MITSUBISHI M57950L

MITSUBISHI HYBRID ICs
M57950L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
M57950L is a Hybrid Integrated Circuit designed for driving Transistor Modules QM30DY, QM50DY, etc., in an Inverter application. This
device operates as an isolation amplifier for Transistor Modules due
to the electrical isolation between the input and output, and features
a small outline of 10-pin SIP.
OUTLINE DRAWING
Dimensions in mm
29MAX.
20MAX.
DESCRIPTION
APPLICATION
3.0MAX.
● Electrical isolation between input and output with integrated optocoupler.
Viso=2500Vrms
Large load and sink current driving capability
.................................................................. IOL=–1A (MAX)
................................................................ IOLP=–3A (MAX)
● Applicable with TTL input
● Small outline, 10-pin SIP package
4.5±1.5
FEATURES
2.54±0.1
2.54✕9=22.86±0.3
1
10
2.5MAX.
1.8MAX.
0.35±0.2
8.5MAX.
10.0MAX.
BLOCK DIAGRAM
To drive Transistor Modules for Inverter applications
10
9
1
Tr1
8
INTERFACE
7
CIRCUIT
2
Tr2
OPTO-COUPLER
6
5
390Ω
CIRCUIT DIAGRAM
10
9
Tr1
1
PC
8
2
7
Tr2
6
5
Feb.1999
MITSUBISHI HYBRID ICs
M57950L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
ABSOLUTE MAXIMUM RATINGS (Ta=–20 ~ +70°C, unless otherwise noted)
Symbol
VCC
VEE
VI
IOH
IOLP
Viso
Tj
Topg
Tstg
Parameter
Supply voltage
Supply voltage
DC
DC
Input voltage
Between terminals ➀ and ➁
Output current
Isolation voltage
Conditions
Pulse width 10µs, Freq. 2kHz, peak value
Sinewave voltage 60Hz/min. Ta=25°C
Junction temperature
Operating temperature
Storage temperature
Ratings
14
–5
–1 ~ 7
Unit
V
V
V
–1
3
2500
100
–20 ~ +70
A
A
Vrms
°C
°C
–25 ~ +100
°C
ELECTRICAL CHARACTERISTICS (Ta=25°C, VCC=8V, unless otherwise noted)
Symbol
Parameter
Test conditions
Min.
–
–0.8
IIH
“H” input current
VI=5V
IOH
IOLP
“H” output current
“L” output peak current
Internal power dissipation
Rext=9Ω, V=1.6V
Cext=10µF, R2=2Ω
IOH=–0.9A, IOLP=2A, f=2kHz, D.F.=50%
tr
“L-H” propagation delay time
“L-H” rise time
VI=0→4V, Tj=100°C
VI=0→4V, Tj=100°C
tPHL
tf
“H-L” propagation delay time
“H-L” fall time
VI=5→0V, Tj=100°C
–
–
VI=5→0V, Tj=100°C
–
Pd
tPLH
–
–
–
Limits
Typ.
10
–
Max.
–
–
2
0.33
–
–
5
–
10
2
8
–
15
3
Unit
mA
A
A
W
µs
µs
µs
µs
Feb.1999
MITSUBISHI HYBRID ICs
M57950L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
1000
ALLOWABLE POWER DISSIPATION VS.
AMBIENT TEMPERATURE
(MAXIMUM RATING)
800
600
400
200
0
20
0
40
60
80
100
800
600
IOH=–0.9A
FOR QM50DY
400
IOH=–0.45A
FOR QM30DY
200
0
20
0
40
60
80
100
“L” OUTPUT PEAK CURRENT VS.
REVERSE SUPPLY VOLTAGE (TYPICAL)
“L” OUTPUT PEAK CURRENT IOLP (A)
“H” OUTPUT CURRENT IOH (mA)
CONDITION
VCC=10V,VEE=–4V
V1=5V,f=2kHz
VO=1.6V
“H” OUTPUT CURRENT VS.
“H” LIMITING RESISTOR (TYPICAL)
–600
–400
CONDITION
VCC=10V,VEE=–4V
VIN=5V,VO=1.5V
–200
4
0
8
12
“H” LIMITING RESISTOR
16
20
CONDITION
VCC=10V
f=200Hz, D.F.=1%
Ta=25°C
IC=10A
4
3
R2=1Ω
Rext=9Ω
FOR QM50DY
2
R2=3.3Ω
Rext=18Ω
FOR QM30DY
1
0
–2.4
–2.8
–3.2
–3.6
–4.0
–4.4
REVERSE SUPPLY VOLTAGE VEE (V)
REVERSE SUPPLY VOLTAGE VS.
“L” OUTPUT VOLTAGE (TYPICAL)
PROPAGATION DELAY TIME VS.
