MOTOROLA MC33128

Order this document by MC33128/D
The MC33128 is a power management controller specifically designed for
use in battery powered cellular telephone and pager applications. This
device contains all of the active functions required to interface the user to the
system electronics via a microprocessor. This integrated circuit consists of a
low dropout voltage regulator with power–up reset for MPU power, two low
dropout voltage regulators for independant powering of analog and digital
circuitry, and a negative charge pump voltage regulator for full depletion of
gallium arsenide MESFETs.
Also included are protective system shutdown features consisting of a
battery latch that is activated upon battery insertion, low battery voltage
shutdown, and a thermal over temperature detector. This device is available
in a 16–pin narrow body surface mount plastic package.
• Three Positive Regulated Outputs Featuring Low Dropout Voltage
•
•
•
•
•
•
•
POWER MANAGEMENT
CONTROLLER
SEMICONDUCTOR
TECHNICAL DATA
Negative Regulated Output for Full Depletion of GaAs MESFETs
MPU Power Up Reset
16
Battery Latch
1
Low Battery Shutdown
Pinned–Out Reference for MPU A/D Converter
D SUFFIX
PLASTIC PACKAGE
CASE 751B
(SO–16)
Low Start–Up and Operating Current
Thermal Protection
Simplified Block Diagram
VCC
16
3
2
ON/OFF
Toggle
4
VBB Output
Charge
Pump
Output 4
CPC
7
Control
Logic
Low Battery
Shutdown
Thermal
Protection
5
Output 4
–2.5 V/1.0 mA
Standby
Regulator 1
15
Output 1
3.0 V/30 mA
Gnd 6
1
Output 2
3.0 V/60 mA
Output 4 Charge Pump 7
Capacitor Input
Output 4 Charge Pump 8
Capacitor Drive
6 12
14
MPU Power
Up Reset
13
Reference Output
14 Output 3
VBB Output 4
Output 3
3.0 V/20 mA
13 Reset Output
12 Reference Output
11 Power Up Input
10 Power Down Input
9
Battery Saver Input
(Top View)
R VDD
I MPU
O
O
I V
SS
ORDERING INFORMATION
Device
Operating
Temperature Range
Package
MC33128D
TA = – 30° to +60°C
SO–16
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
15 Output 1
Output 4 5
MPU
Regulator
Reference
Gnd
VBB Charge Pump
2
Capacitor Input
VBB Charge Pump 3
Capacitor Drive
Negative
Standby
Regulator
Standby
Regulator 2
16 VCC
Output 2 1
8
+
11
10
9
PIN CONNECTIONS
VBB CPC
Rev 0
1
MC33128
MAXIMUM RATINGS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Rating
Symbol
Value
Unit
VCC
+7.0
V
Vin
– 1.0 to
VCC + 1.0
V
Charge Pump Capacitor Drive Outputs,
Source or Sink Current (Pins 3, 8)
IO(max)
30
mA
Schottky Diode Forward Current
(Pins 16 to 2, 2 to 4, and 7 to 6)
IF(max)
30
mA
Output Source Current (Note 1)
Regulator Output 1 (Pin 15)
Regulator Output 2 (Pin 1)
Regulator Output 3 (Pin 14)
Regulator Output 4 (Pin 5)
Reference (Pin 12)
ISource
Power Supply Input Voltage (Pin 16)
Input Voltage Range Power Up, Power Down,
and Battery Saver Inputs (Pins 11, 10, 9)
mA
150
250
50
10
40
Reset Sink Current (Pin 13)
ISink
5.0
mA
Power Dissipation and Thermal Characteristic
D Suffix, Plastic Package Case 751B
Maximum Power Dissipation @ TA = 50°C
Thermal Resistance, Junction–to–Air
PD
R∅JA
560
180
mW
°C/W
TJ
+150
°C
TA
– 30 to +60
°C
Tstg
– 60 to +150
°C
Operating Junction Temperature
Operating Ambient Temperature (Note 1)
Storage Temperature
ELECTRICAL CHARACTERISTICS (VCC = 4.5 V, Cin = 33 µF with ESR ≤ 1.6 Ω, CO = 4.7 µF with ESR ≤ 4.5 Ω, IO1 = 30 mA,
IO2 = 60 mA, IO3 = 20 mA, IO4 = 1.0 mA, IOref = 10 mA [Note 2], TA = 25°C.)
