Order this document by MC33128/D The MC33128 is a power management controller specifically designed for use in battery powered cellular telephone and pager applications. This device contains all of the active functions required to interface the user to the system electronics via a microprocessor. This integrated circuit consists of a low dropout voltage regulator with power–up reset for MPU power, two low dropout voltage regulators for independant powering of analog and digital circuitry, and a negative charge pump voltage regulator for full depletion of gallium arsenide MESFETs. Also included are protective system shutdown features consisting of a battery latch that is activated upon battery insertion, low battery voltage shutdown, and a thermal over temperature detector. This device is available in a 16–pin narrow body surface mount plastic package. • Three Positive Regulated Outputs Featuring Low Dropout Voltage • • • • • • • POWER MANAGEMENT CONTROLLER SEMICONDUCTOR TECHNICAL DATA Negative Regulated Output for Full Depletion of GaAs MESFETs MPU Power Up Reset 16 Battery Latch 1 Low Battery Shutdown Pinned–Out Reference for MPU A/D Converter D SUFFIX PLASTIC PACKAGE CASE 751B (SO–16) Low Start–Up and Operating Current Thermal Protection Simplified Block Diagram VCC 16 3 2 ON/OFF Toggle 4 VBB Output Charge Pump Output 4 CPC 7 Control Logic Low Battery Shutdown Thermal Protection 5 Output 4 –2.5 V/1.0 mA Standby Regulator 1 15 Output 1 3.0 V/30 mA Gnd 6 1 Output 2 3.0 V/60 mA Output 4 Charge Pump 7 Capacitor Input Output 4 Charge Pump 8 Capacitor Drive 6 12 14 MPU Power Up Reset 13 Reference Output 14 Output 3 VBB Output 4 Output 3 3.0 V/20 mA 13 Reset Output 12 Reference Output 11 Power Up Input 10 Power Down Input 9 Battery Saver Input (Top View) R VDD I MPU O O I V SS ORDERING INFORMATION Device Operating Temperature Range Package MC33128D TA = – 30° to +60°C SO–16 Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA 15 Output 1 Output 4 5 MPU Regulator Reference Gnd VBB Charge Pump 2 Capacitor Input VBB Charge Pump 3 Capacitor Drive Negative Standby Regulator Standby Regulator 2 16 VCC Output 2 1 8 + 11 10 9 PIN CONNECTIONS VBB CPC Rev 0 1 MC33128 MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Rating Symbol Value Unit VCC +7.0 V Vin – 1.0 to VCC + 1.0 V Charge Pump Capacitor Drive Outputs, Source or Sink Current (Pins 3, 8) IO(max) 30 mA Schottky Diode Forward Current (Pins 16 to 2, 2 to 4, and 7 to 6) IF(max) 30 mA Output Source Current (Note 1) Regulator Output 1 (Pin 15) Regulator Output 2 (Pin 1) Regulator Output 3 (Pin 14) Regulator Output 4 (Pin 5) Reference (Pin 12) ISource Power Supply Input Voltage (Pin 16) Input Voltage Range Power Up, Power Down, and Battery Saver Inputs (Pins 11, 10, 9) mA 150 250 50 10 40 Reset Sink Current (Pin 13) ISink 5.0 mA Power Dissipation and Thermal Characteristic D Suffix, Plastic Package Case 751B Maximum Power Dissipation @ TA = 50°C Thermal Resistance, Junction–to–Air PD R∅JA 560 180 mW °C/W TJ +150 °C TA – 30 to +60 °C Tstg – 60 to +150 °C Operating Junction Temperature Operating Ambient Temperature (Note 1) Storage Temperature ELECTRICAL CHARACTERISTICS (VCC = 4.5 V, Cin = 33 µF with ESR ≤ 1.6 Ω, CO = 4.7 µF with ESR ≤ 4.5 Ω, IO1 = 30 mA, IO2 = 60 mA, IO3 = 20 mA, IO4 = 1.0 mA, IOref = 10 mA [Note 2], TA = 25°C.) Characteristic Symbol Min Typ Max Unit VCC – 1.5 VCC – 1.2 VCC – 0.8 V POWER UP INPUT (Pin 11) Low State Input Threshold Voltage Vth(toggle) Iin(toggle) – – 120 µA RPU(ON/OFF) 10 20 30 kΩ High State Input Threshold Voltage (Places IC in Standby Mode) Vth(PDI) 1.3 1.5 1.8 V Input Current (Vin = VO3) Iin(PDI) – – 120 µA High State Input Threshold Voltage (VBB, VO1, VO2, VO4 Activated) Vth(BSI) 1.2 1.4 1.7 V Input Current (Vin = VO3) Iin(BSI) – – 120 µA fOSC 85 95 105 kHz DC 35 50 65 % VOH VOL – – VCC – 0.9 0.15 – – VF IL – – 0.5 0.01 – – – – 7.9 4.4 – – Input Current (Vin = VO3) Internal Pull Up Resistance POWER DOWN INPUT (Pin 10) BATTERY SAVER INPUT (Pin 9) VBB GENERATOR Oscillator Frequency Oscillator Duty Cycle Charge Pump Capacitor Drive Output Voltage Swing (Pin 3) High State (ISource = 3.0 mA) Low State (ISink = 3.0 mA) Schottky Diode (Pins 2, 4) Forward Voltage Drop (IF = 3.0 mA) Reverse Leakage Current (VBB = 7.0 V) Output Voltage (Pin 4) VCC = 4.5 V VCC = 2.9 V V VO(VBB) V µA V NOTES: 1. Maximum package power dissipation limits must be observed. 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test. 2 MOTOROLA ANALOG IC DEVICE DATA MC33128 ELECTRICAL CHARACTERISTICS (VCC = 4.5 V, Cin = 33 µF with ESR ≤ 1.6 Ω, CO = 4.7 µF with ESR ≤ 4.5 Ω, IO1 = 30 mA, ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ IO2 = 60 mA, IO3 = 20 mA, IO4 = 1.0 mA, IOref = 10 mA [Note 2], TA = 25°C.) Characteristic Symbol Min Typ Max Unit REGULATOR OUTPUT 1 (Pin 15) Output Voltage (VCC = 3.15 V to 4.5 V, IO1 = 30 mA) Regline1 2.9 3.0 3.1 V Load Regulation (IO1 = 0 mA to 35 mA) Regload1 – 5.0 30 mV Dropout Voltage (VCC = 2.9 V, IO1 = 30 mA) Vin – VO1 – – 0.1 Power Supply Rejection Ratio f = 120 Hz f = 100 kHz Turn ON Delay Time (Battery Saver Input to 90% VO1 Output) PSRR 1 V dB – – 70 40 – – tDLY1 – 0.2 2.0 ms REGULATOR OUTPUT 2 (Pin 1) Output Voltage (VCC = 3.15 V to 4.5 V, IO2 = 60 mA) Reg 2.9 3.0 3.1 V Load Regulation (IO2 = 0 mA to 60 mA) Regload2 – 5.0 40 mV Dropout Voltage (VCC = 2.9 V, IO2 = 60 mA) Vin – VO2 – – 0.11 Power Supply Rejection Ratio f = 120 Hz f = 100 kHz PSRR 2 V dB – – 70 40 – – tDLY2 – 0.2 2.0 Output Voltage (VCC = 3.15 V to 4.5 V, IO3 = 20 mA) Regline3 2.9 3.0 3.1 V Load Regulation (IO3 = 0 mA to 20 mA) Regload3 – 5.0 25 mV Dropout Voltage (VCC = 2.9 V, IO3 = 20 mA) Vin – VO3 – – 0.1 Turn ON Delay Time (Battery Saver Input to 90% VO2 Output) ms REGULATOR OUTPUT 3 (Pin 14) Power Supply Rejection Ratio f = 120 Hz f = 100 kHz PSRR 3 V dB – – 70 40 – – tDLY3 – 0.5 3.0 Output Voltage (VCC = 3.15 V to 4.5 V, IO4 = 1.0 mA) Regline4 – 2.35 – 2.5 – 2.65 V Load Regulation (IO4 = 0 mA to 1.0 mA) Regload4 – 5.0 20 mV – – 70 40 – – VF – 0.5 – Charge Pump Capacitor Drive Output Voltage Swing (Pin 8) High State (ISource = 1.0 mA) Low State (ISink = 1.0 mA) VOH VOL – – VBB – 0.25 0.15 – – Turn ON Delay Time (Battery Saver Input to 90% VO4 Output) tDLY4 – 4.0 10 ms Regload 1.46 1.5 1.54 V Threshold Voltage Low State Output (VO3 Decreasing) Hysteresis (VO3 Increasing) Vth(low) VH 2.5 40 2.6 60 2.7 100 V mV Output Sink Saturation (ISink = 100 µA, VO3 = 2.5 V to 1.0 V) VCE(sat) – 130 300 mV Turn ON Delay Time (ON/OFF Toggle Input to 90% VO3 Output) ms REGULATOR OUTPUT 4 (Pin 5) Power Supply Rejection Ratio f = 120 Hz f = 100 kHz Schottky