H Power Bipolar Transistor Base Drive Optocoupler Technical Data HCPL-3000 Features Description • High Output Current IO2 (2.0 A Peak, 0.6 A Continuous) IO1 (1.0 A Peak, 0.5 A Continuous) • 1.5 kV/ µs Minimum Common Mode Rejection (CMR) at VCM = 600 V • Wide VCC Range (5.4 to 13 Volts) • 2 µs Typical Propagation Delay • Recognized under UL 1577 for Dielectric Withstand Proof Test Voltage of 5000 Vac, 1 Minute The HCPL-3000 consists of a Silicon-doped GaAs LED optically coupled to an integrated circuit with a power output stage. This optocoupler is suited for driving power bipolar transistors and power Darlington devices used in motor control inverter applications. The high peak and steady state current capabilities of the output stage allow for direct interfacing to the power device without the need for an intermediate amplifier stage. With a CMR The LED controls the state of the output stage. Transistor Q2 in the output stage is on with the LED off, allowing the base of the power device to be held low. Turning on the LED turns off transistor Q2 and switches on transistor Q1 in the output stage which provides current to drive the base of a power bipolar device. Functional Diagram Applications • Isolated Bipolar Transistor Base Drive • AC and DC Motor Drives • General Purpose Industrial Inverters • Uninterruptable Power Supply rating of 1.5 kV/µs this optocoupler readily rejects transients found in inverter applications. HCPL-3000 ANODE 1 8 VCC CATHODE 2 7 GND 6 V O2 5 V O1 Q2 3 TRUTH TABLE LED OUTPUT ON HIGH LEVEL OFF LOW LEVEL Q1 ON OFF Q2 OFF ON Q1 4 THE USE OF A 0.1µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO, CURRENT LIMITING RESISTORS ARE RECOMMENDED (SEE FIGURE 1, NOTE 2, AND NOTE 7). CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. 5965-3584E 1-329 Schematic I CC 8 1 ANODE CATHODE IF V CC GND + 7 Q2 I O2 - 6 Q1 2 IO1 5 VO2 VO1 Outline Drawing 0.65 (0.026) 1.05 (0.041) 8 0.90 (0.035) 1.50 (0.059) 7 6 0° 13° 5 TYPE NUMBER HP DATE CODE 0.16 (0.006) 0.36 (0.014) XXXX 6.00 (0.236) 7.00 (0.276) YYWW 7.32 (0.288) 7.92 (0.312) 0° 13° 1 2 3 4 HCPL-3000 ANODE 1 CATHODE 2 8 VCC 7 GND 6 V O2 5 V O1 9.16 (0.361) 10.16 (0.400) 0.50 (0.020) TYP 3.00 (0.118) 4.00 (0.157) Q2 3 Q1 2.90 (0.114) 3.90 (0.154) 2.55 (0.100) 3.55 (0.140) 4 0.40 (0.016) 0.60 (0.024) 2.29 (0.090) 2.79 (0.110) Regulatory Information The HCPL-3000 has been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361. 1-330 Demonstrated ESD Performance Human Body Model: MIL-STD883 Method 3015.7: Class 2 Machine Model: EIAJ IC-1211988 (1988.3.28 Version 2), Test Method 20, Condition C: 1200 V Insulation and Safety Related Specifications Parameter Symbol Value Units Conditions Min. External Air Gap (External Clearance) L(IO1) 6.0 mm Shortest distance measured through air, between two conductive leads, input to output Min. External Tracking Path (External Creepage) L(IO2) 6.0 mm Shortest distance path measured along outside surface of optocoupler body between the input and output leads 0.15 mm Through insulation distance conductor to conductor inside the optocoupler cavity Symbol Min. Max. Unit Storage Temperature TS -55 