Characteristic
Symbol
Min
Typ
Max
Unit
VCC – 1.5
VCC – 1.2
VCC – 0.8
V
POWER UP INPUT (Pin 11)
Low State Input Threshold Voltage
Vth(toggle)
Iin(toggle)
–
–
120
µA
RPU(ON/OFF)
10
20
30
kΩ
High State Input Threshold Voltage (Places IC in Standby Mode)
Vth(PDI)
1.3
1.5
1.8
V
Input Current (Vin = VO3)
Iin(PDI)
–
–
120
µA
High State Input Threshold Voltage (VBB, VO1, VO2, VO4 Activated)
Vth(BSI)
1.2
1.4
1.7
V
Input Current (Vin = VO3)
Iin(BSI)
–
–
120
µA
fOSC
85
95
105
kHz
DC
35
50
65
%
VOH
VOL
–
–
VCC – 0.9
0.15
–
–
VF
IL
–
–
0.5
0.01
–
–
–
–
7.9
4.4
–
–
Input Current (Vin = VO3)
Internal Pull Up Resistance
POWER DOWN INPUT (Pin 10)
BATTERY SAVER INPUT (Pin 9)
VBB GENERATOR
Oscillator Frequency
Oscillator Duty Cycle
Charge Pump Capacitor Drive Output Voltage Swing (Pin 3)
High State (ISource = 3.0 mA)
Low State (ISink = 3.0 mA)
Schottky Diode (Pins 2, 4)
Forward Voltage Drop (IF = 3.0 mA)
Reverse Leakage Current (VBB = 7.0 V)
Output Voltage (Pin 4)
VCC = 4.5 V
VCC = 2.9 V
V
VO(VBB)
V
µA
V
NOTES: 1. Maximum package power dissipation limits must be observed.
2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.
2
MOTOROLA ANALOG IC DEVICE DATA
MC33128
ELECTRICAL CHARACTERISTICS (VCC = 4.5 V, Cin = 33 µF with ESR ≤ 1.6 Ω, CO = 4.7 µF with ESR ≤ 4.5 Ω, IO1 = 30 mA,
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
IO2 = 60 mA, IO3 = 20 mA, IO4 = 1.0 mA, IOref = 10 mA [Note 2], TA = 25°C.)
Characteristic
Symbol
Min
Typ
Max
Unit
REGULATOR OUTPUT 1 (Pin 15)
Output Voltage (VCC = 3.15 V to 4.5 V, IO1 = 30 mA)
Regline1
2.9
3.0
3.1
V
Load Regulation (IO1 = 0 mA to 35 mA)
Regload1
–
5.0
30
mV
Dropout Voltage (VCC = 2.9 V, IO1 = 30 mA)
Vin – VO1
–
–
0.1
Power Supply Rejection Ratio
f = 120 Hz
f = 100 kHz
Turn ON Delay Time (Battery Saver Input to 90% VO1 Output)
PSRR 1
V
dB
–
–
70
40
–
–
tDLY1
–
0.2
2.0
ms
REGULATOR OUTPUT 2 (Pin 1)
Output Voltage (VCC = 3.15 V to 4.5 V, IO2 = 60 mA)
Reg
2.9
3.0
3.1
V
Load Regulation (IO2 = 0 mA to 60 mA)
Regload2
–
5.0
40
mV
Dropout Voltage (VCC = 2.9 V, IO2 = 60 mA)
Vin – VO2
–
–
0.11
Power Supply Rejection Ratio
f = 120 Hz
f = 100 kHz
PSRR 2
V
dB
–
–
70
40
–
–
tDLY2
–
0.2
2.0
Output Voltage (VCC = 3.15 V to 4.5 V, IO3 = 20 mA)
Regline3
2.9
3.0
3.1
V
Load Regulation (IO3 = 0 mA to 20 mA)
Regload3
–
5.0
25
mV
Dropout Voltage (VCC = 2.9 V, IO3 = 20 mA)
Vin – VO3
–
–
0.1
Turn ON Delay Time (Battery Saver Input to 90% VO2 Output)
ms
REGULATOR OUTPUT 3 (Pin 14)
Power Supply Rejection Ratio
f = 120 Hz
f = 100 kHz
PSRR 3
V
dB
–
–
70
40
–
–
tDLY3
–
0.5
3.0
Output Voltage (VCC = 3.15 V to 4.5 V, IO4 = 1.0 mA)
Regline4
– 2.35
– 2.5
– 2.65
V
