ONSEMI MC33363P

Order this document by MC33363/D
The MC33363 is a monolithic high voltage switching regulator that is
specifically designed to operate from a rectified 240 Vac line source. This
integrated circuit features an on–chip 700 V/1.0 A SenseFET power switch,
450 V active off–line startup FET, duty cycle controlled oscillator, current
limiting comparator with a programmable threshold and leading edge
blanking, latching pulse width modulator for double pulse suppression, high
gain error amplifier, and a trimmed internal bandgap reference. Protective
features include cycle–by–cycle current limiting, input undervoltage lockout
with hysteresis, output overvoltage protection, and thermal shutdown. This
device is available in a 16–lead dual–in–line and wide body surface mount
packages.
• On–Chip 700 V, 1.0 A SenseFET Power Switch
•
•
•
•
•
•
•
•
HIGH VOLTAGE
OFF–LINE
SWITCHING REGULATOR
SEMICONDUCTOR
TECHNICAL DATA
16
1
Rectified 240 Vac Line Source Operation
DW SUFFIX
PLASTIC PACKAGE
CASE 751N
(SOP–16L)
On–Chip 450 V Active Off–Line Startup FET
Latching PWM for Double Pulse Suppression
Cycle–By–Cycle Current Limiting
Input Undervoltage Lockout with Hysteresis
Output Overvoltage Protection Comparator
Trimmed Internal Bandgap Reference
Internal Thermal Shutdown
16
1
P SUFFIX
PLASTIC PACKAGE
CASE 648E
(DIP–16)
Simplified Application
AC Input
Startup Input
Regulator
Output
1
Startup
Mirror
VCC
Reg
8
UVLO
6
OVP
RT
CT
PIN CONNECTIONS
PWM Latch
Osc
7
Driver
S
Q
3
Overvoltage
Protection
Input
11
16
Startup Input
1
VCC
3
Ipk
4
13
5
12
RT
6
11
CT
7
10
Regulator Output
8
9
Gnd
Power Switch
Drain
LEB
Gnd
Overvoltage
Protection Input
Voltage Feedback
Input
Compensation
(Top View)
Compensation
Thermal
Power Switch
Drain
DC Output
R
PWM
16
9
EA
Gnd
4, 5, 12, 13
10
Voltage
Feedback
Input
ORDERING INFORMATION
Device
Operating
Temperature Range
MC33363DW
This device contains 221 active transistors.
MC33363P
SOP–16L
TJ = –25° to +125°C
 Motorola, Inc. 1998
MOTOROLA ANALOG IC DEVICE DATA
Package
DIP–16
Rev 3
1
MC33363
MAXIMUM RATINGS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Rating
Power Switch (Pin 16)
Drain Voltage
Drain Current
Startup Input Voltage (Pin 1, Note 1)
Pin 3 = Gnd
Pin 3 ≤ 1000 µF to ground
Symbol
Value
Unit
VDS
IDS
700
1.0
V
A
Vin
V
400
500
Power Supply Voltage (Pin 3)
VCC
40
V
Input Voltage Range
Voltage Feedback Input (Pin 10)
Compensation (Pin 9)
Overvoltage Protection Input (Pin 11)
RT (Pin 6)
CT (Pin 7)
VIR
–1.0 to Vreg
V
Thermal Characteristics
P Suffix, Dual–In–Line Case 648E
Thermal Resistance, Junction–to–Air
Thermal Resistance, Junction–to–Case
(Pins 4, 5, 12, 13)
DW Suffix, Surface Mount Case 751N
Thermal Resistance, Junction–to–Air
Thermal Resistance, Junction–to–Case
(Pins 4, 5, 12, 13)
Refer to Figures 15 and NO TAG for additional
thermal information.
Operating Junction Temperature
Storage Temperature
NOTE:
°C/W
RθJA
RθJC
80
15
RθJA
RθJC
95
15
TJ
– 25 to +150
°C
Tstg
– 55 to +150
°C
ESD data available upon request.
