MOTOROLA MC34271FB

Order this document by MC34270/D
The MC34270 and MC34271 are low power dual switching voltage
regulators, specifically designed for handheld and laptop applications, to
provide several regulated output voltages using a minimum of external parts.
Two uncommitted switching regulators feature a very low standby bias
current of 5.0 µA, and an operating current of 7.0 mA capable of supplying
output currents in excess of 200 mA.
Both devices have three additional features. The first is an ELD Output
that can be used to drive a backlight or a liquid crystal display. The ELD
output frequency is the clock divided by 256. The second feature allows
four additional output bias voltages, in specific proportions to VB, one of the
switching regulated output voltages. It allows use of mixed logic circuitry and
provides a voltage bias for N–Channel load control MOSFETs . The third
feature is an Enable input that allows a logic level signal to turn–“off” or
turn–“on” both switching regulators.
Due to the low bias current specifications, these devices are ideally suited
for battery powered computer, consumer, and industrial equipment where an
extension of useful battery life is desirable.
LIQUID CRYSTAL DISPLAY
AND BACKLIGHT
INTEGRATED CONTROLLER
SEMICONDUCTOR
TECHNICAL DATA
t
32
1
MC34270 and MC34271 Features:
FB SUFFIX
PLASTIC PACKAGE
CASE 873
Uncommitted Switching Regulators Allow Both Positive and Negative
Supply Voltages
Logic Enable Allows Microprocessor Control of All Outputs
Synchronizable to External Clock
Mode Commandable for ELD and LCD Interface
Frequency Synchronizable
PIN CONNECTIONS
MAXIMUM RATINGS (TA = 25°C, unless otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
31
30
29
28
27
26
25
RT
Gnd
VA
Vref
EN1
EN2
MOSFET is a trademark of Motorola, Inc.
32
Sync
Auxiliary Output Bias Voltages Enable Load Control via N–Channel FETs
SW1
1 DS1
DS2 24
2 Ref1
Ref2 23
3 FB1
FB2 22
Symbol
Value
Unit
VDD
16
Vdc
PD
1.43
W
RθJA
RθJC
100
60
°C/W
°C/W
ISL & ISB
500
mA
Output #1 and #2 “Off”–State Voltage
VSL
60
Vdc
Feedback Enable MOSFETs “Off”–State Voltage
VLF
20
Vdc
Operating Junction Temperature
TJ
125
°C
Operating Ambient Temperature
TA
0 to +70
°C
Device
Tstg
– 55 to +150
°C
MC34270FB
Output #1 and #2 Switch Current
Storage Temperature Range
S2 19
7 D1
D2 18
8 Drv1
V0
6 S1
V1
SS2 20
V2
5 SS1
V3
Power Dissipation and
Thermal Characteristics
Maximum Power Dissipation
Case 873
Thermal Resistance, Junction–to–Ambient
Thermal Resistance, Junction–to–Case
Comp2 21
4 Comp1
V4
Input Voltage
VDD
Rating
Mode
•
•
•
•
•
Low Standby Bias Current of 5.0 µA
ELD
•
•
9
10
11
12
13
14
15
16
ORDERING INFORMATION
MC34271FB
Operating
Temperature Range
TA = 0° to +70°C
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
VB 17
Package
QFP–32
QFP–32
Rev 1
1
MC34270 MC34271
Representative Block Diagram
Vin
SW1
VDD
32
EL
Panel
On/Off
EL
Control
EN1
D1
Circuit #1
PWM
7
S1
26
6
ELD
Drv1
9
8
Sync 31
÷2
OSC
ELD
EN
VDD
27
Ref1
FB1
11
Vin
Mode
10
RT 30
VRef
VDD
D2
Vref
1.25 V
18
Circuit #2
PWM
2
S2
19
3
Comp1
VB
4
µP Control
17
EN2
25
V0
From DAC
VB
VB
16
Ref2
FB2 23
V1
22
Comp2
15
V0
V1
21
V2
V2
14
BIAS Output
Buffers
VA = 5.0 V
28
BIAS
V3
13
V4
Gnd
29
12
V3
V4
This device contains 350 active transistors.