Diode Forward Voltage Drop (Pins 7, 6, IF = 1.0 mA) PSRR 4 dB V V REFERENCE OUTPUT (Pin 12) Output Voltage (IO = 0 mA to 10 mA) MPU POWER UP RESET COMPARATOR (Pin 13) Internal Pull–up Resistance RPU 10 26 40 kΩ High State Output Voltage (VO3 = 2.8 V) VOH 0.95 VO3 VO3 – V NOTE: 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test. MOTOROLA ANALOG IC DEVICE DATA 3 MC33128 ELECTRICAL CHARACTERISTICS (VCC = 4.5 V, Cin = 33 µF with ESR ≤ 1.6 Ω, CO = 4.7 µF with ESR ≤ 4.5 Ω, IO1 = 30 mA, ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ IO2 = 60 mA, IO3 = 20 mA, IO4 = 1.0 mA, IOref = 10 mA [Note 2], TA = 25°C.) Characteristic Symbol Min Typ Max Unit 2.25 2.4 2.55 V – – – 2.6 270 8.0 4.0 330 12 mA µA µA LOW BATTERY SHUTDOWN COMPARATOR (Pin 16) Shutdown Threshold Voltage (VCC Decreasing, Pin 10 = Gnd) Vth(LBSC) TOTAL DEVICE (Pin 16) Power Supply Current (No Load On All Outputs) Operating Battery Saver Input High (Pin 9 = 2.0 V) Battery Saver Input Low (Pin 9 ≤ 0.8 V) Standby (After Power Down Input Strobe) NOTE: ICC 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test. Figure 1. Dropout Voltage versus Source Current Figure 2. Output 4 Voltage versus Source Current –3.0 VO , OUTPUT 4 VOLTAGE (V) 120 Output 3 Output 1 80 Output 2 VCC = 2.9 V TA = 25°C See Note 40 0 ∆Vref , OUTPUT VOLTAGE CHANGE (mV) VCC = 4.5 V –2.5 0 20 40 60 80 –2.0 VCC = 3.15 V –1.5 –1.0 –0.5 0 0 100 TA = 25°C See Note –1.0 –2.0 –3.0 –4.0 IO, OUTPUT SOURCE CURRENT (mA) IO, OUTPUT 4 SOURCE CURRENT (mA) Figure 3. Reference Output Voltage Change versus Source Current Figure 4. VBB Output Voltage Change versus Source Current –5.0 8.0 VCC = 4.5 V 0 VO ,VBB OUTPUT VOLTAGE (V) V in – VO , DROPOUT VOLTAGE (mV) 160 –10 –20 –30 –40 0 TA = 25°C See Note 5.0 10 15 20 Iref, REFERENCE SOURCE CURRENT (mA) 25 6.0 VCC = 3.15 V 4.0 2.0 TA = 25°C See Note 0 0 0.5 1.0 1.5 2.0 IO, VBB OUTPUT SOURCE CURRENT (mA) NOTE: All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test. 4 MOTOROLA ANALOG IC DEVICE DATA MC33128 OPERATING DESCRIPTION The MC33128 is a complete power management controller that is designed to interface the user to the system electronics via a microprocessor. Outputs Three low dropout voltage regulators are provided at outputs 1, 2 and 3. Outputs 1 and 2 were contemplated for independent powering of the systems analog and digital circuitry. This significantly reduces the possibility of digitally generated noise and spurious signals from coupling into the RF and analog circuits. The low dropout characteristic of Outputs 1 and 2 is achieved by applying a boosted battery voltage, VBB, to their respective driver transistors. This allows the output pass transistors to be driven into saturation when the battery voltage approaches 3.0 V. The VBB Output appears at Pin 4 and can be used to provide gate bias for enhancing external N channel MOSFET switches. Excessive loading of the VBB output will result in an increase in dropout voltage. Output 4 is derived from a voltage inverting charge pump circuit and is intended to provide the negative gate bias required for full depletion of RF gallium arsenide MESFETs. In personal communication system applications such as cellular telephone, negative gate bias is usually required by the antenna switch and power amplifier circuit blocks with a