ELECTRICAL CHARACTERISTICS (VCC = 20 V, RT = 10 k, CT = 390 pF, CPin 8 = 1.0 µF, for typical values TJ = 25°C,
for min/max values TJ is the operating junction temperature range that applies (Note 2), unless otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (IO = 0 mA, TJ = 25°C)
Vreg
5.5
6.5
7.5
V
Line Regulation (VCC = 20 V to 40 V)
Regline
–
30
500
mV
Load Regulation (IO = 0 mA to 10 mA)
Regload
–
44
200
mV
Vreg
5.3
–
8.0
V
REGULATOR (Pin 8)
Total Output Variation over Line, Load, and Temperature
OSCILLATOR (Pin 7)
Frequency
CT = 390 pF
TJ = 25°C (VCC = 20 V)
TJ = Tlow to Thigh (VCC = 20 V to 40 V)
CT = 2.0 nF
TJ = 25°C (VCC = 20 V)
TJ = Tlow to Thigh (VCC = 20 V to 40 V)
fOSC
kHz
260
255
285
–
310
315
60
59
67.5
–
75
76
∆fOSC/∆V
–
0.1
2.0
kHz
VFB
2.52
2.6
2.68
V
Regline
–
0.6
5.0
mV
IIB
–
20
500
nA
Open Loop Voltage Gain (TJ = 25°C)
AVOL
–
82
–
dB
Gain Bandwidth Product (f = 100 kHz, TJ = 25°C)
GBW
–
1.0
–
MHz
Frequency Change with Voltage (VCC = 20 V to 40 V)
ERROR AMPLIFIER (Pins 9, 10)
Voltage Feedback Input Threshold
Line Regulation (VCC = 20 V to 40 V, TJ = 25°C)
Input Bias Current (VFB = 2.6 V)
NOTES: 1. Maximum power dissipation limits must be observed.
2. Tested junction temperature range for the MC33363:
Tlow = –25°C
Thigh = +125°C
2
MOTOROLA ANALOG IC DEVICE DATA
MC33363
ELECTRICAL CHARACTERISTICS (continued) (VCC = 20 V, RT = 10 k, CT = 390 pF, CPin 8 = 1.0 µF, for typical values TJ = 25°C,
for min/max values TJ is the operating junction temperature range that applies (Note 2), unless otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Characteristic
Symbol
Min
Typ
Max
Unit
VOH
VOL
4.0
–
5.3
0.2
–
0.35
Input Threshold Voltage
Vth
2.47
2.6
2.73
V
Input Bias Current (Vin = 2.6 V)
IIB
–
100
500
nA
DC(max)
DC(min)
48
–
50
0
52
0
–
–
14
–
17
32
ID(off)
–
0.2
50
µA
Rise Time
tr
–
50
–
ns
Fall Time
tf
–
50
–
ns
Ilim
0.5
0.72
0.9
A
–
–
20
6.0
–
–
ERROR AMPLIFIER (Pins 9, 10)
Output Voltage Swing
High State (ISource = 100 µA, VFB < 2.0 V)
Low State (ISink = 100 µA, VFB > 3.0 V)
V
OVERVOLTAGE DETECTION (Pin 11)
PWM COMPARATOR (Pins 7, 9)
Duty Cycle
Maximum (VFB = 0 V)
Minimum (VFB = 2.7 V)
%
POWER SWITCH (Pin 16)
Drain–Source On–State Resistance (ID = 200 mA)
TJ = 25°C
TJ = Tlow to Thigh
Ω
RDS(on)
Drain–Source Off–State Leakage Current (VDS = 700 V)
OVERCURRENT COMPARATOR (Pin 16)
Current Limit Threshold (RT = 10 k)
STARTUP CONTROL (Pin 1)
Peak Startup Current (Vin = 400 V)
VCC = 0 V
VCC = (Vth(on) – 0.2 V)
Istart
mA
Off–State Leakage Current (Vin = 50 V, VCC = 20 V)
ID(off)
–
40
200
µA
Vth(on)
11
15.2
18
V
VCC(min)
7.5
9.5
11.5
V
–
–
0.25
3.2
0.5
5.0
UNDERVOLTAGE LOCKOUT (Pin 3)
Startup Threshold (VCC Increasing)
Minimum Operating Voltage After Turn–On
TOTAL DEVICE (Pin 3)
ICC
Figure 1. Oscillator Frequency
versus Timing Resistor
f OSC , OSCILLATOR FREQUENCY (Hz)
1.0 M
CT = 100 pF
VCC = 20 V
TA = 25°C
500 k C = 200 pF
T
200 k CT = 500 pF
100 k CT = 1.0 nF
C = 2.0 nF
50 k T
C = 5.0 nF
20 k T
CT = 10 nF
10 k
7.0
10
15
20
30
RT, TIMING RESISTOR (kΩ)
MOTOROLA ANALOG IC DEVICE DATA
50
70
I PK, POWER SWITCH PEAK DRAIN CURRENT (A)
Power Supply Current
Startup (VCC = 10 V, Pin 1 Open)
Operating
mA
Figure 2. Power Switch Peak Drain Current
versus Timing Resistor
1.0
VCC = 20 V
CT = 1.0 µF
TA = 25°C
0.8
0.6
0.4
0.2
Inductor supply voltage and inductance value are
adjusted so that Ipk turn–off is achieved at 5.0 µs.
