MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter DESCRIPTION PIN CONFIGURATION(TOP VIEW) The M62216FP is designed as low voltage operation STEP-UP DC-DC converter. This IC can operate very low input voltage (over 0.9V) and low power dissipation (circuit current is less than 850µA). So, this IC suitable for power supply of portable system that using low voltage battery (DRY battery, rechargeable battery). FEATURES DRIVE2 1 8 BIAS DRIVE1 2 7 ON/OFF PWM 3 6 IN GND 4 5 FB • Pre-Drive type PWM output (Pre-Drive only) • Low voltage Operation • • • • • • • • • • • • VIN=0.9V min. • Low Current Dissipation • • • • • • • • • • • • IB=850µA typ. • Pre-Drive output current can be adjusted • Built-in ON/OFF Function • • • • • • • • • • IB(OFF)=35µA typ. • Application for STEP-DOWN Converter can be used OUTLINE: 8P2S-A(FP) 8P2X-A (GP) APPLICATION DC-DC Converter for portable sets of battery used BLOCK DIAGRAM ON/OFF 7 8 BIAS VREF Iconst 1 DRIVE2 OSC 2 DRIVE1 Amp PWM Comp Start 3 PWM Start OSC 6 IN 4 GND 5 FB (1/ 8) 9812 MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter ABSOLUTE MAXIMUM RATINGS (Ta=25°C , unless otherwise noted) Symbol VIN VBIAS VDRIVE1 VDRIVE2 IDRIVE1 IDRIVE2 Pd Topr Tstg Parameter Input Voltage Bias Terminal Supply Voltage Drive1 Terminal Supply Voltage Drive2 Terminal Supply Voltage Drive1 Terminal Input Current Drive2 Terminal Input Current Power Dissipation Operating Temperature Storage Temperature Condition Ratings Unit 15.5 15.5 15.5 15.5 V V V V mA mA mW °C °C 100 10 440 (FP) 250 (GP) -20 ~+85 -40 ~+150 Ta=25°C ELECTRICAL CHARACTERISTICS (Ta=25°C, VIN=1.7V, VOUT=VBIAS=3.0V, unless otherwise noted) Block Symbol VIN VBIAS All Device IB Voltage Reference Error Amp. Osc. Parameter Test Condition Limits Min. Typ. Max. Unit Input Voltage Range 0.9 15 V BIAS Voltage Setting Range *1 1.7 15 V BIAS Current 850 1200 µA IB(OFF) BIAS Current at OFF Mode 35 VREF Reference Voltage ∆VREF 47 µA 1.20 1.26 1.32 V BIAS Voltage Regulation of VREF VBIAS=1.7~15V 10 mV IIN Input Current IN = 1V / IM 20 nA AV Open Loop Voltage Gain fIN = 100Hz , Null Amp Operation 70 dB IFB+ FB Terminal Sink Current IN = 1.4V , FB = 1.25V / IM 260 800 µA IFB- FB Terminal Source Current IN = 1.1V , FB = 1.25V / IM 30 45 fosc Oscillation Frequency PWM Terminal Monitored 95 125 155 kHz PWM Terminal Monitored , IN = 1.1 V 82 87 Use internal amp as Buffer-amp DUTYmax Maximum ON Duty Vsat2 Saturation Voltage between PWM Term. and DRIVE1 Term. Saturation Voltage between PWM Term. and DRIVE2 Term. IL1 