Load Regulation (IO4 = 0 mA to 1.0 mA)
Regload4
–
5.0
20
mV
–
–
70
40
–
–
VF
–
0.5
–
Charge Pump Capacitor Drive Output Voltage Swing (Pin 8)
High State (ISource = 1.0 mA)
Low State (ISink = 1.0 mA)
VOH
VOL
–
–
VBB – 0.25
0.15
–
–
Turn ON Delay Time (Battery Saver Input to 90% VO4 Output)
tDLY4
–
4.0
10
ms
Regload
1.46
1.5
1.54
V
Threshold Voltage
Low State Output (VO3 Decreasing)
Hysteresis (VO3 Increasing)
Vth(low)
VH
2.5
40
2.6
60
2.7
100
V
mV
Output Sink Saturation (ISink = 100 µA, VO3 = 2.5 V to 1.0 V)
VCE(sat)
–
130
300
mV
Turn ON Delay Time (ON/OFF Toggle Input to 90% VO3 Output)
ms
REGULATOR OUTPUT 4 (Pin 5)
Power Supply Rejection Ratio
f = 120 Hz
f = 100 kHz
Schottky Diode Forward Voltage Drop (Pins 7, 6, IF = 1.0 mA)
PSRR 4
dB
V
V
REFERENCE OUTPUT (Pin 12)
Output Voltage (IO = 0 mA to 10 mA)
MPU POWER UP RESET COMPARATOR (Pin 13)
Internal Pull–up Resistance
RPU
10
26
40
kΩ
High State Output Voltage (VO3 = 2.8 V)
VOH
0.95 VO3
VO3
–
V
NOTE:
2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.
MOTOROLA ANALOG IC DEVICE DATA
3
MC33128
ELECTRICAL CHARACTERISTICS (VCC = 4.5 V, Cin = 33 µF with ESR ≤ 1.6 Ω, CO = 4.7 µF with ESR ≤ 4.5 Ω, IO1 = 30 mA,
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
IO2 = 60 mA, IO3 = 20 mA, IO4 = 1.0 mA, IOref = 10 mA [Note 2], TA = 25°C.)
Characteristic
Symbol
Min
Typ
Max
Unit
2.25
2.4
2.55
V
–
–
–
2.6
270
8.0
4.0
330
12
mA
µA
µA
LOW BATTERY SHUTDOWN COMPARATOR (Pin 16)
Shutdown Threshold Voltage (VCC Decreasing, Pin 10 = Gnd)
Vth(LBSC)
TOTAL DEVICE (Pin 16)
Power Supply Current (No Load On All Outputs)
Operating
Battery Saver Input High (Pin 9 = 2.0 V)
Battery Saver Input Low (Pin 9 ≤ 0.8 V)
Standby (After Power Down Input Strobe)
NOTE:
ICC
2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.
Figure 1. Dropout Voltage
versus Source Current
Figure 2. Output 4 Voltage
versus Source Current
–3.0
VO , OUTPUT 4 VOLTAGE (V)
120
Output 3
Output 1
80
Output 2
VCC = 2.9 V
TA = 25°C
See Note
40
0
∆Vref , OUTPUT VOLTAGE CHANGE (mV)
VCC = 4.5 V
–2.5
0
20
40
60
80
–2.0
VCC = 3.15 V
–1.5
–1.0
–0.5
0
0
100
TA = 25°C
See Note
–1.0
–2.0
–3.0
–4.0
IO, OUTPUT SOURCE CURRENT (mA)
IO, OUTPUT 4 SOURCE CURRENT (mA)
Figure 3. Reference Output
Voltage Change versus Source Current
Figure 4. VBB Output
Voltage Change versus Source Current
–5.0
8.0
VCC = 4.5 V
0
VO ,VBB OUTPUT VOLTAGE (V)
V in – VO , DROPOUT VOLTAGE (mV)
160
–10
–20
–30
–40
0
TA = 25°C
See Note
5.0
10
15
20
Iref, REFERENCE SOURCE CURRENT (mA)
25
6.0
VCC = 3.15 V
4.0
2.0
TA = 25°C
See Note
0
0
0.5
1.0
1.5
2.0
IO, VBB OUTPUT SOURCE CURRENT (mA)
NOTE: All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.