0.1
7.0
10
15
20
30
40
70
50
RT, TIMING RESISTOR (kΩ)
3
MC33363
Figure 4. Maximum Output Duty Cycle
versus Timing Resistor Ratio
Dmax, MAXIMUM OUTPUT DUTY CYCLE (%)
Figure 3. Oscillator Charge/Discharge
Current versus Timing Resistor
0.5
0.3
0.2
0.15
0.1
10
15
20
30
50
70
60
50
40
RC/RT Ratio
Charge Resistor
Pin 6 to Vreg
30
1.0
2.0
3.0
5.0
7.0
Figure 5. Error Amp Open Loop Gain and
Phase versus Frequency
Figure 6. Error Amp Output Saturation
Voltage versus Load Current
VCC = 20 V
VO = 1.0 to 4.0 V
RL = 5.0 MΩ
CL = 2.0 pF
TA = 25°C
80
Gain
60
0
30
60
Phase
40
90
20
120
0
150
100
1.0 k
10 k
100 k
1.0 M
180
10 M
Source Saturation
(Load to Ground)
–1.0
Vref
– 2.0
2.0
Sink Saturation
(Load to Vref)
1.0
VCC = 20 V
TA = 25°C
Gnd
0
0
0.2
0.4
0.6
0.8
IO, OUTPUT LOAD CURRENT (mA)
Figure 7. Error Amplifier Small Signal
Transient Response
Figure 8. Error Amplifier Large Signal
Transient Response
VCC = 20 V
AV = –1.0
CL = 10 pF
TA = 25°C
1.0
VCC = 20 V
AV = –1.0
CL = 10 pF
TA = 25°C
0.5 V/DIV
3.00 V
20 mV/DIV
1.75 V
10
0
f, FREQUENCY (Hz)
1.80 V
1.75 V
0.50 V
1.70 V
1.0 µs/DIV
4
VCC = 20 V
CT = 2.0 nF
TA = 25°C
RD/RT Ratio
Discharge Resistor
Pin 6 to Gnd
TIMING RESISTOR RATIO
100
– 20
10
70
RT, TIMING RESISTOR (kΩ)
Vsat , OUTPUT SATURATION VOLTAGE (V)
0.08
7.0
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
VCC = 20 V
TA = 25°C
θ, EXCESS PHASE (DEGREES)
I chg /I dscg , OSCILLATOR
CHARGE/DISCHARGE CURRENT (mA)
0.8
1.0 µs/DIV
MOTOROLA ANALOG IC DEVICE DATA
Figure 10. Peak Startup Current
versus Power Supply Voltage
Figure 9. Regulator Output Voltage
Change versus Source Current
20
0
– 20
– 40
– 60
– 80
VPin 1 = 400 V
TA = 25°C
I pk , PEAK STARTUP CURRENT (mA)
VCC = 20 V
RT = 10 k
CPIN 8 = 1.0 µF
TA = 25°C
10
Pulse tested with an on–time of 20 µs to 300 µs
at < 1.0% duty cycle. The on–time is adjusted at
Pin 1 for a maximum peak current out of Pin 3.
0
4.0
0
8.0
12
16
20
4.0
6.0
8.0
10
12
Figure 11. Power Switch Drain–Source
On–Resistance versus Temperature
Figure 12. Power Switch
Drain–Source Capacitance versus Voltage
ID = 200 mA
24
16
8.0
Pulse tested at 5.0 ms with < 1.0% duty cycle
so that TJ is as close to TA as possible.
–25
0
25
50
75
100
125
VCC = 20 V
TA = 25°C
120
80
40
0
1.0
150
COSS measured at 1.0 MHz with 50 mVpp.