Leak Current of DRIVE1 Terminal IN = 1.4V -1 IL2 Leak Current of DRIVE2 Terminal IN = 1.4V Output Low Voltage of PWM Terminal IPWM = 1mA -1 Vsat1 VPWM(L) ION ON/OFF VTH(ON) IDRIVE1=50mA, IDRIVE2=5mA Input Current of ON/OFF Terminal At ON Status Threshold Voltage of ON/OFF Terminal *1 : Setting range of BIAS voltage as same as setting range of output voltage . (2/ 8) 30 60 µA 92 % 0.25 0.5 V 1.2 V 1 µA 1.0 1 0.03 0.3 2 3 0.65 0.75 µA V µA V MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter Application circuit (1). Standard Application circuit Di L VIN VIN : 0.9 ~ 14V VOUT : 1.7 ~ 15V (VOUT > VIN) CO 7 ON/OFF CIN VOUT BIAS 8 RD2 DRIVE1 1 R1 RD1 DRIVE2 2 IN 6 FB 5 GND 4 Tr PWM 3 R2 (2). Application circuit 1 (VIN ≥ 1.7V) Di L VIN CIN 7 ON/OFF VOUT CO BIAS 8 RD2 DRIVE2 1 DRIVE1 2 IN 6 FB 5 GND 4 R1 RD1 VIN : 1.7 ~ 14V VOUT : 2.5V ~ 15V ( VOUT > VIN) Tr PWM 3 R2 (3). Application circuit 2 (VOUT > 15V) L VIN CIN 7 ON/OFF BIAS 8 DRIVE2 1 FB 5 GND 4 VOUT CO RD2 VIN : 1.7 ~ 15V VOUT : 15V ~ ( VOUT > VIN) R1 RD1 DRIVE1 2 IN 6 Di Tr PWM 3 R2 (4). Application circuit for STEP-DOWN Circuit VIN Tr 7 ON/OFF CIN BIAS 8 L CO RD2 R1 DRIVE2 1 DRIVE1 2 IN 6 FB 5 GND 4 VOUT RD1 Di PWM 3 R2 (3/ 8) VIN : 2.0 ~ 15V VOUT : 1.7V ~ 14V ( VOUT < VIN) MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter TYPICAL CHARACTERISTICS THERMAL DERATING (ABSOLUTE MAXIMUM RATING) 1.6 600 1.4 500 FP 1.2 400 300 1.0 GP 200 0.8 100 0.6 0 BIAS CURRENT vs. BIAS VOLTAGE (Ta=25°C) 0 25 50 75 100 125 150 AMBIENT TEMPERATURE Ta (°C) 0.4 0 2 4 6 8 10 12 14 BIAS VOLTAGE VBIAS (V) 16 OFF STATE BIAS CURRENT vs. BIAS VOLTAGE (ON/OFF=GND) BIAS CURRENT vs. AMBIENT TEMPERATURE 80 1.6 VBIAS=1.7V VBIAS=3.0V VBIAS=15V 1.4 Ta= -20°C Ta= +25°C Ta= +85°C 60 1.2 1.0 40 0.8 20 0.6 0.4 -40 0 -20 0 20 40 60 80 100 AMBIENT TEMPERATURE Ta (°C) OPEN LOOP GAIN vs. INPUT FREQUENCY (Vin=0.1Vrms , Null Amp , Ta=25°C) 100 80 VBIAS=1.7V VBIAS=3.0V VBIAS=15V 0 2 4 6 8 10 12 14 16 BIAS VOLTAGE VBIAS (V) FB VOLTAGE vs. FB SINK CURRENT (VBIAS=3.0V, IN=1.4V) 1.25 1.00 0.75 60 0.50 40 20 0.01 0.25 0.1 1 10 INPUT FREQUENCY fin (KHz) 100 0.00 (4/ 8) Ta= -20°C Ta= +25°C Ta= +85°C 0 0.2 0.4 0.6 0.8 1.0 1.2 FB SINK CURRENT IFB+ (mA) 1.4 MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter FB SOURCE CURRENT vs. FB VOLTAGE (VBIAS=3.0V, IN=1.1V) 60 OSCILLATING FREQUENCY vs. BIAS VOLTAGE (PWM Terminal Monitored , Ta=25°C) 160 50 140 40 30 120 20 Ta= -20°C Ta= +25°C Ta= +85°C 10 0 0 0.5 100 1.0 1.5 2.0 2.5 FB VOLTAGE VFB (V) 80 3.0 OSCILLATING FREQUENCY