AGILENT HCPL3000

H
Power Bipolar Transistor
Base Drive Optocoupler
Technical Data
HCPL-3000
Features
Description
• High Output Current
IO2 (2.0 A Peak, 0.6 A
Continuous)
IO1 (1.0 A Peak, 0.5 A
Continuous)
• 1.5 kV/ µs Minimum Common
Mode Rejection (CMR) at
VCM = 600 V
• Wide VCC Range (5.4 to 13
Volts)
• 2 µs Typical Propagation
Delay
• Recognized under UL 1577
for Dielectric Withstand
Proof Test Voltage of 5000
Vac, 1 Minute
The HCPL-3000 consists of a
Silicon-doped GaAs LED optically
coupled to an integrated circuit
with a power output stage. This
optocoupler is suited for driving
power bipolar transistors and
power Darlington devices used in
motor control inverter applications. The high peak and steady
state current capabilities of the
output stage allow for direct
interfacing to the power device
without the need for an intermediate amplifier stage. With a CMR
The LED controls the state of the
output stage. Transistor Q2 in the
output stage is on with the LED
off, allowing the base of the
power device to be held low.
Turning on the LED turns off
transistor Q2 and switches on
transistor Q1 in the output stage
which provides current to drive
the base of a power bipolar
device.
Functional Diagram
Applications
• Isolated Bipolar Transistor
Base Drive
• AC and DC Motor Drives
• General Purpose Industrial
Inverters
• Uninterruptable Power
Supply
rating of 1.5 kV/µs this optocoupler readily rejects transients found
in inverter applications.
HCPL-3000
ANODE
1
8
VCC
CATHODE
2
7
GND
6
V O2
5
V O1
Q2
3
TRUTH TABLE
LED
OUTPUT
ON
HIGH LEVEL
OFF
LOW LEVEL
Q1
ON
OFF
Q2
OFF
ON
Q1
4
THE USE OF A 0.1µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO, CURRENT LIMITING
RESISTORS ARE RECOMMENDED (SEE FIGURE 1, NOTE 2, AND NOTE 7).
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
5965-3584E
1-329
Schematic
I CC
8
1
ANODE
CATHODE
IF
V CC
GND
+
7
Q2
I O2
-
6
Q1
2
IO1
5
VO2
VO1
Outline Drawing
0.65 (0.026)
1.05 (0.041)
8
0.90 (0.035)
1.50 (0.059)
7
6
0°
13°
5
TYPE
NUMBER
HP
DATE
CODE
0.16 (0.006)
0.36 (0.014)
XXXX
6.00 (0.236)
7.00 (0.276)
YYWW
7.32 (0.288)
7.92 (0.312)
0°
13°
1
2
3
4
HCPL-3000
ANODE
1
CATHODE
2
8
VCC
7
GND
6
V O2
5
V O1
9.16 (0.361)
10.16 (0.400)
0.50
(0.020)
TYP
3.00 (0.118)
4.00 (0.157)
Q2
3
Q1
2.90 (0.114)
3.90 (0.154)
2.55 (0.100)
3.55 (0.140)
4
0.40 (0.016)
0.60 (0.024)
2.29 (0.090)
2.79 (0.110)
Regulatory Information
The HCPL-3000 has been
approved by the following
organizations:
UL
Recognized under UL 1577,
Component Recognition Program,
File E55361.
1-330
Demonstrated ESD
Performance
Human Body Model: MIL-STD883 Method 3015.7: Class 2
Machine Model: EIAJ IC-1211988 (1988.3.28 Version 2),
Test Method 20, Condition C:
1200 V
Insulation and Safety Related Specifications
Parameter
Symbol Value Units
Conditions
Min. External Air Gap
(External Clearance)
L(IO1)
6.0
mm
Shortest distance measured through air, between
two conductive leads, input to output
Min. External Tracking
Path (External Creepage)
L(IO2)
6.0
mm
Shortest distance path measured along outside surface
of optocoupler body between the input and output leads
0.15
mm
Through insulation distance conductor to conductor
inside the optocoupler cavity
Symbol
Min.
Max.
Unit
Storage Temperature
TS
-55
125
°C
Operating Temperature
TA
-20
80
°C
Input
Continuous Current
IF
25
mA
Reverse Voltage
VR
6
V
Supply Voltage
VCC
18
V
Output 1 Continuous Current
IO1
0.5
A
1.0
A
VO1
18
V
IO2
0.6
A
2.0
A
Min. Internal Plastic
Gap (Internal Clearance)
Absolute Maximum Ratings
Parameter
Peak Current
Voltage
Output 2 Continuous Current
Peak Current
Conditions
Fig.