125 °C Operating Temperature TA -20 80 °C Input Continuous Current IF 25 mA Reverse Voltage VR 6 V Supply Voltage VCC 18 V Output 1 Continuous Current IO1 0.5 A 1.0 A VO1 18 V IO2 0.6 A 2.0 A Min. Internal Plastic Gap (Internal Clearance) Absolute Maximum Ratings Parameter Peak Current Voltage Output 2 Continuous Current Peak Current Conditions Fig. Note 9 1 10,11 1 TA = 25°C Pulse Width < 5 µs, Duty cycle = 1% Pulse Width < 5 µs, Duty cycle = 1% 1 10,11,12 1 12 1 Output Power Dissipation PO 500 mW 10 1 Total Power Dissipation PT 550 mW 11 1 Lead Solder Temperature 260°C for 10 s, 1.0 mm below seating plane Recommended Operating Conditions Parameter Symbol Min. Max. Units VCC 5.4 13 V Input Current (ON) IF(ON) 8* 20 mA Input Current (OFF) IF(OFF) - 0.2 mA TA -20 80 °C Power Supply Voltage Operating Temperature *The initial switching threshold is 5 mA or less. Recommended Protection for Output Transistors During switching transitions, the output transistors Q1 and Q2 of the HCPL-3000 can conduct large amounts of current. Figure 1 describes a recommended circuit design showing current limiting resistors R1 and R2 which are necessary in order to prevent damage to the output transistors Q1 and Q2 (see Note 7). A bypass capacitor C1 is also recommended to reduce power supply noise. 1-331 HCPL-3000 +5 V 8 240 Ω CONTROL INPUT + 13 V) POWER TRANSISTOR MODULE Q2 + HVDC I O1 6 TTL OR LSTTL VCC (+ 5.4 V C1 7 1 R2 2 5 Q1 R1 1 TOTEM POLE OUTPUT GATE 3-PHASE AC R1 = 5 - 250 Ω R2 = 1 - 2 Ω BYPASS CAPACITOR C1 = 0.1 µF - HVDC Figure 1. Recommended Output Transistor Protection and Typical Application Circuit. Electrical Specifications Over recommended temperature (TA = -20°C to +80°C) unless otherwise specified. Parameter Sym. Input Forward Voltage VF Min. Typ. Max. Units 1.1 0.9 30 1.4 10 250 V V µA pF Test Conditions Fig. Input Reverse Current Input Capacitance IR CIN 0.6 - Output 1 VO1L - 0.2 0.4 V IO1L - - 200 µA VO2H 4.5 5.0 - V VO2L - 0.2 0.4 V IO2L - - 200 µA ICCH - 9 13 mA IF = 5 mA, TA = 25°C 13 IF = 0.2 mA, TA = 25°C VR = 3 V, TA = 25°C VF = 0 V, f = 1 kHz, TA = 25°C VCC = 6 V, IO1 = 0.4 A, 2, 16, 17 RL2 = 10 Ω, IF = 5 mA VCC = VO1 = 13 V, VO2 = 0 V, 4 IF = 0 mA VCC = 6 V, IO2 = -0.4 A 3, 18, IF = 5 mA, VO1 = 6 V 19 VCC = 6 V, IO2 = 0.5 A, 20, IF = 0 mA 21 VCC = 13 V, IF = 5 mA, 5 VO2 = 13 V TA = 25°C 22 ICCL - 11 17 15 mA VCC = 6 V, IF = 5 mA TA = 25°C - - 20 IFLH 0.3 1.5 3.0 mA TA = 25°C 0.2 - 5.0 mA VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω Output 2 Supply Current Low Level Voltage Leakage Current High Level Voltage Low Level Voltage Leakage Current High Level Low Level Low to High Threshold Input Current 1-332 Note 2 2 2 23 VCC = 6 V, IF = 0 mA 6, 14, 15 3 Switching Specifications (TA = 25°C) Parameter Sym. Min. Propagation Delay tPLH Time to High Output Level Propagation Delay Time tPHL to Low Output Level Rise Time tr Fall Time tf Output High Level |CMH| 1500 Common Mode Transient Immunity Output Low Level Common Mode Transient Immunity |CML| 1500 Typ. 2 Max. 5 Units µs Test Conditions VCC = 6 V, IF = 5 mA, RL1 = 5 Ω, RL2 = 10 Ω 2 5 0.2 0.1 - 1 1 - V/µs VCM = 600 V Peak, IF = 5mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02H = 0.5 V - - V/µs VCM = 600 V Peak, IF = 0 mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02L = 0.5 V Max. Units V rms – Ω – pF Test Conditions RH = 40% to 60%, t = 1 min., TA = 25°C VI-O = 500 V, TA = 25°C, RH = 40% to 60% f = 1 MHz Fig. 7, 24, 25 Note 2, 6 8 2 Package Characteristics Parameter Sym. Min. Typ. Input-Output Momentary VISO 5000 Withstand Voltage* Resistance RI-O 5x1010 1011 (Input-Output) Capacitance CI-O – 1.2 (Input-Output) Fig. Note 4, 5 4 4 *The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.” Notes: 1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 9, 10, and 11. 2. A bypass capacitor of 0.01 µF or more is needed near the device between VCC and GND when measuring output and transfer characteristics. 3. IFLH represents the forward current when the output goes from low to high. 4. Device considered a two terminal device; pins 1-4 are shorted together and pin 5-8 are shorted together. 5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL1577, each optocoupler is proof-tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage current detection limit, II-O ≤ 200 µA). 6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse. 7. R1 sets the base current (IO1 in Figure 1) supplied to the power bipolar device. R2 limits the peak current seen by Q2 when the device is turning off. For more applications and circuit design information see Application Note “Power Transistor Gate/Base Drive Optocouplers.” 1-333 HCPL-3000 HCPL-3000 VCC 1 8 IF + - VCC GND 2 Q1 4 + V CC GND 2 R L2 6 I O1 3 Q1 4 I O2 + VO2 5 VO1 V O1 Figure 3. Test Circuit for High Level Output Voltage VO2H. Figure 2. Test Circuit for Low Level Output Voltage VO1L. HCPL-3000 HCPL-3000 VCC 1 8 VCC +- GND VCC 1 IF 2 – VO2H 6 VO1L + 5 7 Q2 – V O2 8 IF 7 Q2 3 V CC 1 V CC + - 7 2 6 3 GND Q2 3 Q1 4 8 IF 7 Q2 V O2 Q1 I O1L 5 I O2L 6 4 V O2 5 VO1 VO1 Figure 4. Test Circuit for Leakage Current IO1L. Figure 5. Test Circuit for Leakage Current IO2L. HCPL-3000 IF V IN VCC 1 tr = t f = 0.01µs Z o = 50 Ω + V CC GND 2 HCPL-3000 IF SWEEP 1 V CC GND 47 Ω 8 7 – R L2 Q2 3 3 – VO2 R L2 + 6 Q1 V O2 4 5 R L1 VO1 VO2 + 6 Q1 4 7 Q2 + V CC 2 8 VO2 5 R L1 V O1 50% V IN WAVE FORM t PLH t PHL Figure 6. Test Circuit for Threshold Input Current IFLH. 90% 50% V 02 WAVE FORM 10% tr tf Figure 7. Test Circuit for tPLH, tPHL, tr and tf. 1-334 HCPL-3000 IF V CC 1 VCC + - R L1 SW GND 2 A 8 7 Q2 B 3 – VO2 + RL2 6 Q1 V O2 4 5 VO1 + – 30 V CM LED FORWARD CURRENT I F (mA) V CM V CM GND CM H , V O2 SW AT A, IF = 5 mA V O2H ∆ V O2H ∆ VO2L CM L , VO2 15 10 5 GND 0 25 50 10.0 600 300 200 100 0 25 50 75 80 100 AMBIENT TEMPERATURE TA (°C) Figure 10. Maximum IC Output Power Dissipation vs. Ambient Temperature. 550 PEAK OUTPUT 2 CURRENT I 02P (A) TOTAL POWER DISSIPATION Ptot (mW) (LED AND IC) 400 100 Figure 9. LED Forward Current vs. Ambient Temperature. 