2
MOTOROLA ANALOG IC DEVICE DATA
MC34270 MC34271
ELECTRICAL CHARACTERISTICS (VDD = 6.0 V, for typical values TA = Low to High [Note 1], for min/max values TA is
the operating ambient temperature range that applies, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Vref
1.225
1.250
1.275
V
Line Regulation (VDD = 5.0 V to 12.5 V)
Regline
–
2.0
10
mV
Load Regulation (IO = 0 to 120 µA)
Regload
–
2.0
10
mV
Vref
1.215
–
1.285
V
Input Offset Voltage (VCM = 1.25 V)
VIO
–
1.0
10
mV
Input Bias Current (VCM = 1.25 V)
IIB
–
120
600
nA
Open Loop Voltage Gain (VCM = 1.25 V, VCOMP = 2.0 V)
AVOL
80
100
–
dB
Output Voltage Swing
High State (IOH = –100 µA)
Low State (IOL = 100 µA)
VeOH
VeOL
VA–1.5
0
4.0
–
5.5
1.0
VA
4.6
5.0
5.4
90
115
140
REFERENCE SECTION
Reference Voltage (TJ = 25°C)
Total Variation (Line, Load and Temperature)
ERROR AMPLIFIERS
V
BIAS VOLTAGE
Voltage (VDD = 5.0 V to 12.5 V, IO = 0)
V
OSCILLATOR AND PWM SECTIONS
Total Frequency Variation Over Line and Temperature
VDD = 5.0 V to 10 V, TA = 0° to 70°C, RT = 169 k
fOSC
kHz
Duty Cycle at Each Output
Maximum
Minimum
DCmax
DCmin
92
–
95
–
–
0
%
Sync Input
Input Resistance (Vsync = 3.5 V)
Minimum Sync Pulse Width
Rsync
Tp
25
–
50
1.0
100
–
kΩ
µs
Output Voltage – “On”–State (Isink = 200 mA)
VOL
–
150
250
mV
Output Current – “Off”–State (VOH = 40 V)
IOH
–
0.1
1.0
µA
Rise and Fall Times
tr, tf
–
50
–
ns
Output Voltage – “On”–State (Isink = 100 µA)
VOL
–
30
100
mV
Output Voltage – “On”–State (Isink = 50 mA)
VOL
–
2.0
2.5
V
Output Voltage – “Off”–State (Isource = –100 µA)
VOH
VDD–0.5
5.9
–
V
Output Voltage – “Off”–State (Isource = – 50 mA)
VOH
VDD–3.5
3.3
–
V
Output Voltage – “Low”–State (Isink = 1.0 mA)
VfeOL
–
10
100
mV
Output Current – “Off”–State (VOH = 12.5 V)
IfeOH
–
0.6
1.0
µA
VswOH
VswOL
5.5
0
5.9
0.1
6.0
0.2
Rds
Ilkg
V0
R0
0
0
29.5
20
2.0
0.1
29.9
40
10
2.0
30
60
OUTPUT MOSFETs
EL DISCHARGE OUTPUT (ELD) AND DRV1
FEEDBACK ENABLE SWITCHES (DS1, DS2)
SWITCHED VDD OUTPUT (SW1)
Output Voltage
Switch “On” (EN1 = 1, Isource = 100 µA)
Switch “Off” (EN1 = 0, Isink = 100 µA)
V
AUXILIARY VOLTAGE OUTPUTS
V0 Enable Switch
“On”–Resistance: VB to V0
“Off”–State Leakage Current (VB = 10 V)
V0 Voltage (VB = 30 V, Isource = 0 mA)
V0 Resistance (Isource = 4.0 mA)
Ω
µA
V
Ω
NOTE: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
MOTOROLA ANALOG IC DEVICE DATA
3
MC34270 MC34271
ELECTRICAL CHARACTERISTICS (continued) (VDD = 6.0 V, for typical values TA = Low to High [Note 1], for min/max values TA is
the operating ambient temperature range that applies, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Ro
Iss
0.0565
0.0500
0.1135
0.1010
0.1135
0.1010
0.0565
0.0500
20
5.0
0.0580
0.0520
0.1160
0.1035
0.1160
0.1035
0.0580
0.0520
40
10
0.0595
0.0535
0.1185
0.1065
0.1185
0.1065
0.0595
0.0535
60
20
Ω
mA
Input Low State
VIL
0
–
0.8
V
Input High State
VIH
2.0
–
6.0
V
Input Impedance
Rin
25
50
100
kΩ
Ichg
0.5
1.0
2.5
µA
Idschg
250
650
–
µA
ICC
–
–
2.0
3.0
5.0
15
µA
VDD Current
Backlight “On” (EN1 = 1; EN2 = 0)