AMBIENT TEMPERATURE (TYPICAL)
–3.6
CONDITION
VCC=10V,Rext=9Ω
R2=1Ω
load:QM50DY
Ta=25°C
–2.8
–2.4
–2.0
–1.6
–2.4
5
Rext (Ω)
PROPAGATION DELAY TIME
“L”-“H” tPLH (µs) “H”-“L” tPHL (µs)
REVERSE SUPPLY VOLTAGE VEE (V)
1000
“H” DUTY FACTOR D. F. (%)
–800
–3.2
INTERNAL POWER DISSIPATION VS.
“H” DUTY FACTOR (TYPICAL)
AMBIENT TEMPERATURE Ta (°C)
–1000
0
INTERNAL POWER DISSIPATION PD (mW)
ALLOWABLE POWER DISSIPATION
PD (mW)
PERFORMANCE CURVES
–2.8
–3.2
–3.6
–4.0
“L” OUTPUT VOLTAGE VOL (V)
–4.4
20
CONDITION
VCC=10V,VEE=–3V
Rext=9Ω,R2=1Ω
tPLH:VIN=0 4V
tPHL:VIN=5 0V
load:QM50DY
f=200Hz, D.F.=1%
16
12
tPHL
8
4
0
tPLH
0
20
40
60
80
100
AMBIENT TEMPERATURE Ta (°C)
Feb.1999
MITSUBISHI HYBRID ICs
M57950L
PROPAGATION DELAY TIME VS.
“H” INPUT VOLTAGE (TYPICAL)
20
CONDITION
VCC=10V,VEE=–3V
Rext=9Ω,R2=1Ω
load:QM50DY
f=200Hz, D.F.=1%
Ta=100°C
16
12
tPHL
8
4
tPLH
0
3.6
4.0
4.4
4.8
“H” INPUT VOLTAGE
5.2
5.6
PROPAGATION DELAY TIME “L”-“H” tPLH (µs)
“H”-“L” tPHL (µs)
PROPAGATION DELAY TIME “L”-“H” tPLH (µs)
“H”-“L” tPHL (µs)
HYBRID IC FOR DRIVING TRANSISTOR MODULES
AVERAGE LOAD CURRENT IL(AV) (A)
AVERAGE POWER DISSIPATION
OF Rext Rext (W)
CONDITION
VCC=10V,VEE=–4V
VO=1.6V
IOH=–0.9A
FOR QM50DY
4
2
IOH=–0.45A
FOR QM30DY
0
0
20
40
60
CONDITION
VCC=10V,VEE=–3V
Rext=9Ω,R2=1Ω
tPLH:VIN=0 4V
tPHL:VIN=5 0V
load:QM50DY
f=200Hz, D.F.=1%
16
12
tPHL
8
4
tPLH
0
–2.4
–2.8
–3.2
–3.6
–4.0
–4.4
REVERSE SUPPLY VOLTAGE VEE (V)
10
6
20
VIH (V)
POWER DISSIPATION OF Rext VS.
“H” DUTY FACTOR (TYPICAL)
8
PROPAGATION DELAY TIME VS.
REVERSE SUPPLY VOLTAGE (TYPICAL)
80
100
“H” DUTY FACTOR D. F. (%)
OUTPUT CHARACTERISTIC OF FULL WAVE
RECTIFYING CIRCUIT WITH CENTER-TAPPED
TRANSFORMER (FOR REFERENCE)
14
12
RIPPLE AMPLITUDE
10
VO
8
6
4
0
0.2
0.4
0.6
0.8
1.0
OUTPUT VOLTAGE VO (V)
IL
T
C1
VO
T: 8V, 1A✕2 CENTER-TAPPED TRANSFORMER
C1: 4700µF, C2: 470µF
C2
ZD
150Ω
Feb.1999
MITSUBISHI HYBRID ICs
M57950L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
EXPLANATION OF FUNCTION
(cf. Fig. 2, 3, 4, and 5)
(3) With low input level (Vin=0 ~ 1V)
Tr1 ...... OFF, Tr2 ...... ON
The base terminal of transistor module is reverse biased as
stated in (1) after flowing reverse recovery pulse current IOLP. The
steady reverse base current is limited by the internal base-emitter resistor RBE of the transistor module.
(1) With low input level (Vin=0 ~ 1V)
Tr1 ...... OFF, Tr2 ...... ON
The base terminal of transistor module is reverse biased with respect to its emitter by reverse power supply VEE.
(2) With high input level (Vin=4 ~ 5V)
Tr1 ...... ON, Tr2 ...... OFF
The base terminal of transistor module is forward biased and
drived by the current IOH through the resistor Rext.
M57950L Typical application circuit
1/2QM50DY etc.
LOAD
IC
+5V
1
DRIVER
TTL etc.
IO
M57950L
SINK
10mA
2
3
4
5
6
7
VO
8
+
C1
R2
Rext
+
VIN
VCC
Cext
+
INPUT
VEE
50/60HZ
AC
C2
ZD
R1
M57950L Typical operating waveform
VIN
0
–IO
0
VO
0
VI
t
IOH(IB1)
t
IOLP(IB2)
VOH
t
VOL
Note: IOH and IOLP correspond to base forward current IB1
and base reverse current IB2 of the transistor module
to be driven respectively.
Feb.1999