typical combined current of less than 1.0 mA. Output 4 can supply in excess of 2.0 mA, but there will be an increase in dropout voltage of Outputs 1, 2 and 3. Outputs 1, 2, 4, VBB Generator and Thermal Protection are all enabled and disabled in unison by the Battery Saver Input, Pin 9. The microprocessor can be programmed to significantly extend the system battery operating time by periodically enabling the receiver circuitry. Output 3 provides power to the microprocessor, flash EPROM and the system display. These blocks are enabled by the Power Up Input, Pin 11, and disabled by the Power Down Input, Pin 10. By having separate power up and power down inputs, the microprocessor can store any pending information before turning the system and then itself OFF. This allows a controlled or graceful shutdown. Note that the power down request is initiated by pressing the toggle switch while the system is “ON”. This action generates a microprocessor non–maskable interrupt that initiates the graceful shutdown. Battery Voltage Detection Reverse biasing and eventual failure of the lowest capacity cell in the battery pack can occur if the system is MOTOROLA ANALOG IC DEVICE DATA accidentally left on for an extended time period. To prevent this condition the following circuit blocks were incorporated. A means for low battery detection is accomplished by using the Reference Output, Pin 12, in conjunction with the microprocessor’s analog to digital converter input. A microprocessor output (LBO) can be designated to flash a display enunciator when a low battery condition exists. The Reference Output is 1.5 V ± 2.7% and is capable of sourcing in excess of 10 mA. The Power Up Reset Output, Pin 13, is designed to hold the microprocessor reset input low until the voltage at Output 3 rises above 2.66 V. This feature prevents the microprocessor from hanging or writing invalid information into its memory during power up. Notice that the output of the MPU Power Up Reset comparator also drives the base of transistor QPD. If Output 3 should fall below 2.6 V, due to an overload or a low battery condition, the comparator will drive QPD “ON”, causing its collector to pull high on the Power Down Input, immediately forcing the system into standby mode. Externally pulling down on Pin 13, base of QPD, will also force the system into standby mode. A redundant Low Battery Shutdown circuit is included. This circuit directly monitors the battery voltage and also forces the system into standby mode when the battery voltage falls below 2.4 V. To test the functionality of this circuit, the high state signal generated by transistor QPD must be clamped low, to prevent resetting the ON/OFF Latch. An external short or a pull–down, capable of sinking 2.0 mA at less than 0.8 V, must be connected to Pin 10. A Battery Latch circuit is designed into the IC to prevent the system from turning on when the batteries are inserted into the finished product. This feature is useful for the end customer as well as the equipment manufacturer. Upon initial application of battery voltage, the lower comparator (0.7 V threshold) forces the Battery Latch into a reset state with its “Q” output low. This in turn triggers a reset of the ON/OFF Latch via the OR gate and also locks out the set signal present at the