ICC
–
0.7
3.0
mA
VDD Current
LCD “On” (No Inductor) (EN1 = 0; EN2 = 1)
ICC
–
0.9
2.0
mA
IO
–
1.2
3.0
mA
AUXILIARY VOLTAGE OUTPUTS
V1, V2, V3, V4 Outputs
1–V1/V0 Ratio: MC34270
MC34271
1–V2/V0 Ratio: MC34270
MC34271
V3/V0 Ratio: MC34270
MC34271
V4/V0 Ratio: MC34270
MC34271
Output Resistance (Isource = 4.0 mA)
Output Short Circuit Current
LOGIC INPUTS (EN1, EN2, MODE)
SOFT START CONTROL (SS1,SS2)
Charge Current (Capacitor Voltage = 1.0 V to 4.0 V)
Discharge Current (Capacitor Voltage = 1.0 V)
TOTAL SUPPLY CURRENT
VDD Current
Standby Mode (EN1 = EN2 = 0)
VDD = 6.0 V
VDD = 16 V
VB Current (V0 = 35 V)
NOTE: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
Figure 2. Error Amp Open Loop Gain and
Phase versus Frequency
VDD = 6.0 V
TA = 25°C
0.8
0.6
0.4
0.2
0
1.5
2.0
2.5
3.0
3.5
4.0
VComp, COMPENSATION VOLTAGE (V)
4
0
100
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
DC, SWITCH OUTPUT DUTY CYCLE
1.0
4.5
VDD = 6.0 V
VComp = 2.5 V
RL = Open
TA = 25°C
80
Gain
60
Phase
40
30
60
90
20
120
0
150
– 20
10
100
1.0 k
10 k
100 k
θ, EXCESS PHASE (° )
Figure 1. Switch Output Duty Cycle versus
Compensation Voltage
180
1000 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
MC34270 MC34271
Figure 3. Reference Voltage Change versus
Reference Current
Figure 4. Quiescent Current versus Supply Voltage
QUIESCENT CURRENT (mA)
– 5.0
–10
VA
–15
– 20
VDD = 6.0 V
TA = 25°C
– 25
– 30
1.0
0
2.0
3.0
4.0
FET DRAIN VOLTAGE (V)
1.5
1.0
1.0
Standby Current
EN1 and EN2 = 0
0.5
4.0
6.0
8.0
RT = 169 k
No Loading
TA = 25°C
10
12
0.2
18
16
14
0.6
Figure 5. FET Drain Voltage versus Sink Current
Figure 6. ELD and DRV1 Switch Output Source
and Sink Saturation versus Current
0.08
0.04
VDD = 6.0 V
TA = 25°C
50
0
100
150
200
0
2.0
VDD
Sink Saturation
–1.0
1.0
Source Saturation
– 3.0
– 4.0
0
15
OSCILLATOR FREQUENCY CHANGE (kHz)
VDD = 6.0 V
VA
0.15
0.10
Vref
0.05
0
– 0.05
0
10
20
30
40
50
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
30
0
60
45
Figure 8. Oscillator Frequency Variation
versus Temperature
0.30
0.20
0.5
ISource, SWITCH OUTPUT CURRENT (mA)
Figure 7. Vref and VA Variation
versus Temperature
0.25
VDD = 6.0 V
1.5
TA = 25°C
– 2.0
ID, DRAIN CURRENT (mA)
VOLTAGE VARIATION (V)
1.4
EN1 = 1 and EN2 = 0
VDD, SUPPLY VOLTAGE (V)
0.12
– 0.10
1.8
I, CURRENT DRAW (mA)
0.16
0
EN1 and EN2 = 1
2.0
0
2.0
5.0
Vsat, SWITCH OUTPUT SOURCE SATURATION (V)
OUTPUT VOLTAGE DROP (mV)
Vref
STANDBY SUPPLY CURRENT (µ A)
2.2
2.5
Vsat , SWITCH OUTPUT SINK SATURATION (V)
0
60
70
8.0
VDD = 6.0 V
RT = 169 k
6.0
4.0
2.0
0
– 2.0
– 4.0
– 6.0
– 8.0
0
10
20
30
40
50
60
70
TA, AMBIENT TEMPERATURE (°C)
5
MC34270 MC34271
Figure 10. VA, Vref versus VDD
Figure 9. Frequency versus Timing
5.0
REFERENCE VOLTAGE (V)
FREQUENCY (kHz)
1000
VDD = 6.0 V
TA = 25°C
100
10
0
100
1000
RT = 169 k
TA = 25°C
4.0
VA
3.0
2.0
1.0
0
Vref
0
TIMING RESISTANCE (kΩ, s)
1.0
2.0
3.0
4.0
5.0
6.0
VDD LEVEL (V)
OPERATING DESCRIPTION
The MC34270 and MC34271 series are monolithic, fixed