vs. AMBIENT TEMPERATURE 160 (PWM Terminal Monitored, IN=1.1V) 0 2 4 6 8 10 12 14 BIAS VOLTAGE VBIAS (V) 16 MAX ON DUTY vs. BIAS VOLTAGE 100 (PWM Terminal Monitored, IN=1.1V, Ta=25°C) VBIAS=1.7V VBIAS=3.0V 140 95 VBIAS=15V 90 120 85 100 80 -40 80 MAX ON DUTY vs. AMBIENT TEMPERATURE (PWM Terminal Monitored , IN=1.1V) 100 95 75 -20 0 20 40 60 80 100 AMBIENT TEMPERATURE Ta (°C) VBIAS=1.7V VBIAS=3.0V VBIAS=15V 0 2 4 6 8 10 12 14 BIAS VOLTAGE VBIAS (V) 16 SATURATION VOLTAGE BETWEEN PWM-DRIVE1 TERMINAL vs. INPUT CURRENT OF DRIVE1 TERMINAL (IDRIVE2=5mA, IN=1.1V, Ta=25°C) 1.0 VBIAS=1.7V VBIAS=3.0V VBIAS=9.0V VBIAS=15V 0.8 90 0.6 85 0.4 80 0.2 75 -40 -20 0 20 40 60 80 100 AMBIENT TEMPERATURE Ta (°C) 0.0 0 10 20 30 40 50 60 70 INPUT CURRENT OF DRIVE1 TERMINAL IDRIVE1 (mA) (5/ 8) MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter SATURATION VOLTAGE BETWEEN PWM-DRIVE1 TERMINAL vs. INPUT CURRENT OF DRIVE1 TERMINAL (VBIAS=3.0V, IN=1.1V, Ta=25°C) SATURATION VOLTAGE BETWEEN PWM-DRIVE2 TERMINAL vs. INPUT CURRENT OF DRIVE2 TERMINAL (IN=1.1V, Ta=25°C) 0.5 1.7 0.4 1.5 0.3 1.3 0.2 1.1 IDRIVE2=2mA IDRIVE2=5mA IDRIVE2=10mA 0.1 0.0 VBIAS=1.7V IDRIVE1=20mA VBIAS=3.0V IDRIVE1=50mA VBIAS=15V IDRIVE1=40mA 0.9 0.7 0 20 40 60 80 100 120 INPUT CURRENT OF DRIVE1 TERMINAL IDRIVE1 (mA) 0 2 4 6 8 10 12 INPUT CURRENT OF DRIVE2 TERMINAL IDRIVE2 (mA) PWM OUTPUT LOW VOLTAGE vs. PWM SINK CURRENT INPUT ON CURRENT vs. AMBIENT TEMPERATURE (VBIAS=3.0V,IN=1.4V) 0.6 4.0 0.5 3.0 0.4 0.3 2.0 0.2 VBIAS=VON=1.7V VBIAS=VON=3.0V VBIAS=VON=15V 1.0 Ta= -20°C Ta=+25°C Ta=+85°C 0.1 0.0 0 2 4 6 8 10 12 0.0 -40 -20 PWM SINK CURRENT (mA) 0 20 40 60 80 100 AMBIENT TEMPERATURE Ta (°C) THRESHOLD VOLTAGE OF ON/OFF TERMINAL vs. AMBIENT TEMPERATURE (VBIAS=3.0V) 1.0 MAX LOAD CURRENT FOR START-UP(*1) vs. INPUT VOLTAGE 200 (Standard Application Circuit, Vo=3.0V, Ta=25°C) Tr:2SC3052-F, L:68uH, RD1:680Ω, RD2:1.6KΩ Tr:2SC3439-H, L:22uH, RD1:1.3KΩ, RD2:3.3KΩ 175 0.8 150 125 0.6 100 0.4 75 50 0.2 25 0.0 -40 -20 0 20 40 60 80 0 0.8 100 AMBIENT TEMPERATURE Ta (°C) 1.0 1.2 1.4 INPUT VOLTAGE VIN (V) (6/ 8) 1.6 MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter MAX LOAD CURRENT FOR START-UP(*2) vs. INPUT VOLTAGE EFFICIENCY vs. LOAD CURRENT (Standard Application circuit: VIN=1.5V,Vo=3.0V, Ta=25°C) (Application circuit 1: Vo=5.0V, Ta=25°C) 200 100 175 80 150 125 60 100 40 75 Tr:2SC3052-F 50 Tr:2SC3439-H 20 Tr:2SC3052-F,L:150µH, RD1:750Ω,RD2:3.6KΩ Tr:2SC3439-H,L:22µH, RD1:1.3KΩ,RD2:6.8KΩ 25 0 1 10 100 LOAD CURRENT Io (mA) 0 1.5 1000 2.0 2.5 3.0 3.5 INPUT