10
100
1000
VDS, DRAIN–SOURCE VOLTAGE (V)
Figure 13. Supply Current versus Supply Voltage
Figure 14. DW and P Suffix Transient
Thermal Resistance
100
2.4
Rθ JA , THERMAL RESISTANCE
JUNCTION–TO–AIR (°C/W)
CT = 390 pF
CT = 2.0 nF
1.6
RT = 10 k
Pin 1 = Open
Pin 4, 5, 10, 11,
12, 13 = Gnd
TA = 25°C
0.8
0
14
160
TA, AMBIENT TEMPERATURE (°C)
3.2
I CC, SUPPLY CURRENT (mA)
2.0
VCC, POWER SUPPLY VOLTAGE (V)
32
0
–50
0
Ireg, REGULATOR SOURCE CURRENT (mA)
COSS, DRAIN–SOURCE CAPACITANCE (pF)
R DS(on), DRAIN–SOURCE ON–RESISTANCE (Ω )
∆ V reg, REGULATOR VOLTAGE CHANGE (mV)
MC33363
0
10
20
VCC, SUPPLY VOLTAGE (V)
MOTOROLA ANALOG IC DEVICE DATA
30
40
L = 12.7 mm of 2.0 oz.
copper. Refer to Figures
15 and NO TAG.
10
1.0
0.01
0.1
1.0
10
100
t, TIME (s)
5
MC33363
90
2.4
ÏÏÏ
ÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
80
Printed circuit board heatsink example
70
2.0 oz
Copper
L
60
L
3.0 mm
Graphs represent symmetrical layout
50
2.0
1.6
1.2
0.8
RθJA
0.4
40
30
10
0
20
30
40
0
50
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
100
5.0
Printed circuit board heatsink example
80
L
RθJA
60
4.0
2.0 oz
Copper
L
3.0 mm
Graphs represent symmetrical layout
3.0
40
2.0
PD(max) for TA = 70°C
20
0
0
10
L, LENGTH OF COPPER (mm)
20
1.0
30
40
0
50
P D , MAXIMUM POWER DISSIPATION (W)
Rθ JA , THERMAL RESISTANCE
JUNCTION–TO–AIR (°C/W)
PD(max) for TA = 50°C
Figure 16. P Suffix (DIP–16) Thermal Resistance and
Maximum Power Dissipation versus P.C.B. Copper Length
R θ JA, THERMAL RESISTANCE
JUNCTION–TO–AIR (°C/W)
2.8
100
PD, MAXIMUM POWER DISSIPATION (W)
Figure 15. DW Suffix (SOP–16L) Thermal Resistance and
Maximum Power Dissipation versus P.C.B. Copper Length
L, LENGTH OF COPPER (mm)
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
PIN FUNCTION DESCRIPTION
Pin
Description
1
Startup Input
This pin connects directly to the rectified ac line voltage source. Internally Pin 1 is tied to the drain
of a high voltage startup MOSFET. During startup, the MOSFET supplies internal bias, and charges
an external capacitor that connects from the VCC pin to ground.
2
–
This pin has been omitted for increased spacing between the rectified ac line voltage on Pin 1 and
the VCC potential on Pin 3.
3
VCC
This is the positive supply voltage input. During startup, power is supplied to this input from Pin 1.
When VCC reaches the UVLO upper threshold, the startup MOSFET turns off and power is supplied
from an auxiliary transformer winding.
Ground
These pins are the control circuit grounds. They are part of the IC lead frame and provide a thermal
path from the die to the printed circuit board.
6
RT
Resistor RT connects from this pin to ground. The value selected will program the Current Limit
Comparator threshold and affect the Oscillator frequency.
7
CT
Capacitor CT connects from this pin to ground. The value selected, in conjunction with resistor RT,
programs the Oscillator frequency.
8
Regulator Output
This 6.5 V output is available for biasing external circuitry. It requires an external bypass capacitor
of at least 1.0 µF for stability.
9
Compensation
This pin is the Error Amplifier output and is made available for loop compensation. It can be used as
an input to directly control the PWM Comparator.
10
Voltage Feedback
Input
This is the inverting input of the Error Amplifier. It has a 2.6 V threshold and normally connects
through a resistor divider to the converter output, or to a voltage that represents the converter
output.
11
Overvoltage
Protection Input
This input provides runaway output voltage protection due to an external component or connection
failure in the control loop feedback signal path. It has a 2.6 V threshold and normally connects
through a resistor divider to the converter output, or to a voltage that represents the converter
output.
–
These pins have been omitted for increased spacing between the high voltages present on the
Power Switch Drain, and the ground potential on Pins 12 and 13.