Note
9
1
10,11
1
TA = 25°C
Pulse Width < 5 µs,
Duty cycle = 1%
Pulse Width < 5 µs,
Duty cycle = 1%
1
10,11,12
1
12
1
Output Power Dissipation
PO
500
mW
10
1
Total Power Dissipation
PT
550
mW
11
1
Lead Solder Temperature
260°C for 10 s, 1.0 mm below seating plane
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Units
VCC
5.4
13
V
Input Current (ON)
IF(ON)
8*
20
mA
Input Current (OFF)
IF(OFF)
-
0.2
mA
TA
-20
80
°C
Power Supply Voltage
Operating Temperature
*The initial switching threshold is 5 mA or less.
Recommended Protection
for Output Transistors
During switching transitions, the
output transistors Q1 and Q2 of
the HCPL-3000 can conduct large
amounts of current. Figure 1
describes a recommended circuit
design showing current limiting
resistors R1 and R2 which are
necessary in order to prevent
damage to the output transistors
Q1 and Q2 (see Note 7). A bypass
capacitor C1 is also recommended
to reduce power supply noise.
1-331
HCPL-3000
+5 V
8
240 Ω
CONTROL
INPUT
+ 13 V)
POWER TRANSISTOR
MODULE
Q2
+ HVDC
I O1
6
TTL
OR
LSTTL
VCC (+ 5.4 V
C1
7
1
R2
2
5
Q1
R1
1
TOTEM
POLE
OUTPUT
GATE
3-PHASE
AC
R1 = 5 - 250 Ω
R2 = 1 - 2 Ω
BYPASS CAPACITOR C1 = 0.1 µF
- HVDC
Figure 1. Recommended Output Transistor Protection and Typical Application Circuit.
Electrical Specifications
Over recommended temperature (TA = -20°C to +80°C) unless otherwise specified.
Parameter
Sym.
Input Forward Voltage
VF
Min.
Typ.
Max. Units
1.1
0.9
30
1.4
10
250
V
V
µA
pF
Test Conditions
Fig.
Input Reverse Current
Input Capacitance
IR
CIN
0.6
-
Output 1
VO1L
-
0.2
0.4
V
IO1L
-
-
200
µA
VO2H
4.5
5.0
-
V
VO2L
-
0.2
0.4
V
IO2L
-
-
200
µA
ICCH
-
9
13
mA
IF = 5 mA, TA = 25°C
13
IF = 0.2 mA, TA = 25°C
VR = 3 V, TA = 25°C
VF = 0 V, f = 1 kHz,
TA = 25°C
VCC = 6 V, IO1 = 0.4 A,
2, 16,
17
RL2 = 10 Ω, IF = 5 mA
VCC = VO1 = 13 V, VO2 = 0 V,
4
IF = 0 mA
VCC = 6 V, IO2 = -0.4 A
3, 18,
IF = 5 mA, VO1 = 6 V
19
VCC = 6 V, IO2 = 0.5 A,
20,
IF = 0 mA
21
VCC = 13 V, IF = 5 mA,
5
VO2 = 13 V
TA = 25°C
22
ICCL
-
11
17
15
mA
VCC = 6 V, IF = 5 mA
TA = 25°C
-
-
20
IFLH
0.3
1.5
3.0
mA
TA = 25°C
0.2
-
5.0
mA
VCC = 6 V, RL1 = 5 Ω,
RL2 = 10 Ω
Output 2
Supply
Current
Low Level
Voltage
Leakage
Current
High Level
Voltage
Low Level
Voltage
Leakage
Current
High Level
Low Level
Low to High
Threshold Input
Current
1-332
Note
2
2
2
23
VCC = 6 V, IF = 0 mA
6, 14,
15
3
Switching Specifications (TA = 25°C)
Parameter
Sym. Min.
Propagation Delay
tPLH
Time to High Output
Level
Propagation Delay Time tPHL
to Low Output Level
Rise Time
tr
Fall Time
tf
Output High Level
|CMH| 1500
Common Mode
Transient Immunity
Output Low Level
Common Mode
Transient Immunity
|CML| 1500
Typ.
2
Max.
5
Units
µs
Test Conditions
VCC = 6 V, IF = 5 mA,
RL1 = 5 Ω, RL2 = 10 Ω
2
5
0.2
0.1
-
1
1
-
V/µs
VCM = 600 V Peak,
IF = 5mA, RL1 = 470 Ω,
RL2 = 1 kΩ, ∆V02H = 0.5 V
-
-
V/µs
VCM = 600 V Peak,
IF = 0 mA, RL1 = 470 Ω,
RL2 = 1 kΩ, ∆V02L = 0.5 V
Max.
Units
V rms
–
Ω
–
pF
Test Conditions
RH = 40% to 60%,
t = 1 min., TA = 25°C
VI-O = 500 V, TA = 25°C,
RH = 40% to 60%
f = 1 MHz
Fig.
7,
24,
25
Note
2, 6
8
2
Package Characteristics
Parameter
Sym. Min. Typ.
