MITSUBISHI M62216GP

MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
DESCRIPTION
PIN CONFIGURATION(TOP VIEW)
The M62216FP is designed as low voltage operation STEP-UP
DC-DC converter.
This IC can operate very low input voltage (over 0.9V) and low
power dissipation (circuit current is less than 850µA).
So, this IC suitable for power supply of portable system that
using low voltage battery (DRY battery, rechargeable battery).
FEATURES
DRIVE2 1
8 BIAS
DRIVE1 2
7 ON/OFF
PWM
3
6 IN
GND
4
5 FB
• Pre-Drive type PWM output (Pre-Drive only)
• Low voltage Operation • • • • • • • • • • • • VIN=0.9V min.
• Low Current Dissipation • • • • • • • • • • • • IB=850µA typ.
• Pre-Drive output current can be adjusted
• Built-in ON/OFF Function • • • • • • • • • • IB(OFF)=35µA typ.
• Application for STEP-DOWN Converter can be used
OUTLINE: 8P2S-A(FP)
8P2X-A (GP)
APPLICATION
DC-DC Converter for portable sets of battery used
BLOCK DIAGRAM
ON/OFF
7
8 BIAS
VREF
Iconst
1 DRIVE2
OSC
2 DRIVE1
Amp
PWM Comp
Start
3 PWM
Start OSC
6
IN
4
GND
5
FB
(1/ 8)
9812
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
ABSOLUTE MAXIMUM RATINGS (Ta=25°C , unless otherwise noted)
Symbol
VIN
VBIAS
VDRIVE1
VDRIVE2
IDRIVE1
IDRIVE2
Pd
Topr
Tstg
Parameter
Input Voltage
Bias Terminal Supply Voltage
Drive1 Terminal Supply Voltage
Drive2 Terminal Supply Voltage
Drive1 Terminal Input Current
Drive2 Terminal Input Current
Power Dissipation
Operating Temperature
Storage Temperature
Condition
Ratings
Unit
15.5
15.5
15.5
15.5
V
V
V
V
mA
mA
mW
°C
°C
100
10
440 (FP) 250 (GP)
-20 ~+85
-40 ~+150
Ta=25°C
ELECTRICAL CHARACTERISTICS (Ta=25°C, VIN=1.7V, VOUT=VBIAS=3.0V, unless otherwise noted)
Block
Symbol
VIN
VBIAS
All
Device IB
Voltage
Reference
Error
Amp.
Osc.
Parameter
Test Condition
Limits
Min. Typ. Max.
Unit
Input Voltage Range
0.9
15
V
BIAS Voltage Setting Range *1
1.7
15
V
BIAS Current
850 1200 µA
IB(OFF)
BIAS Current at OFF Mode
35
VREF
Reference Voltage
∆VREF
47
µA
1.20 1.26 1.32
V
BIAS Voltage Regulation of VREF VBIAS=1.7~15V
10
mV
IIN
Input Current
IN = 1V / IM
20
nA
AV
Open Loop Voltage Gain
fIN = 100Hz , Null Amp Operation
70
dB
IFB+
FB Terminal Sink Current
IN = 1.4V , FB = 1.25V / IM
260 800
µA
IFB-
FB Terminal Source Current
IN = 1.1V , FB = 1.25V / IM
30
45
fosc
Oscillation Frequency
PWM Terminal Monitored
95
125 155 kHz
PWM Terminal Monitored , IN = 1.1 V
82
87
Use internal amp as Buffer-amp
DUTYmax Maximum ON Duty
Vsat2
Saturation Voltage between
PWM Term. and DRIVE1 Term.
Saturation Voltage between
PWM Term. and DRIVE2 Term.
IL1
Leak Current of DRIVE1 Terminal IN = 1.4V
-1
IL2
Leak Current of DRIVE2 Terminal IN = 1.4V
Output Low Voltage of PWM Terminal IPWM = 1mA
-1
Vsat1
VPWM(L)
ION
ON/OFF VTH(ON)
IDRIVE1=50mA,
IDRIVE2=5mA
Input Current of ON/OFF Terminal
At ON Status
Threshold Voltage of ON/OFF
Terminal
*1 : Setting range of BIAS voltage as same as setting range of output voltage .