Power Switch
Drain
This pin is designed to directly drive the converter transformer and is capable of switching a
maximum of 700 V and 1.0 A.
4, 5, 12, 13
14, 15
16
6
Function
MOTOROLA ANALOG IC DEVICE DATA
MC33363
Figure 17. Representative Block Diagram
AC Input
Startup Input
Startup
Control
Current
Mirror
Regulator Output
6.5 V
8
Band Gap
Regulator
I
VCC
CT
3
UVLO
2.25 I
4I
OVP
11
2.6 V
Oscillator
7
DC Output
Overvoltage
Protection
Input
14.5 V/
9.5 V
6
RT
1
16
PWM Latch
Power Switch
Drain
Driver
S
Q
R
PWM
Comparator
Leading Edge
Blanking
9.0
Thermal
Shutdown
Current Limit
Comparator
Compensation
450
270 µA
Gnd
9
Error
Amplifier
2.6 V
10
Voltage
Feedback Input
4, 5, 12, 13
Figure 18. Timing Diagram
2.6 V
Capacitor CT
0.6 V
Compensation
Oscillator Output
PWM
Comparator
Output
PWM Latch
Q Output
Current Limit
Propagation
Delay
Power Switch
Gate Drive
Current
Limit
Threshold
Leading Edge
Blanking Input
(Power Switch
Drain Current)
Normal PWM Operating Range
MOTOROLA ANALOG IC DEVICE DATA
Output Overload
7
MC33363
OPERATING DESCRIPTION
Introduction
The MC33363 represents a new higher level of integration
by providing all the active high voltage power, control, and
protection circuitry required for implementation of a flyback or
forward converter on a single monolithic chip. This device is
designed for direct operation from a rectified 240 Vac line
source and requires a minimum number of external
components to implement a complete converter. A
description of each of the functional blocks is given below,
and the representative block and timing diagrams are shown
in Figures 17 and 18.
The formula for the charge/discharge current along with
the oscillator frequency are given below. The frequency
formula is a first order approximation and is accurate for CT
values greater than 500 pF. For smaller values of CT, refer to
Figure 1. Note that resistor RT also programs the Current
Limit Comparator threshold.
Oscillator and Current Mirror
The oscillator frequency is controlled by the values
selected for the timing components RT and CT. Resistor RT
programs the oscillator charge/discharge current via the
Current Mirror 4 I output, Figure 3. Capacitor CT is charged
and discharged by an equal magnitude internal current
source and sink. This generates a symmetrical 50 percent
duty cycle waveform at Pin 7, with a peak and valley
threshold of 2.6 V and 0.6 V respectively. During the
discharge of CT, the oscillator generates an internal blanking
pulse that holds the inverting input of the AND gate Driver
high. This causes the Power Switch gate drive to be held in a
low state, thus producing a well controlled amount of output
deadtime. The amount of deadtime is relatively constant with
respect to the oscillator frequency when operating below
1.0 MHz. The maximum Power Switch duty cycle at Pin 16
can be modified from the internal 50% limit by providing an
additional charge or discharge current path to CT, Figure 19.
In order to increase the maximum duty cycle, a discharge
current resistor RD is connected from Pin 7 to ground. To
decrease the maximum duty cycle, a charge current resistor
RC is connected from Pin 7 to the Regulator Output. Figure 4
shows an obtainable range of maximum output duty cycle
versus the ratio of either RC or RD with respect to RT.
PWM Comparator and Latch
The pulse width modulator consists of a comparator with
the oscillator ramp voltage applied to the non–inverting input,
while the error amplifier output is applied into the inverting
input. The Oscillator applies a set pulse to the PWM Latch
while CT is discharging, and upon reaching the valley
voltage, Power Switch conduction is initiated. When CT
charges to a voltage that exceeds the error amplifier output,
the PWM Latch is reset, thus terminating Power Switch
conduction for the duration of the oscillator ramp–up period.
This PWM Comparator/Latch combination prevents multiple
output pulses during a given oscillator clock cycle. The timing
diagram shown in Figure 18 illustrates the Power Switch duty
cycle behavior versus the Compensation voltage.
Figure 19. Maximum Duty Cycle Modification
Current
Mirror
Regulator Output
1.0
8
2.25 I
I
RC
Current
Limit
Reference
6
RT
4I
RD
CT
7
Oscillator
PWM
Comparator
8
Blanking
Pulse
I
+ 5.4
R
chgńdscg
T
f
[
I
ń
chg dscg
4C
T
Current Limit Comparator and Power Switch
The MC33363 uses cycle–by–cycle current limiting as a
means of protecting the output switch transistor from
overstress. Each on–cycle is treated as a separate situation.