upper input of the AND gate. As the voltage at Pin 11 rises above (VCC – 1.5 V), the set signal disappears, leaving the state of the ON/OFF Latch unchanged (reset). When the voltage at Pin 11 rises above (VCC – 1.0 V), the upper comparator forces the Battery Latch into a set state causing its “Q” output to go high. This allows the AND gate and the ON/OFF Latch to receive a set signal from Pin 11. The initial Battery Latch lockout time is controlled by the internal 20 kΩ resistor and the external 0.1 µF capacitor. 5 MC33128 Figure 5. MC33128 Block Diagram VBB Charge Pump Capacitor 3 0.22 VCC 16 2 Vbat 5.0V to 3.0V 33 VO3 VBB Generator Reference 4 1.27V Oscillator Logic Bias VBB 4.7 8 Output 4 0.1 Charge Pump Capacitor 20k 7 VCC–1.0V 1.0µA –2.5V Regulator Battery Latch S Standby Regulator 1 4.7 11 9 1.27V Standby Regulator 2 1 4.7 Q 10 R 1.27V MPU Power Up Reset Reference Output 12 Gnd Output 3 3.0V/20mA 14 VO3 6 Output 2 3.0V/60mA VCC MPU Regulator VO3 1.27V Low Battery Shutdown Output 1 3.0V/30mA VBB S Thermal Reference 1.5V/10mA V 1.27V O3 6 15 VCC–1.5V ON/OFF Latch Battery Saver Input Power Down Input Output 4 –2.5V/1.0mA VBB 1.27V 10pF ON/OFF Toggle 4.7 1.27V Q 0.7V R Power Up Input 5 4.7 QPD Reset Output 26k 40k 13 VDD R LBO Low Battery Output 1.27V MPU Ref Out Out A/D Out In In VSS Vbat MOTOROLA ANALOG IC DEVICE DATA MC33128 Figure 6. Voltage Tripler and Switch Driver 0.22 3 Vbat 2 16 33 0.1 VBB Generator Vbat 4 Oscillator VBB 4.7 Tripler Output 8 4.7 R 7 5 Tripler Output Voltage C1 RFB ON/OFF RL Load Turn ON/OFF Time Load Current (mA) VCC = 3.15 V VCC = 4.5 V 0 0.5 1.0 1.5 2.0 7.96 7.48 7.24 6.99 6.62 12.01 11.54 11.29 11.04 10.69 External Switch A low threshold N–channel MOSFET can be used to switch the transmitting power amplifier (RL) ON and OFF. To ensure that all of the available battery voltage appears across the load, the MOSFET must be fully enhanced over the system’s required operating voltage range. With the addition of two Schottky diodes and two capacitors, the VBB Generator can be made to function as a voltage tripler. The table in Figure 6 shows the output voltage characteristics of the tripler circuit. MOTOROLA ANALOG IC DEVICE DATA Controlled Turn ON/OFF Time C2 High RFB Critical RFB Low RFB In order to minimize adjacent channel splatter, the RF power amplifier must be turned ON and OFF in a controlled (soft) manner. The applied voltage rise and fall time, as well as the rate of change in rise and fall time, must be tailored to the amplifiers characteristics. The circuit consisting of resistors R, RFB, and capacitors C1 and C2 is a simple solution allowing the system designer a means to control the ON and OFF time as well as the waveshape. Feedback resistor RFB controls the waveshape. Capacitors C1 and C2 are usually of equal value. 7 MC33128 OUTLINE DIMENSIONS D SUFFIX PLASTIC PACKAGE CASE 751B–05 (SO–16) ISSUE J –A – 16 9 1 8 –B – NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. P 8 PL 0.25 (0.010) M B M G K F R X 45° C –T SEATING – PLANE M D 16 PL 0.25 (0.010) M T B S A S J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0° 7° 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0° 7° 0.229 0.244 0.010 0.019 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 8 ◊ *MC33128/D* MOTOROLA ANALOG IC DEVICE DATA MC33128/D