frequency power switching regulators specifically designed
for dc to dc converter and battery powered applications.
These devices operate as fixed frequency, voltage mode
regulators containing all the active functions required to
directly implement step–up, step–down and voltage inverting
converters with a minimum number of external components.
Potential markets include battery powered, handheld,
automotive, computer, industrial and cost sensitive consumer
products. A description of each section is given below with
the representative block diagram shown in Figure 9.
Oscillator
The oscillator frequency is programmed by resistor RT.
The charge to discharge ratio is controlled to yield a 95%
maximum duty cycle at the switch outputs. During the fall
time of the internal sawtooth waveform, the oscillator
generates an internal blanking pulse that holds the inverting
input of the AND gates high, disabling the output switching
MOSFETs. The internal sawtooth waveform has a nominal
peak voltage of 3.3 V and a valley voltage of 1.7 V.
Pulse Width Modulators
Both pulse width modulators consist of a comparator with
the oscillator ramp voltage applied to the noninverting input,
while the error amplifier output is applied to the inverting
input. A third input to the comparator has a 0.5 mA typical
current source that can be used to implement soft start.
Output switch conduction is initiated when the ramp
waveform is discharged to the valley voltage. As the ramp
voltage increases to a voltage that exceeds the error
amplifier output, the latch resets, terminating output
MOSFET conduction for the duration of the oscillator ramp.
This PWM/latch combination prevents multiple output pulses
during a given oscillator cycle.
Each PWM circuit is enabled by a logic input. When
disabled, the entire block is turned off, drawing only leakage
current from the power source. Shared circuits, like the
6
reference and oscillator, can be activated by either EN1
or EN2.
Circuit #1 has an ELD output which may be used to drive
an LCD or backlight. Its output frequency is the oscillator
frequency divided by 1024.
Error Amplifiers and Reference
Each error amplifier is provided with access to both
inverting and noninverting inputs, and the output. The Error
Amplifiers’ Common Mode Input Range is 0 to 2.5 V. The
amplifiers have a minimum dc voltage gain of 60 dB. The
1.25 V reference has an accuracy of ± 4.0% at room
temperature.
External loop compensation is required for converter
stability. A simple low–pass filter is formed by connecting a
resistive divider from the output to the error amplifier
inverting input, and a series resistor–capacitor from the error
amplifier output also to the to the inverting input. The step
down converter is easiest to compensate for stability. The
step–up and voltage inverting configurations, when operated
as continuous conduction boost or flyback converters, are
more difficult to compensate, and may require a lower loop
design bandwidth.