Current limiting is implemented by monitoring the output
switch current buildup during conduction, and upon sensing
an overcurrent condition, immediately turning off the switch
for the duration of the oscillator ramp–up period.
The Power Switch is constructed as a SenseFET allowing
a virtually lossless method of monitoring the drain current. It
consists of a total of 1780 cells, of which 46 are connected to
a 9.0 Ω ground–referenced sense resistor. The Current
Sense Comparator detects if the voltage across the sense
resistor exceeds the reference level that is present at the
inverting input. If exceeded, the comparator quickly resets
the PWM Latch, thus protecting the Power Switch. The
current limit reference level is generated by the 2.25 I output
of the Current Mirror. This current causes a reference voltage
to appear across the 450 Ω resistor. This voltage level, as
well as the Oscillator charge/discharge current are both set
by resistor RT. Therefore when selecting the values for RT
and CT, RT must be chosen first to set the Power Switch peak
drain current, while CT is chosen second to set the desired
Oscillator frequency. A graph of the Power Switch peak drain
current versus RT is shown in Figure 2 with the related
formula below.
I
+ 8.8
pk
ǒǓ
R
T
1000
– 1.077
MOTOROLA ANALOG IC DEVICE DATA
MC33363
The Power Switch is designed to directly drive the converter
transformer and is capable of switching a maximum of 700 V
and 1.0 A. Proper device voltage snubbing and heatsinking
are required for reliable operation.
A Leading Edge Blanking circuit was placed in the current
sensing signal path. This circuit prevents a premature reset
of the PWM Latch. The premature reset is generated each
time the Power Switch is driven into conduction. It appears as
a narrow voltage spike across the current sense resistor, and
is due to the MOSFET gate to source capacitance,
transformer interwinding capacitance, and output rectifier
recovery time. The Leading Edge Blanking circuit has a
dynamic behavior in that it masks the current signal until the
Power Switch turn–on transition is completed. The current
limit propagation delay time is typically 233 ns. This time is
measured from when an overcurrent appears at the Power
Switch drain, to the beginning of turn–off.
Error Amplifier
An fully compensated Error Amplifier with access to the
inverting input and output is provided for primary side voltage
sensing, Figure 17. It features a typical dc voltage gain of 82
dB, and a unity gain bandwidth of 1.0 MHz with 78 degrees of
phase margin, Figure 5. The noninverting input is internally
biased at 2.6 V ±3.1% and is not pinned out. The Error
Amplifier output is pinned out for external loop compensation
and as a means for directly driving the PWM Comparator.
The output was designed with a limited sink current capability
of 270 µA, allowing it to be easily overridden with a pull–up
resistor. This is desirable in applications that require
secondary side voltage sensing, Figure 20. In this
application, the Voltage Feedback Input is connected to the
Regulator Output. This disables the Error Amplifier by placing
its output into the sink state, allowing the optocoupler
transistor to directly control the PWM Comparator.
Overvoltage Protection
An Overvoltage Protection Comparator is included to
eliminate the possibility of runaway output voltage. This
condition can occur if the control loop feedback signal path is
broken due to an external component or connection failure.
The comparator is normally used to monitor the primary side
VCC voltage. When the 2.6 V threshold is exceeded, it will
immediately turn off the Power Switch, and protect the load
from a severe overvoltage condition. This input can also be
driven from external circuitry to inhibit converter operation.
Undervoltage Lockout
An Undervoltage Lockout comparator has been
incorporated to guarantee that the integrated circuit has
sufficient voltage to be fully functional before the output stage
is enabled. The UVLO comparator monitors the VCC voltage
at Pin 3 and when it exceeds 14.5 V, the reset signal is
removed from the PWM Latch allowing operation of the
Power Switch. To prevent erratic switching as the threshold is
crossed, 5.0 V of hysteresis is provided.
MOTOROLA ANALOG IC DEVICE DATA
Startup Control
An internal Startup Control circuit with a high voltage
enhancement mode MOSFET is included within the
MC33363. This circuitry allows for increased converter
efficiency by eliminating the external startup resistor, and its
associated power dissipation, commonly used in most
off–line converters that utilize a UC3842 type of controller.