4
MOTOROLA ANALOG IC DEVICE DATA
MC33128
OPERATING DESCRIPTION
The MC33128 is a complete power management
controller that is designed to interface the user to the system
electronics via a microprocessor.
Outputs
Three low dropout voltage regulators are provided at outputs
1, 2 and 3. Outputs 1 and 2 were contemplated for independent
powering of the systems analog and digital circuitry. This
significantly reduces the possibility of digitally generated noise
and spurious signals from coupling into the RF and analog
circuits. The low dropout characteristic of Outputs 1 and 2 is
achieved by applying a boosted battery voltage, VBB, to their
respective driver transistors. This allows the output pass
transistors to be driven into saturation when the battery voltage
approaches 3.0 V. The VBB Output appears at Pin 4 and can be
used to provide gate bias for enhancing external N channel
MOSFET switches. Excessive loading of the VBB output will
result in an increase in dropout voltage.
Output 4 is derived from a voltage inverting charge pump
circuit and is intended to provide the negative gate bias
required for full depletion of RF gallium arsenide MESFETs.
In personal communication system applications such as
cellular telephone, negative gate bias is usually required by
the antenna switch and power amplifier circuit blocks with a
typical combined current of less than 1.0 mA. Output 4 can
supply in excess of 2.0 mA, but there will be an increase in
dropout voltage of Outputs 1, 2 and 3.
Outputs 1, 2, 4, VBB Generator and Thermal Protection are
all enabled and disabled in unison by the Battery Saver Input,
Pin 9. The microprocessor can be programmed to
significantly extend the system battery operating time by
periodically enabling the receiver circuitry.
Output 3 provides power to the microprocessor, flash
EPROM and the system display. These blocks are enabled
by the Power Up Input, Pin 11, and disabled by the Power
Down Input, Pin 10. By having separate power up and power
down inputs, the microprocessor can store any pending
information before turning the system and then itself OFF.
This allows a controlled or graceful shutdown. Note that the
power down request is initiated by pressing the toggle switch
while the system is “ON”. This action generates a
microprocessor non–maskable interrupt that initiates the
graceful shutdown.
Battery Voltage Detection
Reverse biasing and eventual failure of the lowest
capacity cell in the battery pack can occur if the system is
MOTOROLA ANALOG IC DEVICE DATA
accidentally left on for an extended time period. To prevent
this condition the following circuit blocks were incorporated.
A means for low battery detection is accomplished by
using the Reference Output, Pin 12, in conjunction with the
microprocessor’s analog to digital converter input. A
microprocessor output (LBO) can be designated to flash a
display enunciator when a low battery condition exists. The
Reference Output is 1.5 V ± 2.7% and is capable of sourcing
in excess of 10 mA.
The Power Up Reset Output, Pin 13, is designed to hold
the microprocessor reset input low until the voltage at Output 3
rises above 2.66 V. This feature prevents the microprocessor
from hanging or writing invalid information into its memory
during power up. Notice that the output of the MPU Power Up
Reset comparator also drives the base of transistor QPD. If
Output 3 should fall below 2.6 V, due to an overload or a low
battery condition, the comparator will drive QPD “ON”,
causing its collector to pull high on the Power Down Input,
immediately forcing the system into standby mode.
Externally pulling down on Pin 13, base of QPD, will also force
the system into standby mode.
A redundant Low Battery Shutdown circuit is included.
This circuit directly monitors the battery voltage and also
forces the system into standby mode when the battery
voltage falls below 2.4 V. To test the functionality of this
circuit, the high state signal generated by transistor QPD must
be clamped low, to prevent resetting the ON/OFF Latch. An
external short or a pull–down, capable of sinking 2.0 mA at
less than 0.8 V, must be connected to Pin 10.
A Battery Latch circuit is designed into the IC to prevent
the system from turning on when the batteries are inserted
into the finished product. This feature is useful for the end
customer as well as the equipment manufacturer. Upon initial
application of battery voltage, the lower comparator (0.7 V
threshold) forces the Battery Latch into a reset state with its
“Q” output low. This in turn triggers a reset of the ON/OFF
Latch via the OR gate and also locks out the set signal
present at the upper input of the AND gate. As the voltage at
Pin 11 rises above (VCC – 1.5 V), the set signal disappears,
leaving the state of the ON/OFF Latch unchanged (reset).