(2/ 8)
30
60
µA
92
%
0.25 0.5
V
1.2
V
1
µA
1.0
1
0.03 0.3
2
3
0.65 0.75
µA
V
µA
V
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
Application circuit
(1). Standard Application circuit
Di
L
VIN
VIN : 0.9 ~ 14V
VOUT : 1.7 ~ 15V
(VOUT > VIN)
CO
7
ON/OFF
CIN
VOUT
BIAS 8
RD2
DRIVE1 1
R1
RD1
DRIVE2 2
IN
6
FB
5
GND
4
Tr
PWM 3
R2
(2). Application circuit 1 (VIN ≥ 1.7V)
Di
L
VIN
CIN
7
ON/OFF
VOUT
CO
BIAS 8
RD2
DRIVE2 1
DRIVE1 2
IN
6
FB
5
GND
4
R1
RD1
VIN : 1.7 ~ 14V
VOUT : 2.5V ~ 15V
( VOUT > VIN)
Tr
PWM 3
R2
(3). Application circuit 2 (VOUT > 15V)
L
VIN
CIN
7
ON/OFF
BIAS 8
DRIVE2 1
FB
5
GND
4
VOUT
CO
RD2
VIN : 1.7 ~ 15V
VOUT : 15V ~
( VOUT > VIN)
R1
RD1
DRIVE1 2
IN
6
Di
Tr
PWM 3
R2
(4). Application circuit for STEP-DOWN Circuit
VIN
Tr
7
ON/OFF
CIN
BIAS 8
L
CO
RD2
R1
DRIVE2 1
DRIVE1 2
IN
6
FB
5
GND
4
VOUT
RD1
Di
PWM 3
R2
(3/ 8)
VIN : 2.0 ~ 15V
VOUT : 1.7V ~ 14V
( VOUT < VIN)
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
TYPICAL CHARACTERISTICS
THERMAL DERATING
(ABSOLUTE MAXIMUM RATING)
1.6
600
1.4
500
FP
1.2
400
300
1.0
GP
200
0.8
100
0.6
0
BIAS CURRENT vs. BIAS VOLTAGE
(Ta=25°C)
0
25
50
75
100 125 150
AMBIENT TEMPERATURE Ta (°C)
0.4
0
2
4
6
8 10 12 14
BIAS VOLTAGE VBIAS (V)
16
OFF STATE BIAS CURRENT vs.
BIAS VOLTAGE (ON/OFF=GND)
BIAS CURRENT vs. AMBIENT
TEMPERATURE
80
1.6
VBIAS=1.7V
VBIAS=3.0V
VBIAS=15V
1.4
Ta= -20°C
Ta= +25°C
Ta= +85°C
60
1.2
1.0
40
0.8
20
0.6
0.4
-40
0
-20
0
20 40 60 80 100
AMBIENT TEMPERATURE Ta (°C)
OPEN LOOP GAIN vs. INPUT FREQUENCY
(Vin=0.1Vrms , Null Amp , Ta=25°C)
100
80
VBIAS=1.7V
VBIAS=3.0V
VBIAS=15V
0
2
4
6
8
10
12
14
16
BIAS VOLTAGE VBIAS (V)
FB VOLTAGE vs. FB SINK CURRENT
(VBIAS=3.0V, IN=1.4V)
1.25
1.00
0.75
60
0.50
40
20
0.01
0.25
0.1
1
10
INPUT FREQUENCY fin (KHz)
100
0.00
(4/ 8)
Ta= -20°C
Ta= +25°C
Ta= +85°C
0
0.2 0.4 0.6 0.8 1.0 1.2
FB SINK CURRENT IFB+ (mA)
1.4
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
FB SOURCE CURRENT vs. FB VOLTAGE
(VBIAS=3.0V, IN=1.1V)
60
OSCILLATING FREQUENCY vs.
BIAS VOLTAGE
(PWM Terminal Monitored , Ta=25°C)
160
50
140
40
30
120
20
Ta= -20°C
Ta= +25°C
Ta= +85°C
10
0
0
0.5
100
1.0
1.5
2.0
2.5
FB VOLTAGE VFB (V)
80
3.0
OSCILLATING FREQUENCY vs.