Rectified ac line voltage is applied to the Startup Input, Pin 1.
This causes the MOSFET to enhance and supply internal
bias as well as charge current to the VCC bypass capacitor
that connects from Pin 3 to ground. When VCC reaches the
UVLO upper threshold of 15.2 V, the IC commences
operation and the startup MOSFET is turned off. Operating
bias is now derived from the auxiliary transformer winding,
and all of the device power is efficiently converted down from
the rectified ac line.
The startup MOSFET will provide an initial peak current of
20 mA, Figure 10, which decreases rapidly as VCC and the
die temperature rise. The steady state current will self limit in
the range of 8.0 mA with VCC shorted to ground. The startup
MOSFET is rated at a maximum of 400 V with VCC shorted to
ground, and 500 V when charging a VCC capacitor of
1000 µF or less.
Regulator
A low current 6.5 V regulated output is available for
biasing the Error Amplifier and any additional control system
circuitry. It is capable of up to 10 mA and has short–circuit
protection. This output requires an external bypass capacitor
of at least 1.0 µF for stability.
Thermal Shutdown and Package
Internal thermal circuitry is provided to protect the Power
Switch in the event that the maximum junction temperature is
exceeded. When activated, typically at 155°C, the Latch is
forced into a ‘reset’ state, disabling the Power Switch. The
Latch is allowed to ‘set’ when the Power Switch temperature
falls below 145°C. This feature is provided to prevent
catastrophic failures from accidental device overheating. It is
not intended to be used as a substitute for proper
heatsinking.
The MC33363 is contained in a heatsinkable plastic
dual–in–line package in which the die is mounted on a
special heat tab copper alloy lead frame. This tab consists of
the four center ground pins that are specifically designed to
improve thermal conduction from the die to the circuit board.
Figures 15 and NO TAG show a simple and effective method
of utilizing the printed circuit board medium as a heat
dissipater by soldering these pins to an adequate area of
copper foil. This permits the use of standard layout and
mounting practices while having the ability to halve the
junction to air thermal resistance. The examples are for a
symmetrical layout on a single–sided board with two ounce
per square foot of copper. Figure 22 shows a practical
example of a printed circuit board layout that utilizes the
copper foil as a heat dissipater. Note that a jumper was
added to the layout from Pins 8 to 10 in order to enhance the
copper area near the device for improved thermal
conductivity. The application circuit requires two ounce
copper foil in order to obtain 8.0 watts of continuous output
power at room temperature.
9
MC33363
Figure 20. 8.0 W Off–Line Converter
F1
1.0 A D4
C1
33
D3
1N4006
92 to 276
Vac Input
D2
C5
4.0 nF
D1
D6
R5 MUR
39 120
Startup
Mirror
3
Reg
8
UVLO
14.5 V/
9.5 V
6
R1
15 k
C3
820 pF
7
Osc
11
C2
10
R4
5.1 k
C9 C10
330 330
C8
330
L1
5.0 µH
C7
100 nF
IC2
3
MOC
8103 IC3
TL431B 2
Driver
Q
R
PWM
1
C11
220
C12
1.0
R10
2.74 k
5
LEB
5.05 V/1.6 A
DC Output
R8
220
R9
2.80 k
1
2
16
S
D7
T1 MBR
1635
R3
1.0 k
OVP
2.6 V
PWM Latch
R7
2.2 k
1.0 W
D5
MUR
1100E
1
C4
1.0
C6
47 pF
R6
180 k
1.0 W
ILimit
4
Thermal
9
270 µA
R2
2.7 k
2.6 V
10
EA
IC1 MC33363
4, 5, 12, 13
Figure 21. Converter Test Data
Test
Conditions
Results
Line Regulation
Vin = 92 Vac to 276 Vac, IO 1.6 A
∆ = 1.0 mV
Load Regulation
Vin = 115 Vac, IO = 0.4 A to 1.6 A
∆ = 4.0 mV
Vin = 230 Vac, IO = 0.4 A to 1.6 A
∆ = 4.0 mV
Vin = 115 Vac, IO = 1.6 A
Triangular = 2.0 mVpp, Spike = 12 mVpp
Vin = 230 Vac, IO = 1.6 A
Triangular = 2.0 mVpp, Spike = 12 mVpp
Vin = 115 Vac, IO = 1.6 A
78.6%*
Vin = 230 Vac, IO = 1.6 A
75.6%
Output Ripple
Efficiency
This data was taken with the components listed below mounted on the printed circuit board shown in Figure 22.