When the voltage at Pin 11 rises above (VCC – 1.0 V), the
upper comparator forces the Battery Latch into a set state
causing its “Q” output to go high. This allows the AND gate
and the ON/OFF Latch to receive a set signal from Pin 11.
The initial Battery Latch lockout time is controlled by the
internal 20 kΩ resistor and the external 0.1 µF capacitor.
5
MC33128
Figure 5. MC33128 Block Diagram
VBB Charge
Pump Capacitor 3
0.22
VCC
16
2
Vbat
5.0V to 3.0V
33
VO3
VBB Generator
Reference
4
1.27V
Oscillator
Logic
Bias
VBB
4.7
8
Output 4
0.1 Charge Pump Capacitor
20k
7
VCC–1.0V
1.0µA
–2.5V
Regulator
Battery
Latch
S
Standby
Regulator 1
4.7
11
9
1.27V
Standby
Regulator 2
1
4.7
Q
10
R
1.27V
MPU
Power Up
Reset
Reference
Output
12
Gnd
Output 3
3.0V/20mA
14
VO3
6
Output 2
3.0V/60mA
VCC
MPU
Regulator
VO3 1.27V
Low Battery
Shutdown
Output 1
3.0V/30mA
VBB
S
Thermal
Reference
1.5V/10mA
V
1.27V O3
6
15
VCC–1.5V
ON/OFF
Latch
Battery
Saver
Input
Power
Down
Input
Output 4
–2.5V/1.0mA
VBB
1.27V
10pF
ON/OFF
Toggle
4.7
1.27V
Q
0.7V
R
Power Up
Input
5
4.7
QPD
Reset
Output
26k
40k
13
VDD
R
LBO
Low Battery
Output
1.27V
MPU
Ref
Out
Out
A/D
Out
In
In VSS
Vbat
MOTOROLA ANALOG IC DEVICE DATA
MC33128
Figure 6. Voltage Tripler and Switch Driver
0.22
3
Vbat
2
16
33
0.1
VBB Generator
Vbat
4
Oscillator
VBB
4.7
Tripler
Output
8
4.7
R
7
5
Tripler Output Voltage
C1
RFB
ON/OFF
RL
Load Turn ON/OFF Time
Load Current
(mA)
VCC = 3.15 V
VCC = 4.5 V
0
0.5
1.0
1.5
2.0
7.96
7.48
7.24
6.99
6.62
12.01
11.54
11.29
11.04
10.69
External Switch
A low threshold N–channel MOSFET can be used to
switch the transmitting power amplifier (RL) ON and OFF. To
ensure that all of the available battery voltage appears
across the load, the MOSFET must be fully enhanced over
the system’s required operating voltage range. With the
addition of two Schottky diodes and two capacitors, the VBB
Generator can be made to function as a voltage tripler. The
table in Figure 6 shows the output voltage characteristics of
the tripler circuit.
MOTOROLA ANALOG IC DEVICE DATA
Controlled
Turn ON/OFF
Time
C2
High RFB
Critical RFB
Low RFB
In order to minimize adjacent channel splatter, the RF
power amplifier must be turned ON and OFF in a controlled
(soft) manner. The applied voltage rise and fall time, as well
as the rate of change in rise and fall time, must be tailored to
the amplifiers characteristics. The circuit consisting of
resistors R, RFB, and capacitors C1 and C2 is a simple
solution allowing the system designer a means to control the
ON and OFF time as well as the waveshape. Feedback
resistor RFB controls the waveshape. Capacitors C1 and C2
are usually of equal value.
7
MC33128
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751B–05
(SO–16)
ISSUE J
–A
–
16
9
1
8
–B
–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
P 8 PL
0.25 (0.010)
M
B
M
G
K
F
R X 45°
C
–T
SEATING
–
PLANE
M
D 16 PL
0.25 (0.010)
M
T B
S
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80 10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0°
7°
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386 0.393
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0°
7°
0.229 0.244
0.010 0.019
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
8
◊
*MC33128/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC33128/D