MOSFET Switch Outputs
The output MOSFETs are designed to switch a maximum
of 60 V, with a peak drain current capability of 500 mA. In
circuit #1 an additional DRV1 output is provided for
interfacing with an external MOSFET.The gates of the
MOSFETs are held low when the circuit is disabled.
Auxiliary Output Voltages
Output voltages V0 through V4 are provided for use as
references or bias voltages. V0 is the circuit #2 output
voltage, when an internal FET switch is activated. The other
auxiliary output voltages are proportional to VB. The
amplifiers for V1 and V2 are powered from V0, while the
amplifiers for V3 and V4 are powered from VDD.
MOTOROLA ANALOG IC DEVICE DATA
MC34270 MC34271
Figure 11. Representative Block Diagram Electroluminescent Backlight Configuration
SW1
Circuit #1 Bias Supply
32
EL
Panel
1
Î
Î
EN1
26
D1
En
DS1
VDD
8 Drv1
7
S
Q
÷N
ELD
9
VDD
÷2
OSC
31 Sync
Mode
10
D2
Vref
1.25 V
27
Q
R
En
2
3
FB1
DAC
S2 19
ÎÎ
ÎÎ
VDD
4 Comp1
SS1
5
VB
18
S
Ref1
Brightness
VDD
11
30 RT
169 k
“On/Off”
S1 6
R
VDD2
Circuit #2
Bias Supply
Ref2
23
22 FB2
Comp2
21 SS2
20
VB
VB
6.0 V to 30 V
17
V0
V0
16
DS2
V1
V1
24
15
V2
V2
25 EN2
14
VA
28
Gnd
29
MOTOROLA ANALOG IC DEVICE DATA
BIAS
VDD2
V3
V3
13
VDD2
V4
LCD
Display
V4
12
7
MC34270 MC34271
Figure 12. Auxiliary Supply Configuration
12 V
SW1
Circuit #1 Bias Supply
32
D1
En
DS1
1
Î
Î
EN1
26
VDD
8 Drv1
2
3
LCD
Contrast
DAC
ELD
9
VDD
5.0 V to 16 V
11
Mode
10
D2
Vref
1.25 V
18
S
Ref1
R
En
FB1
S2 19
Q
Î
ÎÎ
Î
VDD
4 Comp1
SS1
5
VB
÷N
30 RT
27
12 V
S1 6
OSC
31 Sync
169 k
Q
R
VDD
÷2
– 27 V
7
S
VDD2
Circuit #2
Bias Supply
Ref2
23
22 FB2
Comp2
21 SS2
20
VB
VB
6.0 V to 30 V
17
V0
V0
16
DS2
V1
V1
24
15
25 EN2
V2
V2
14
VA
28
Gnd
29
8
BIAS
VDD2
V3
V3
13
VDD2
V4
LCD
Display
V4
12
MOTOROLA ANALOG IC DEVICE DATA
MC34270 MC34271
Figure 13. MC34270 Incandescent Backlight Configuration
Vin
5.0 V to 16 V
MC34270
SW1
Circuit #1 Bias Supply
32
D1
En
DS1
1
Î
Î
EN1
26
VDD
8 Drv1
÷2
7
S
Q
S1 6
R
÷N
ELD
9
VDD
OSC
31 Sync
11
Mode
10
30 RT
169 k
Vref
2
3
D2
Vref
1.25 V
27
Ref1
R
En
FB1
S2 19
Q
Î
Î
ÎÎ
VDD
4 Comp1
SS1
5
LCD
Contrast
DAC
18
S
VDD2
Circuit #2
Bias Supply
DS1
1
Ref2
23
22 FB2
Comp2
21 SS2
20
6.0 V to 30 V
VB
17
V0
V0
16
DS2
V1
V1
24
15
25 EN2
V2
V2
14
VA
0.1 µF
28
BIAS
Gnd
29
MOTOROLA ANALOG IC DEVICE DATA
VDD2
V3
V3
13
VDD2
V4
LCD