* With MBR2535CTL, 79.8% efficiency. PCB layout modification is required to use this rectifier.
For high efficiency and small circuit board size, the Sanyo Os–Con capacitors are recommended for C8, C9, C10 and C11.
C8, C9, C10 = Sanyo Os–Con #6SA330M, 330 µF 6.3 V.
C11 = Sanyo Os–Con #10SA220M, 220 µF 10 V.
L1 = Coilcraft S5088–A, 5.0 µH, 0.11 Ω.
T1 = Coilcraft S5502–A
Primary: 77 turns of # 28 AWG, Pin 1 = start, Pin 8 = finish.
Two layers 0.002″ Mylar tape.
Secondary: 5 turns of # 22 AWG, 2 strands bifiliar wound, Pin 5 = start, Pin 4 = finish.
Two layers 0.002″ Mylar tape.
Auxiliary: 13 turns of # 28 AWG wound in center of bobbin, Pin 2 = start, Pin 7 = finish.
Two layers 0.002″ Mylar tape.
Gap: 0.006″ total for a primary inductance (LP) of 1.0 mH.
Core and Bobbin: Coilcraft PT1950, E187, 3F3 material.
10
MOTOROLA ANALOG IC DEVICE DATA
MC33363
Figure 22. Printed Circuit Board and Component Layout
(Circuit of Figure 20)
Caution!
High
Voltages
DC Output
C4
R3
R3
R2
R9
J1
R1
D1
IC2
D2
R10
IC3
C3
C7
C12
C11
IC1
F1
AC
Line
Input
R8
R4
C2
L1
R5
D6
C10
D3
D4
D5
C9
R7
T1
C1
R6
D7
C5
C8
C6
1
(Top View)
2.75”
2.25”
MC33363
(Bottom View)
MOTOROLA ANALOG IC DEVICE DATA
11
MC33363
OUTLINE DIMENSIONS
DW SUFFIX
PLASTIC PACKAGE
CASE 751N–01
(SOP–16L)
ISSUE O
–A–
T
16
9
–B–
1
0.010 (0.25)
P
8
13X
M
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN
EXCESS OF D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
M
J
DIM
A
B
C
D
F
G
J
K
M
P
R
S
T
D
0.010 (0.25)
M
T A
B
S
F
S
R X 45 _
C
–T–
S
K
9X
SEATING
PLANE
M
G
P SUFFIX
PLASTIC PACKAGE
CASE 648E–01
(DIP–16)
ISSUE O
–A–
R
16
9
1
M
8
P
J
F
C
–T–
SEATING
PLANE
S
K
H
G
D 13 PL
0.25 (0.010)
M
T B
S
A
S
INCHES
MIN
MAX
0.400
0.411
0.292
0.299
0.093
0.104
0.014
0.019
0.020
0.035
0.050 BSC
0.010
0.012
0.004
0.009
0_
7_
0.395
0.415
0.010
0.029
0.100 BSC
0.150 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION A AND B DOES NOT INCLUDE MOLD
PROTRUSION.
5. MOLD FLASH OR PROTRUSIONS SHALL NOT
EXCEED 0.25 (0.010).
6. ROUNDED CORNER OPTIONAL.
L
–B–
MILLIMETERS
MIN
MAX
10.15
10.45
7.40
7.60
2.35
2.65
0.35
0.49
0.50
0.90
1.27 BSC
0.25
0.32
0.10
0.25
0_
7_
10.05
10.55
0.25
0.75
2.54 BSC
3.81 BSC
DIM
A
B
C
D
F
G
H
J
K
L
M
P
R
S
INCHES
MIN
MAX
0.740
0.760
0.245
0.260
0.145
0.175
0.015
0.021
0.050
0.070
0.100 BSC
0.050 BSC
0.008
0.015
0.120
0.140
0.295
0.305
0_
10 _
0.200 BSC
0.300 BSC
0.015
0.035
MILLIMETERS
MIN
MAX
18.80
19.30
6.23
6.60
3.69
4.44
0.39
0.53
1.27
1.77
2.54 BSC
1.27 BSC
0.21
0.38
3.05
3.55
7.50
7.74
0_
10 _
5.08 BSC
7.62 BSC
0.39
0.88
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
– http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/
12
◊
MOTOROLA ANALOG IC DEVICE
DATA
MC33363/D