MITSUBISHI HYBRID ICs M57950L HYBRID IC FOR DRIVING TRANSISTOR MODULES M57950L is a Hybrid Integrated Circuit designed for driving Transistor Modules QM30DY, QM50DY, etc., in an Inverter application. This device operates as an isolation amplifier for Transistor Modules due to the electrical isolation between the input and output, and features a small outline of 10-pin SIP. OUTLINE DRAWING Dimensions in mm 29MAX. 20MAX. DESCRIPTION APPLICATION 3.0MAX. ● Electrical isolation between input and output with integrated optocoupler. Viso=2500Vrms Large load and sink current driving capability .................................................................. IOL=–1A (MAX) ................................................................ IOLP=–3A (MAX) ● Applicable with TTL input ● Small outline, 10-pin SIP package 4.5±1.5 FEATURES 2.54±0.1 2.54✕9=22.86±0.3 1 10 2.5MAX. 1.8MAX. 0.35±0.2 8.5MAX. 10.0MAX. BLOCK DIAGRAM To drive Transistor Modules for Inverter applications 10 9 1 Tr1 8 INTERFACE 7 CIRCUIT 2 Tr2 OPTO-COUPLER 6 5 390Ω CIRCUIT DIAGRAM 10 9 Tr1 1 PC 8 2 7 Tr2 6 5 Feb.1999 MITSUBISHI HYBRID ICs M57950L HYBRID IC FOR DRIVING TRANSISTOR MODULES ABSOLUTE MAXIMUM RATINGS (Ta=–20 ~ +70°C, unless otherwise noted) Symbol VCC VEE VI IOH IOLP Viso Tj Topg Tstg Parameter Supply voltage Supply voltage DC DC Input voltage Between terminals ➀ and ➁ Output current Isolation voltage Conditions Pulse width 10µs, Freq. 2kHz, peak value Sinewave voltage 60Hz/min. Ta=25°C Junction temperature Operating temperature Storage temperature Ratings 14 –5 –1 ~ 7 Unit V V V –1 3 2500 100 –20 ~ +70 A A Vrms °C °C –25 ~ +100 °C ELECTRICAL CHARACTERISTICS (Ta=25°C, VCC=8V, unless otherwise noted) Symbol Parameter Test conditions Min. – –0.8 IIH “H” input current VI=5V IOH IOLP “H” output current “L” output peak current Internal power dissipation Rext=9Ω, V=1.6V Cext=10µF, R2=2Ω IOH=–0.9A, IOLP=2A, f=2kHz, D.F.=50% tr “L-H” propagation delay time “L-H” rise time VI=0→4V, Tj=100°C VI=0→4V, Tj=100°C tPHL tf “H-L” propagation delay time “H-L” fall time VI=5→0V, Tj=100°C – – VI=5→0V, Tj=100°C – Pd tPLH – – – Limits Typ. 10 – Max. – – 2 0.33 – – 5 – 10 2 8 – 15 3 Unit mA A A W µs µs µs µs Feb.1999 MITSUBISHI HYBRID ICs M57950L HYBRID IC FOR DRIVING TRANSISTOR MODULES 1000 ALLOWABLE POWER DISSIPATION VS. AMBIENT TEMPERATURE (MAXIMUM RATING) 800 600 400 200 0 20 0 40 60 80 100 800 600 IOH=–0.9A FOR QM50DY 400 IOH=–0.45A FOR QM30DY 200 0 20 0 40 60 80 100 “L” OUTPUT PEAK CURRENT VS. REVERSE SUPPLY VOLTAGE (TYPICAL) “L” OUTPUT PEAK CURRENT IOLP (A) “H” OUTPUT CURRENT IOH (mA) CONDITION VCC=10V,VEE=–4V V1=5V,f=2kHz VO=1.6V “H” OUTPUT CURRENT VS. “H” LIMITING RESISTOR (TYPICAL) –600 –400 CONDITION VCC=10V,VEE=–4V VIN=5V,VO=1.5V –200 4 0 8 12 “H” LIMITING RESISTOR 16 20 CONDITION VCC=10V f=200Hz, D.F.