600 500 75 80 AMBIENT TEMPERATURE T A (°C) Figure 8. Test Circuit for CMH and CML. IC OUTPUT POWER DISSIPATION Po (mW) 20 0 -20 VO2L SW AT B, I F = 0 mA 0 -20 25 500 400 300 200 100 0 -20 0 25 50 75 80 100 AMBIENT TEMPERATURE TA (°C) Figure 11. Maximum Total Power Dissipation vs. Ambient Temperature. • SINGLE OSC. PULSE 5.0 2.0 TA = 25°C I 02 MAX (PULSE) 100 ms• 10 ms• 1 ms• 1.0 I 02 MAX (CONTINUOUS) 0.5 0.2 0.1 0.2 IS • DC DC (TA = 80°C) VCC (MAX) 0.5 1.0 2.0 5.0 10.0 20.0 OUTPUT 2 VOLTAGE V02 (V) Figure 12. Typical Peak Output 2 Current vs. Output 2 Voltage (Safe Operating Area Q2). 1-335 TA = 75°C 50°C 25°C 0°C -20°C 50 20 10 5 2 1 0 0.5 1.0 1.5 2.0 2.5 3.5 3.0 1.1 1.0 0.9 0.8 0.7 4 6 FORWARD VOLTAGE VF (V) LOW LEVEL OUTPUT 1 VOLTAGE V01L (V) LOW LEVEL OUTPUT 1 VOLTAGE V01L (V) R L2 = 10 Ω TA = 25°C I F = 5 mA 0.05 0.02 0.01 0.005 0.02 0.05 0.1 0.2 0.5 1.0 -0.4 A 5.0 -0.5 A 4.9 0 25 50 75 100 AMBIENT TEMPERATURE TA (°C) Figure 19. Typical High Level Output 2 Voltage vs. Ambient Temperature. 1-336 0.6 -25 0 25 50 75 100 Figure 15. Normalized Low to High Threshold Input Current vs. Ambient Temperature. R L2 = 10 Ω 0.4 I F = 5 mA 0.3 I 01 = 0.5 A 0.4 A 0.2 0.1 0.1 A 0 -25 VCC = 6 V TA = 25°C IF = 5 mA 5.3 5.2 5.1 5.0 4.9 4.8 0 25 50 75 0 100 0.2 TA = 25°C I F = 0 mA 0.05 0.02 0.01 0.005 0.02 -0.2 -0.3 -0.4 -0.5 -0.6 Figure 18. Typical High Level Output 2 Voltage vs. Output 2 Current. 0.5 VCC = 6 V 0.1 0.01 -0.1 OUTPUT 2 CURRENT I 02 (A) Figure 17. Typical Low Level Output 1 Voltage vs. Ambient Temperature. LOW LEVEL OUTPUT 2 VOLTAGE V02L (V) HIGH LEVEL OUTPUT 2 VOLTAGE V02H (V) I O2 = -0.1 A 5.1 4.8 -25 0.8 5.4 0.4 VCC = 6 V I F = 5 mA 5.2 1.0 AMBIENT TEMPERATURE TA (°C) Figure 16. Typical Low Level Output 1 Voltage vs. Output 1 Current. 5.3 1.2 AMBIENT TEMPERATURE TA (°C) VCC = 6 V OUTPUT 1 CURRENT I01 (A) 5.4 VCC = 6 V 1.4 14 0.5 VCC = 6 V 0.01 12 Figure 14. Normalized Low to High Threshold Input Current vs. Supply Voltage. 0.4 0.1 10 1.6 SUPPLY VOLTAGE VCC (V) Figure 13. Typical Forward Current vs. Forward Voltage. 0.2 8 HIGH LEVEL OUTPUT 2 VOLTAGE V02L(V) 100 TA = 25°C LOW LEVEL OUTPUT 2 VOLTAGE V02L (V) 200 1.2 NORMALIZED THRESHOLD INPUT CURRENT NORMALIZED THRESHOLD INPUT CURRENT FORWARD CURRENT IF (mA) 500 0.05 0.1 0.2 0.5 1.0 OUTPUT 2 CURRENT I 02 (A) Figure 20. Typical Low Level Output 2 Voltage vs. Output 2 Current. VCC = 6 V I F = 0 mA 0.4 0.3 I O2 = 0.6 A 0.5 A 0.2 0.1 0.1 A 0 -25 0 25 50 75 100 AMBIENT TEMPERATURE TA (°C) Figure 21. Typical Low Level Output 2 Voltage vs. Ambient Temperature. I F = 5 mA TA = -20°C 12 10 25°C 8 80°C 6 4 I F = 0 mA TA = -20°C 14 12 25°C 10 80°C 8 6 4 6 8 10 12 14 4 6 8 10 12 14 SUPPLY VOLTAGE VCC (V) SUPPLY VOLTAGE VCC (V) Figure 22. Typical High Level Supply Current vs. Supply Voltage. PROPAGATION DELAY TIME t PHL , t PLH (µs) PROPAGATION DELAY TIME t PHL, t PLH (µs) 16 LOW LEVEL SUPPLY CURRENT ICCL (mA) HIGH LEVEL SUPPLY CURRENT I CCH (mA) 14 Figure 23. Typical Low Level Supply Current vs. Supply Voltage. 6 VCC = 6 V R L1 = 5 Ω 5 R L2 = 10 Ω I F = 5 mA 4 TA = 80°C t PHL 3 25°C -20°C 2 t PLH 1 TA = 80°C 0 0 5 10 -20°C 25°C 15 20 25 FORWARD CURRENT I F (mA) Figure 24. Typical Propagation Delay Time vs. Forward Current. 5 VCC = 6 V R L1 = 5 Ω R L2 = 10 Ω I F = 5 mA 4 3 t PLH 2 t PHL 1 0 -25 0 25 50 75 100 AMBIENT TEMPERATURE TA (°C) Figure 25. Typical Propagation Delay Time vs. Ambient Temperature. 1-337