AMBIENT TEMPERATURE
160
(PWM Terminal Monitored, IN=1.1V)
0
2
4
6
8 10 12 14
BIAS VOLTAGE VBIAS (V)
16
MAX ON DUTY vs. BIAS VOLTAGE
100
(PWM Terminal Monitored, IN=1.1V, Ta=25°C)
VBIAS=1.7V
VBIAS=3.0V
140
95
VBIAS=15V
90
120
85
100
80
-40
80
MAX ON DUTY vs. AMBIENT TEMPERATURE
(PWM Terminal Monitored , IN=1.1V)
100
95
75
-20
0
20 40 60 80 100
AMBIENT TEMPERATURE Ta (°C)
VBIAS=1.7V
VBIAS=3.0V
VBIAS=15V
0
2
4
6
8 10 12 14
BIAS VOLTAGE VBIAS (V)
16
SATURATION VOLTAGE BETWEEN PWM-DRIVE1
TERMINAL vs. INPUT CURRENT OF DRIVE1 TERMINAL
(IDRIVE2=5mA, IN=1.1V, Ta=25°C)
1.0
VBIAS=1.7V
VBIAS=3.0V
VBIAS=9.0V
VBIAS=15V
0.8
90
0.6
85
0.4
80
0.2
75
-40 -20
0
20
40 60 80 100
AMBIENT TEMPERATURE Ta (°C)
0.0
0
10
20
30
40
50
60
70
INPUT CURRENT OF DRIVE1 TERMINAL IDRIVE1 (mA)
(5/ 8)
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
SATURATION VOLTAGE BETWEEN PWM-DRIVE1
TERMINAL vs. INPUT CURRENT OF DRIVE1 TERMINAL
(VBIAS=3.0V, IN=1.1V, Ta=25°C)
SATURATION VOLTAGE BETWEEN PWM-DRIVE2
TERMINAL vs. INPUT CURRENT OF DRIVE2 TERMINAL
(IN=1.1V, Ta=25°C)
0.5
1.7
0.4
1.5
0.3
1.3
0.2
1.1
IDRIVE2=2mA
IDRIVE2=5mA
IDRIVE2=10mA
0.1
0.0
VBIAS=1.7V IDRIVE1=20mA
VBIAS=3.0V IDRIVE1=50mA
VBIAS=15V IDRIVE1=40mA
0.9
0.7
0
20
40
60
80
100
120
INPUT CURRENT OF DRIVE1 TERMINAL IDRIVE1 (mA)
0
2
4
6
8
10
12
INPUT CURRENT OF DRIVE2 TERMINAL IDRIVE2 (mA)
PWM OUTPUT LOW VOLTAGE
vs. PWM SINK CURRENT
INPUT ON CURRENT
vs. AMBIENT TEMPERATURE
(VBIAS=3.0V,IN=1.4V)
0.6
4.0
0.5
3.0
0.4
0.3
2.0
0.2
VBIAS=VON=1.7V
VBIAS=VON=3.0V
VBIAS=VON=15V
1.0
Ta= -20°C
Ta=+25°C
Ta=+85°C
0.1
0.0
0
2
4
6
8
10
12
0.0
-40
-20
PWM SINK CURRENT (mA)
0
20
40
60
80
100
AMBIENT TEMPERATURE Ta (°C)
THRESHOLD VOLTAGE OF ON/OFF TERMINAL
vs. AMBIENT TEMPERATURE (VBIAS=3.0V)
1.0
MAX LOAD CURRENT FOR START-UP(*1)
vs. INPUT VOLTAGE
200
(Standard Application Circuit, Vo=3.0V, Ta=25°C)
Tr:2SC3052-F, L:68uH,
RD1:680Ω, RD2:1.6KΩ
Tr:2SC3439-H, L:22uH,
RD1:1.3KΩ, RD2:3.3KΩ
175
0.8
150
125
0.6
100
0.4
75
50
0.2
25
0.0
-40
-20
0
20
40
60
80
0
0.8
100
AMBIENT TEMPERATURE Ta (°C)
1.0
1.2
1.4
INPUT VOLTAGE VIN (V)
(6/ 8)
1.6
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
MAX LOAD CURRENT FOR START-UP(*2)
vs. INPUT VOLTAGE
EFFICIENCY vs. LOAD CURRENT
(Standard Application circuit:
VIN=1.5V,Vo=3.0V, Ta=25°C)
(Application circuit 1: Vo=5.0V, Ta=25°C)
200
100
175
80
150
125
60
100
40
75
Tr:2SC3052-F
50
Tr:2SC3439-H
20
Tr:2SC3052-F,L:150µH,
RD1:750Ω,RD2:3.6KΩ
Tr:2SC3439-H,L:22µH,
RD1:1.3KΩ,RD2:6.8KΩ
25
0
1
10
100
LOAD CURRENT Io (mA)
0
1.5
1000
2.0
2.5
3.0
3.5
INPUT VOLTAGE VIN (V)
4.0
EFFICIENCY vs. LOAD CURRENT
(Application circuit 1: VIN=3.0V,Vo=5.0V, Ta=25°C)
100
80
60
40
Tr:2SC3052-F
Tr:2SC3439-H
20
0
1
10
100
LOAD CURRENT Io (mA)
1000
*1, *2 : These characteristics show the maximum output load current when start-up.