Input-Output Momentary VISO
5000
Withstand Voltage*
Resistance
RI-O 5x1010 1011
(Input-Output)
Capacitance
CI-O
–
1.2
(Input-Output)
Fig.
Note
4, 5
4
4
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your
equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”
Notes:
1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 9, 10, and 11.
2. A bypass capacitor of 0.01 µF or more is needed near the device between VCC and GND when measuring output and transfer
characteristics.
3. IFLH represents the forward current when the output goes from low to high.
4. Device considered a two terminal device; pins 1-4 are shorted together and pin 5-8 are shorted together.
5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL1577, each optocoupler is proof-tested by applying an
insulation test voltage ≥ 6000 V rms for one second (leakage current detection limit, II-O ≤ 200 µA).
6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse.
7. R1 sets the base current (IO1 in Figure 1) supplied to the power bipolar device. R2 limits the peak current seen by Q2 when the device
is turning off. For more applications and circuit design information see Application Note “Power Transistor Gate/Base Drive
Optocouplers.”
1-333
HCPL-3000
HCPL-3000
VCC
1
8
IF
+
-
VCC
GND
2
Q1
4
+ V CC
GND
2
R L2
6
I O1
3
Q1
4
I O2
+
VO2
5
VO1
V O1
Figure 3. Test Circuit for High Level Output Voltage VO2H.
Figure 2. Test Circuit for Low Level Output Voltage VO1L.
HCPL-3000
HCPL-3000
VCC
1
8
VCC +-
GND
VCC
1
IF
2
–
VO2H
6
VO1L
+
5
7
Q2
–
V O2
8
IF
7
Q2
3
V CC
1
V CC +
-
7
2
6
3
GND
Q2
3
Q1
4
8
IF
7
Q2
V O2
Q1
I O1L
5
I O2L
6
4
V O2
5
VO1
VO1
Figure 4. Test Circuit for Leakage Current IO1L.
Figure 5. Test Circuit for Leakage Current IO2L.
HCPL-3000
IF
V IN
VCC
1
tr = t f = 0.01µs
Z o = 50 Ω
+ V
CC
GND
2
HCPL-3000
IF
SWEEP
1
V CC
GND
47 Ω
8
7
–
R L2
Q2
3
3
–
VO2
R L2
+
6
Q1 V O2
4
5
R L1
VO1
VO2
+
6
Q1
4
7
Q2
+ V
CC
2
8
VO2
5
R L1
V O1
50%
V IN WAVE FORM
t PLH
t PHL
Figure 6. Test Circuit for Threshold Input Current IFLH.
90%
50%
V 02 WAVE FORM
10%
tr
tf
Figure 7. Test Circuit for tPLH, tPHL, tr and tf.
1-334
HCPL-3000
IF
V CC
1
VCC +
-
R L1
SW
GND
2
A
8
7
Q2
B
3
–
VO2
+
RL2
6
Q1 V O2
4
5
VO1
+
–
30
V CM
LED FORWARD CURRENT I F (mA)
V CM
V CM
GND
CM H , V O2
SW AT A, IF = 5 mA
V O2H
∆ V O2H
∆ VO2L
CM L , VO2
15
10
5
GND
0
25
50
10.0
600
300
200
100
0
25
50
75
80
100
AMBIENT TEMPERATURE TA (°C)
Figure 10. Maximum IC Output Power
Dissipation vs. Ambient Temperature.
550
PEAK OUTPUT 2 CURRENT I 02P (A)
TOTAL POWER DISSIPATION Ptot (mW)
(LED AND IC)
400
100
Figure 9. LED Forward Current vs. Ambient Temperature.
600
500
75
80
AMBIENT TEMPERATURE T A (°C)
Figure 8. Test Circuit for CMH and CML.
IC OUTPUT POWER DISSIPATION Po (mW)
20
0
-20
VO2L
SW AT B, I F = 0 mA
0
-20
25
500
400
300
200
100
0
-20
0
25
50
75
80
100
AMBIENT TEMPERATURE TA (°C)
Figure 11. Maximum Total Power
Dissipation vs. Ambient Temperature.
• SINGLE OSC.
PULSE
5.0
2.0
TA = 25°C
I 02 MAX (PULSE)
100 ms•
10 ms• 1 ms•
1.0
I 02 MAX (CONTINUOUS)
0.5
0.2
0.1
0.2
IS •
DC
DC (TA = 80°C)
VCC (MAX)
0.5
1.0
2.0
5.0
10.0
20.0
OUTPUT 2 VOLTAGE V02 (V)
Figure 12. Typical Peak Output 2
Current vs. Output 2 Voltage (Safe
Operating Area Q2).