VOLTAGE VIN (V) 4.0 EFFICIENCY vs. LOAD CURRENT (Application circuit 1: VIN=3.0V,Vo=5.0V, Ta=25°C) 100 80 60 40 Tr:2SC3052-F Tr:2SC3439-H 20 0 1 10 100 LOAD CURRENT Io (mA) 1000 *1, *2 : These characteristics show the maximum output load current when start-up. Therefore, output voltage can grown-up to setting voltage less than a curve in the graph when using these external components value. ( • 2SC3052-F : hFE=250 ~ 500, 2SC3439-H : hFE=600 ~ 1200) (7/ 8) MITSUBISHI SEMICONDUCTOR<STD-Linear IC> M62216FP/GP Low Voltage Operation STEP-UP DC-DC Converter Equation for Constants Calculation Constants Standard Application Circuit Application Circuit 1 Application Circuit 2 TON TOFF VO + VF - VIN VIN - VCE(sat) 1 fosc VO + VF - VIN VIN - VCE(sat) 1 fosc VO + VF - VIN VIN - VCE(sat) 1 fosc TOFF(MIN) TON + TOFF 1 + TON TOFF TON + TOFF 1 + TON TOFF TON + TOFF 1 + TON TOFF TON(MAX) 1 - TOFF(MIN) fosc 1 - TOFF(MIN) fosc 1 - TOFF(MIN) fosc TON+TOFF Ipk TON 2 * 1 + TOFF * (Io + IB) (VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc L(MIN) R1 2 * Vo * (Io + IB) Vo VREF - 1 * R2 TON 2 * 1 + TOFF * Io (VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc 2 * Vo * Io TON 2 * 1 + TOFF * Io (VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc 2 * Vo * Io Vo VREF - 1 * R2 Vo VREF - 1 * R2 RD1 Vo - (VBE + Vsat1) (Ipk / hFE) * A1 Vo - (VBE + Vsat1) (Ipk / hFE) * A1 VIN - (VBE + Vsat1) (Ipk / hFE) * A1 RD2 Vo - (VBE + Vsat2) (Ipk / hFE) * A2 Vo - (VBE + Vsat2) (Ipk / hFE) * A2 VIN - (VBE + Vsat2) (Ipk / hFE) * A2 Constants STEP-DOWN Circuit TON TOFF VO + VF VIN - VCE(sat) - Vo 1 fosc TON+TOFF TOFF(MIN) TON + TOFF 1 + TON TOFF TON(MAX) 1 - TOFF(MIN) fosc Ipk L(MIN) R1 2 * Io (VIN - VCE(sat) - Vo) * TON(MAX) ∆Io Vo VREF - 1 * R2 RD1 Vo - VBE - Vsat1 Ipk / hFE RD2 VIN - Vsat2 (Ipk / hFE) * A3 Notice) • VF : Forward voltage of external diode. • VCE(sat) : Saturation voltage of external transistor. • VBE : Voltage between Base - Emitter of external transistor. • hFE : hFE of external transistor at saturating. • A1 : Ratio of current into DRIVE1 terminal. (A1 = 0.8 ~ 0.9) • A2 : Ratio of current into DRIVE2 terminal. (A2 = 1 - A1) • A3 : Ratio of current into DRIVE2 terminal. (A3 = 0.1 ~ 0.2) • Set R2 to several KΩ ~ several 10ths kΩ. • Set current into DRIVE2 terminal more than 100µA. (Ipk / hFE) * A2 ≥ 100µA, (Ipk / hFE) * A3 ≥ 100µA,. • Set ∆Io to 1/ 5 ~ 1/ 3 of maximum load current. • The maximum rating of current of external parts (transistor, diode and inductor) are 1.5 to 2 times of Ipk. (8/ 8)