Therefore, output voltage can grown-up to setting voltage less than a curve in the
graph when using these external components value.
( • 2SC3052-F : hFE=250 ~ 500, 2SC3439-H : hFE=600 ~ 1200)
(7/ 8)
MITSUBISHI SEMICONDUCTOR<STD-Linear IC>
M62216FP/GP
Low Voltage Operation STEP-UP DC-DC Converter
Equation for Constants Calculation
Constants
Standard Application Circuit
Application Circuit 1
Application Circuit 2
TON
TOFF
VO + VF - VIN
VIN - VCE(sat)
1
fosc
VO + VF - VIN
VIN - VCE(sat)
1
fosc
VO + VF - VIN
VIN - VCE(sat)
1
fosc
TOFF(MIN)
TON + TOFF
1 + TON
TOFF
TON + TOFF
1 + TON
TOFF
TON + TOFF
1 + TON
TOFF
TON(MAX)
1
- TOFF(MIN)
fosc
1
- TOFF(MIN)
fosc
1
- TOFF(MIN)
fosc
TON+TOFF
Ipk
TON
2 * 1 + TOFF
* (Io + IB)
(VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc
L(MIN)
R1
2 * Vo * (Io + IB)
Vo
VREF - 1 * R2
TON
2 * 1 + TOFF
* Io
(VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc
2 * Vo * Io
TON
2 * 1 + TOFF
* Io
(VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc
2 * Vo * Io
Vo
VREF - 1 * R2
Vo
VREF - 1 * R2
RD1
Vo - (VBE + Vsat1)
(Ipk / hFE) * A1
Vo - (VBE + Vsat1)
(Ipk / hFE) * A1
VIN - (VBE + Vsat1)
(Ipk / hFE) * A1
RD2
Vo - (VBE + Vsat2)
(Ipk / hFE) * A2
Vo - (VBE + Vsat2)
(Ipk / hFE) * A2
VIN - (VBE + Vsat2)
(Ipk / hFE) * A2
Constants
STEP-DOWN Circuit
TON
TOFF
VO + VF
VIN - VCE(sat) - Vo
1
fosc
TON+TOFF
TOFF(MIN)
TON + TOFF
1 + TON
TOFF
TON(MAX)
1
- TOFF(MIN)
fosc
Ipk
L(MIN)
R1
2 * Io
(VIN - VCE(sat) - Vo) * TON(MAX)
∆Io
Vo
VREF - 1 * R2
RD1
Vo - VBE - Vsat1
Ipk / hFE
RD2
VIN - Vsat2
(Ipk / hFE) * A3
Notice)
• VF : Forward voltage of external diode.
• VCE(sat) : Saturation voltage of external transistor.
• VBE : Voltage between Base - Emitter of external transistor.
• hFE : hFE of external transistor at saturating.
• A1 : Ratio of current into DRIVE1 terminal.
(A1 = 0.8 ~ 0.9)
• A2 : Ratio of current into DRIVE2 terminal.
(A2 = 1 - A1)
• A3 : Ratio of current into DRIVE2 terminal.
(A3 = 0.1 ~ 0.2)
• Set R2 to several KΩ ~ several 10ths kΩ.
• Set current into DRIVE2 terminal more than 100µA.
(Ipk / hFE) * A2 ≥ 100µA, (Ipk / hFE) * A3 ≥ 100µA,.
• Set ∆Io to 1/ 5 ~ 1/ 3 of maximum load current.
• The maximum rating of current of external parts (transistor,
diode and inductor) are 1.5 to 2 times of Ipk.
(8/ 8)