=1% Ta=25°C IC=10A 4 3 R2=1Ω Rext=9Ω FOR QM50DY 2 R2=3.3Ω Rext=18Ω FOR QM30DY 1 0 –2.4 –2.8 –3.2 –3.6 –4.0 –4.4 REVERSE SUPPLY VOLTAGE VEE (V) REVERSE SUPPLY VOLTAGE VS. “L” OUTPUT VOLTAGE (TYPICAL) PROPAGATION DELAY TIME VS. AMBIENT TEMPERATURE (TYPICAL) –3.6 CONDITION VCC=10V,Rext=9Ω R2=1Ω load:QM50DY Ta=25°C –2.8 –2.4 –2.0 –1.6 –2.4 5 Rext (Ω) PROPAGATION DELAY TIME “L”-“H” tPLH (µs) “H”-“L” tPHL (µs) REVERSE SUPPLY VOLTAGE VEE (V) 1000 “H” DUTY FACTOR D. F. (%) –800 –3.2 INTERNAL POWER DISSIPATION VS. “H” DUTY FACTOR (TYPICAL) AMBIENT TEMPERATURE Ta (°C) –1000 0 INTERNAL POWER DISSIPATION PD (mW) ALLOWABLE POWER DISSIPATION PD (mW) PERFORMANCE CURVES –2.8 –3.2 –3.6 –4.0 “L” OUTPUT VOLTAGE VOL (V) –4.4 20 CONDITION VCC=10V,VEE=–3V Rext=9Ω,R2=1Ω tPLH:VIN=0 4V tPHL:VIN=5 0V load:QM50DY f=200Hz, D.F.=1% 16 12 tPHL 8 4 0 tPLH 0 20 40 60 80 100 AMBIENT TEMPERATURE Ta (°C) Feb.1999 MITSUBISHI HYBRID ICs M57950L PROPAGATION DELAY TIME VS. “H” INPUT VOLTAGE (TYPICAL) 20 CONDITION VCC=10V,VEE=–3V Rext=9Ω,R2=1Ω load:QM50DY f=200Hz, D.F.=1% Ta=100°C 16 12 tPHL 8 4 tPLH 0 3.6 4.0 4.4 4.8 “H” INPUT VOLTAGE 5.2 5.6 PROPAGATION DELAY TIME “L”-“H” tPLH (µs) “H”-“L” tPHL (µs) PROPAGATION DELAY TIME “L”-“H” tPLH (µs) “H”-“L” tPHL (µs) HYBRID IC FOR DRIVING TRANSISTOR MODULES AVERAGE LOAD CURRENT IL(AV) (A) AVERAGE POWER DISSIPATION OF Rext Rext (W) CONDITION VCC=10V,VEE=–4V VO=1.6V IOH=–0.9A FOR QM50DY 4 2 IOH=–0.45A FOR QM30DY 0 0 20 40 60 CONDITION VCC=10V,VEE=–3V Rext=9Ω,R2=1Ω tPLH:VIN=0 4V tPHL:VIN=5 0V load:QM50DY f=200Hz, D.F.=1% 16 12 tPHL 8 4 tPLH 0 –2.4 –2.8 –3.2 –3.6 –4.0 –4.4 REVERSE SUPPLY VOLTAGE VEE (V) 10 6 20 VIH (V) POWER DISSIPATION OF Rext VS. “H” DUTY FACTOR (TYPICAL) 8 PROPAGATION DELAY TIME VS. REVERSE SUPPLY VOLTAGE (TYPICAL) 80 100 “H” DUTY FACTOR D. F. (%) OUTPUT CHARACTERISTIC OF FULL WAVE RECTIFYING CIRCUIT WITH CENTER-TAPPED TRANSFORMER (FOR REFERENCE) 14 12 RIPPLE AMPLITUDE 10 VO 8 6 4 0 0.2 0.4 0.6 0.8 1.0 OUTPUT VOLTAGE VO (V) IL T C1 VO T: 8V, 1A✕2 CENTER-TAPPED TRANSFORMER C1: 4700µF, C2: 470µF C2 ZD 150Ω Feb.1999 MITSUBISHI HYBRID ICs M57950L HYBRID IC FOR DRIVING TRANSISTOR MODULES EXPLANATION OF FUNCTION (cf. Fig. 2, 3, 4, and 5) (3) With low input level (Vin=0 ~ 1V) Tr1 ...... OFF, Tr2 ...... ON The base terminal of transistor module is reverse biased as stated in (1) after flowing reverse recovery pulse current IOLP. The steady reverse base current is limited by the internal base-emitter resistor RBE of the transistor module. (1) With low input level (Vin=0 ~ 1V) Tr1 ...... OFF, Tr2 ...... ON The base terminal of transistor module is reverse biased with respect to its emitter by reverse power supply VEE. (2) With high input level (Vin=4 ~ 5V) Tr1 ...... ON, Tr2 ...... OFF The base terminal of transistor module is forward biased and drived by the current IOH through the resistor Rext. M57950L Typical application circuit 1/2QM50DY etc. LOAD IC +5V 1 DRIVER TTL etc. IO M57950L SINK 10mA 2 3 4 5 6 7 VO 8 + C1 R2 Rext + VIN VCC Cext + INPUT VEE 50/60HZ AC C2 ZD R1 M57950L Typical operating waveform VIN 0 –IO 0 VO 0 VI t IOH(IB1) t IOLP(IB2) VOH t VOL Note: IOH and IOLP correspond to base forward current IB1 and base reverse current IB2 of the transistor module to be driven respectively. Feb.1999