0 DQ ACT#0 Y D0 WRITE#0 ACT#1 D0 D0 1 0 D1 D1 0 D1 D1 PRE#0 WRITE#1 1 2 Y 0 D0 ACT#0 D0 D0 ACT#2 WRITE#0 PRE#1 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 34 D0 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Burst Read (single bank) @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK tRC /CS tRAS tRP /RAS tRCD tRCD /CAS /WE CKE DQM(U/L) DQM read latency =2 A0-9 * X A10 X X A11 X X BA0,1 0 Y X 0 0 0 Y 0 CL=3 Q0 DQ ACT#0 READ#0 Q0 Q0 PRE#0 Q0 Q0 ACT#0 READ#0 READ to PRE ³BL allows full data out Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 35 Q0 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Burst Read (multiple bank) @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK tRC /CS tRRD tRRD tRAS tRP /RAS tRCD tRCD /CAS /WE CKE DQM(U/L) DQM read latency =2 A0-9 * X X A10 X A11 BA0,1 Y Y X X X X X X X X X 0 1 0 1 0 Q0 Q0 CL=3 ACT#0 READ#0 ACT#1 1 2 Q1 Q1 Q1 0 CL=3 Q0 DQ 0 Y Q0 Q1 PRE#0 READ#1 ACT#0 PRE#1 READ#0 ACT#2 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 36 Q0 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Burst Write (multi bank) with Auto-Precharge @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK tRC /CS tRRD tRRD /RAS tRCD tRCD tRCD /CAS BL-1+ tWR + tRP BL-1+ tWR + tRP /WE CKE DQM(U/L) A0-9 * X X A10 X X X X A11 X X X X 0 1 BA0,1 Y 0 D0 DQ ACT#0 ACT#1 Y X 1 D0 D0 WRITE#0 with AutoPrecharge D0 D1 D1 D1 Y X 0 0 1 D1 D0 D0 ACT#0 WRITE#1 with AutoPrecharge Y 1 D0 D0 D1 WRITE#0 ACT#1 WRITE#1 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 37 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Burst Read (multiple bank) with Auto-Precharge @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK tRC /CS tRRD tRRD /RAS tRCD tRCD tRCD /CAS BL+tRP BL+tRP /WE CKE DQM(U/L) DQM read latency =2 A0-9 * X X A10 X X X X A11 X X X X BA0,1 0 1 Y Y 0 1 CL=3 ACT#0 ACT#1 0 0 CL=3 Q0 DQ Y X READ#0 with Auto-Precharge Q0 Q0 X Y 1 1 CL=3 Q0 Q1 Q1 ACT#0 READ#1 with Auto-Precharge Q1 Q1 Q0 Q0 READ#0 ACT#1 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 38 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Page Mode Burst Write (multi bank) @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRRD /RAS tRCD /CAS /WE CKE DQM(U/L) A0-9 * X X A10 X X A11 X X BA0,1 0 1 Y Y Y Y 0 0 1 0 D0 DQ ACT#0 D0 D0 WRITE#0 ACT#1 D0 D0 D0 D0 D0 D1 D1 WRITE#0 D1 D1 D0 D0 D0 WRITE#0 WRITE#1 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 39 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Page Mode Burst Read (multi bank) @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRRD /RAS tRCD /CAS /WE CKE DQM(U/L) DQM read latency=2 A0-9 * X X A10 X X A11 X X 0 1 BA0,1 Y Y Y Y 0 0 1 0 CL=3 CL=3 Q0 DQ ACT#0 READ#0 ACT#1 Q0 Q0 Q0 CL=3 Q0 Q0 Q0 READ#0 Q0 Q1 Q1 Q1 Q1 READ#0 READ#1 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 40 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Write Interrupted by Write / Read @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRRD /RAS tRCD tCCD /CAS /WE CKE DQM(U/L) A0-9 * X X A10 X X A11 X X BA0,1 0 1 Y Y Y Y Y 0 0 0 1 0 D0 D0 CL=3 D0 DQ ACT#0 D0 D0 D0 D1 D1 Q0 Q0 Q0 Q0 WRITE#0 WRITE#0 WRITE#0 READ#0 ACT#1 WRITE#1 Burst Write can be interrupted by Write or Read of any active bank. Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 41 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Read Interrupted by Read / Write @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRRD /RAS tRCD /CAS /WE CKE DQM(U/L) DQM read latency=2 A0-9 * X X A10 X X A11 X X BA0,1 0 1 DQ ACT#0 Y Y Y Y Y Y 0 0 0 1 0 0 Q0 Q0 Q0 Q0 Q0 Q0 Q1 Q1 Q0 D0 D0 READ#0 READ#0 READ#0 READ#0 WRITE#0 ACT#1 READ#1 blank to prevent bus contention Burst Read can be interrupted by Read or Write of any active bank. Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 42 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Write Interrupted by Precharge @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRRD /RAS tRCD /CAS /WE CKE DQM(U/L) A0-9 * X X A10 X X X A11 X X X BA0,1 0 1 Y 0 D0 DQ ACT#0 Y D0 WRITE#0 ACT#1 D0 D0 X 1 0 D1 D1 1 1 1 D1 PRE#0 WRITE#1 PRE#1 Burst Write is not interrupted by Precharge of the other bank. Y ACT#1 D1 D1 WRITE#1 Burst Write is interrupted by Precharge of the same bank. Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 43 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Read Interrupted by Precharge @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRRD tRP /RAS tRCD tRCD /CAS /WE CKE DQM(U/L) DQM read latency=2 A0-9 * X X A10 X X X A11 X X X 0 1 BA0,1 Y Y 0 Q0 DQ ACT#0 READ#0 ACT#1 X 1 0 1 Q0 Q0 Q0 1 Q1 PRE#0 READ#1 PRE#1 Burst Read is not interrupted by Precharge of the other bank. Y 1 Q1 ACT#1 READ#1 Burst Read is interrupted by Precharge of the same bank. Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 44 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Mode Register Setting 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRSC tRC /RAS tRCD /CAS /WE CKE DQM(U/L) A0-9 * M X A10 X A11 X 0 0 BA0,1 Y 0 D0 DQ Auto-Ref (last of 8 cycles) Mode Register Setting ACT#0 D0 D0 D0 WRITE#0 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 45 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Auto-Refresh @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS tRC /RAS tRCD /CAS /WE CKE DQM(U/L) A0-9 * X A10 X A11 X BA0,1 0 Y 0 D0 DQ D0 D0 Auto-Refresh ACT#0 Before Auto-Refresh, all banks must be idle state. After tRC from Auto-Refresh, all banks are idle state. D0 WRITE#0 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 46 PC133 SDRAM (Rev.0.5) Oct. '99 MITSUBISHI LSIs 64M bit Synchronous DRAM M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Self-Refresh 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK CLK can be stopped tRC+1 /CS /RAS /CAS /WE tSRX CKE CKE must be low to maintain Self-Refresh DQM(U/L) A0-9 * X A10 X A11 X BA0,1 0 DQ Self-Refresh Entry Self-Refresh Exit Before Self-Refresh Entry, all banks must be idle state. ACT#0 After tRC from Self-Refresh Exit, all banks are idle state. Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 47 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) DQM Write Mask @BL=4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS /RAS tRCD /CAS /WE CKE DQM(U/L) A0-9 * X A10 X A11 X BA0,1 0 Y Y Y 0 0 0 masked D0 DQ ACT#0 D0 D0 WRITE#0 masked D0 D0 WRITE#0 D0 D0 WRITE#0 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 48 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) DQM Read Mask @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS /RAS tRCD /CAS /WE CKE DQM read latency=2 DQM(U/L) A0-9 * X A10 X A11 X BA0,1 0 Y Y Y 0 0 0 masked Q0 DQ ACT#0 READ#0 Q0 Q0 Q0 masked Q0 READ#0 Q0 Q0 READ#0 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 49 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Power Down 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS /RAS /CAS /WE Standby Power Down Active Power Down CKE CKE latency=1 DQM(U/L) A0-9 * X A10 X A11 X 0 BA0,1 DQ Precharge All ACT#0 Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 50 MITSUBISHI LSIs 64M bit Synchronous DRAM PC133 SDRAM (Rev.0.5) Oct. '99 M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) CLK Suspend @BL=4 CL=3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CLK /CS /RAS tRCD /CAS /WE CKE CKE latency=1 CKE latency=1 DQM(U/L) A0-9 * X A10 X A11 X BA0,1 0 Y Y 0 0 D0 DQ ACT#0 D0 D0 D0 WRITE#0 CLK suspended Q0 Q0 Q0 Q0 READ#0 CLK suspended Italic parameter indicates minimum case * A9 (x8) and A8,A9 (x16) for column address of read/write are don't care MITSUBISHI ELECTRIC 51 PC133 SDRAM (Rev.0.5) Oct. '99 64M bit Synchronous DRAM MITSUBISHI LSIs M2V64S20BTP-6 (4-BANK x 4194304-WORD x 4-BIT) M2V64S30BTP-6 (4-BANK x 2097152-WORD x 8-BIT) M2V64S40BTP-6 (4-BANK x 1048576-WORD x 16-BIT) Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable,but there is always the possibility that trouble may occur with them. Trouble with semiconductors consideration to safety when making your circuit designs,with appropriate measures such as (i) placement of substitutive,auxiliary circuits,(ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1.These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application;they do not convey any license under any intellectual property rights,or any other rights,belonging to Mitsubishi Electric Corporation or a third party. 2.Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,originating in the use of any product data,diagrams,charts or circuit application examples contained in these materials. 3.All information contained in these materials,including product data, diagrams and DQM(U/L) charts,represent information on products at the time of publication of these materials,and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric A0-9 * Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. A10 4.Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product A11 distributor when considering the use of a product contained herein for special applications,such as apparatus or systems for transportation, vehicular, medical,aerospace,nuclear,or undersea repeater use. 5.The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. 6.If these products or technologies are subject the Japanese export control restrictions,they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 7.Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor forfor further details on these materials the products contained therein. * A9 product (x8) anddistributor A8,A9 (x16) column address of read/write areordon't care MITSUBISHI ELECTRIC 52