Display
V4
12
9
MC34270 MC34271
Figure 14. EL PANEL Drive Circuit
Vin 6.0 V
+
MC34270 or MC34271
10 µF
0.22 µF
200 V
MR856
8
2.2 M
SW1
Circuit #1 Bias Supply
32
D1
En
EN1
26
Î
Î
ÎÎ
Î
Î
VDD
8 Drv1
9.1 k
4.3 M 15 pF
1.0 k
÷N
4
4T
#36
5
9
120T
1 #36
15 k
EL
PANEL
7 MPSA44
120T
#36
2
400 Hz
ELD
0.1
µF
MR856
1.0 k
11
Mode
10
MTP3055EL
10
D2
18
S
R
2.2 k
S2 19
Q
Î
VDD
3 FB1
MMBT2907
4T
#36
6
S1 6
R
4 Comp1
SS1
0.1 µF 5
22 k
10 k
Q
30 RT
Vref
Vref
1.25 V
0.1 27
µF
2 Ref1
8.25 k
S
OSC
31 Sync
160 k
7
VDD
÷2
3
VDD2
Circuit #2
Bias Supply
DS1
1
DAC
1.0 k
VB
8.2 k
Ref2
23
22 FB2
Comp2
21 SS2
20
VB
VB
17
V0
V0
16
DS2
V1
V1
24
15
25 EN2
V2
V2
14
VA
28
BIAS
Gnd
29
VDD2
V3
V3
13
VDD2
V4
LCD
Display
V4
12
NOTES::1. Transformer information TDK Core # PC40EEM12.7/13.7–Z
Bobbin # BEPC–10–118G 2 mil gap. LP = 1.6 µhy.
2. EL PANEL: DUREL 3/SL ORANGE
10
MOTOROLA ANALOG IC DEVICE DATA
MC34270 MC34271
OUTLINE DIMENSIONS
FB SUFFIX
PLASTIC PACKAGE
CASE 873–01
L
24
17
B
DETAIL A
32
D
S
H A–B
V
M
L
0.20 (0.008)
–B–
–A–
0.20 (0.008) M C A–B
0.05 (0.002) A–B
S
D
S
16
S
25
B
1
P
B
9
8
–D–
–A–,–B–,–D–
A
0.20 (0.008) M C A–B
0.05 (0.002) A–B
S
D
S
S
D
S
DETAIL A
S
0.20 (0.008)
H A–B
M
F
BASE METAL
DETAIL C
M
J
C E
–H–
–C–
SEATING
PLANE
H
M
G
N
DATUM
PLANE
0.01
(0.004)
D
0.20 (0.008)
M
C A–B
S
D
S
SECTION B–B
VIEW ROTATED 90° CLOCKWISE
U
T
R
–H–
DATUM
PLANE
K
X
DETAIL C
MOTOROLA ANALOG IC DEVICE DATA
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD WHERE
THE LEAD EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT
DATUM PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –C–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE DETERMINED
AT DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
X
MILLIMETERS
MIN
MAX
7.10
6.95
7.10
6.95
1.60
1.40
0.273 0.373
1.50
1.30
–
0.273
0.80 BSC
0.20
–
0.119 0.197
0.57
0.33
5.6 REF
8°
6°
0.119 0.135
0.40 BSC
5°
10°
0.15
0.25
8.85
9.15
0.15
0.25
5°
11°
8.85
9.15
1.0 REF
INCHES
MIN
MAX
0.274 0.280
0.274 0.280
0.055 0.063
0.010 0.015
0.051 0.059
–
0.010
0.031 BSC
0.008
–
0.005 0.008
0.013 0.022
0.220 REF
8°
6°
0.005 0.005
0.016 BSC
5°
10°
0.006 0.010
0.348 0.360
0.006 0.010
5°
11°
0.348 0.360
0.039 REF
11
MC34270 MC34271
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*MC34270/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC34270/D