1-335
TA = 75°C
50°C
25°C
0°C
-20°C
50
20
10
5
2
1
0
0.5
1.0
1.5
2.0
2.5
3.5
3.0
1.1
1.0
0.9
0.8
0.7
4
6
FORWARD VOLTAGE VF (V)
LOW LEVEL OUTPUT 1 VOLTAGE V01L (V)
LOW LEVEL OUTPUT 1 VOLTAGE V01L (V)
R L2 = 10 Ω
TA = 25°C
I F = 5 mA
0.05
0.02
0.01
0.005
0.02
0.05
0.1
0.2
0.5
1.0
-0.4 A
5.0
-0.5 A
4.9
0
25
50
75
100
AMBIENT TEMPERATURE TA (°C)
Figure 19. Typical High Level Output 2
Voltage vs. Ambient Temperature.
1-336
0.6
-25
0
25
50
75
100
Figure 15. Normalized Low to High
Threshold Input Current vs. Ambient
Temperature.
R L2 = 10 Ω
0.4
I F = 5 mA
0.3
I 01 = 0.5 A
0.4 A
0.2
0.1
0.1 A
0
-25
VCC = 6 V
TA = 25°C
IF = 5 mA
5.3
5.2
5.1
5.0
4.9
4.8
0
25
50
75
0
100
0.2
TA = 25°C
I F = 0 mA
0.05
0.02
0.01
0.005
0.02
-0.2
-0.3
-0.4
-0.5
-0.6
Figure 18. Typical High Level Output 2
Voltage vs. Output 2 Current.
0.5
VCC = 6 V
0.1
0.01
-0.1
OUTPUT 2 CURRENT I 02 (A)
Figure 17. Typical Low Level Output 1
Voltage vs. Ambient Temperature.
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
HIGH LEVEL OUTPUT 2 VOLTAGE V02H (V)
I O2 = -0.1 A
5.1
4.8
-25
0.8
5.4
0.4
VCC = 6 V
I F = 5 mA
5.2
1.0
AMBIENT TEMPERATURE TA (°C)
Figure 16. Typical Low Level Output 1
Voltage vs. Output 1 Current.
5.3
1.2
AMBIENT TEMPERATURE TA (°C)
VCC = 6 V
OUTPUT 1 CURRENT I01 (A)
5.4
VCC = 6 V
1.4
14
0.5
VCC = 6 V
0.01
12
Figure 14. Normalized Low to High
Threshold Input Current vs. Supply
Voltage.
0.4
0.1
10
1.6
SUPPLY VOLTAGE VCC (V)
Figure 13. Typical Forward Current
vs. Forward Voltage.
0.2
8
HIGH LEVEL OUTPUT 2 VOLTAGE V02L(V)
100
TA = 25°C
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
200
1.2
NORMALIZED THRESHOLD INPUT CURRENT
NORMALIZED THRESHOLD INPUT CURRENT
FORWARD CURRENT IF (mA)
500
0.05
0.1
0.2
0.5
1.0
OUTPUT 2 CURRENT I 02 (A)
Figure 20. Typical Low Level Output 2
Voltage vs. Output 2 Current.
VCC = 6 V
I F = 0 mA
0.4
0.3
I O2 = 0.6 A
0.5 A
0.2
0.1
0.1 A
0
-25
0
25
50
75
100
AMBIENT TEMPERATURE TA (°C)
Figure 21. Typical Low Level Output 2
Voltage vs. Ambient Temperature.
I F = 5 mA
TA = -20°C
12
10
25°C
8
80°C
6
4
I F = 0 mA
TA = -20°C
14
12
25°C
10
80°C
8
6
4
6
8
10
12
14
4
6
8
10
12
14
SUPPLY VOLTAGE VCC (V)
SUPPLY VOLTAGE VCC (V)
Figure 22. Typical High Level Supply
Current vs. Supply Voltage.
PROPAGATION DELAY TIME t PHL , t PLH (µs)
PROPAGATION DELAY TIME t PHL, t PLH (µs)
16
LOW LEVEL SUPPLY CURRENT ICCL (mA)
HIGH LEVEL SUPPLY CURRENT I CCH (mA)
14
Figure 23. Typical Low Level Supply
Current vs. Supply Voltage.
6
VCC = 6 V
R L1 = 5 Ω
5
R L2 = 10 Ω
I F = 5 mA
4
TA = 80°C
t PHL
3
25°C
-20°C
2
t PLH
1
TA = 80°C
0
0
5
10
-20°C
25°C
15
20
25
FORWARD CURRENT I F (mA)
Figure 24. Typical Propagation Delay
Time vs. Forward Current.
5
VCC = 6 V
R L1 = 5 Ω
R L2 = 10 Ω
I F = 5 mA
4
3
t PLH
2
t PHL
1
0
-25
0
25
50
75
100
AMBIENT TEMPERATURE TA (°C)
Figure 25. Typical Propagation Delay
Time vs. Ambient Temperature.
1-337