MC68HC705C8A MC68HSC705C8A Technical Data M68HC05 Microcontrollers MC68HC705C8A/D Rev. 3, 3/2002 WWW.MOTOROLA.COM/SEMICONDUCTORS MC68HC705C8A MC68HSC705C8A Technical Data To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.motorola.com/semiconductors/ The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. 0&+&&$² 5HY 027252/$ © Motorola, Inc., 2002 7HFKQLFDO'DWD Technical Data Revision History Date May, 2001 March, 2002 7HFKQLFDO'DWD Revision Level 2.1 3 Description Page Number(s) 1.7 Pin Functions — Added description of programming voltage (VPP) pin 1.7.2 VPP 29 Removed note following 1.7.11 Port D I/O Pins (PD7 and PD5–PD0) 33 14.2 Introduction — Updated Motorola contact information 192 14.7 44-Pin Quad Flat Pack (QFP) — Corrected case outline drawing from Case #824E to Case #824A 195 0&+&&$² 5HY 027252/$ Technical Data — MC68HC705C8A List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 21 Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Section 3. Central Processor Unit (CPU) . . . . . . . . . . . . 43 Section 4. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Section 5. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Section 6. Low-Power Modes. . . . . . . . . . . . . . . . . . . . . . 69 Section 7. Parallel Input/Output (I/O). . . . . . . . . . . . . . . . 77 Section 8. Capture/Compare Timer . . . . . . . . . . . . . . . . . 89 Section 9. EPROM/OTPROM (PROM) . . . . . . . . . . . . . . 103 Section 10. Serial Communications Interface (SCI). . . 121 Section 11. Serial Peripheral Interface (SPI). . . . . . . . . 139 Section 12. Instruction Set . . . . . . . . . . . . . . . . . . . . . . . 153 Section 13. Electrical Specifications . . . . . . . . . . . . . . 171 Section 14. Mechanical Specifications . . . . . . . . . . . . . 191 Section 15. Ordering Information . . . . . . . . . . . . . . . . . 199 Appendix A. MC68HSC705C8A . . . . . . . . . . . . . . . . . . . 201 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data List of Sections 5 List of Sections Technical Data 6 MC68HC705C8A — Rev. 3 List of Sections MOTOROLA Technical Data — MC68HC705C8A Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Programmable Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 1.7.1 VDD and VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7.2 VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7.3 OSC1 and OSC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 1.7.4 External Reset Pin (RESET) . . . . . . . . . . . . . . . . . . . . . . . .32 1.7.5 External Interrupt Request Pin (IRQ) . . . . . . . . . . . . . . . . . . 32 1.7.6 Input Capture Pin (TCAP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7.7 Output Compare Pin (TCMP) . . . . . . . . . . . . . . . . . . . . . . . .33 1.7.8 Port A I/O Pins (PA7–PA0). . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7.9 Port B I/O Pins (PB7–PB0). . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7.10 Port C I/O Pins (PC7–PC0) . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7.11 Port D I/O Pins (PD7 and PD5–PD0) . . . . . . . . . . . . . . . . . . 33 Section 2. Memory 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Input/Output (I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Table of Contents 7 Table of Contents 2.5 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6 EPROM/OTPROM (PROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Bootloader ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Section 3. Central Processor Unit (CPU) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Section 4. Interrupts 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Software Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.2 External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.3 Port B Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 4.3.4 Capture/Compare Timer Interrupts . . . . . . . . . . . . . . . . . . .55 4.3.5 SCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.6 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Section 5. Resets 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Technical Data 8 MC68HC705C8A — Rev. 3 Table of Contents MOTOROLA Table of Contents 5.3 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.1 Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3 Programmable and Non-Programmable COP Watchdog Resets . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.4 Clock Monitor Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Section 6. Low-Power Modes 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.1 SCI During Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 6.3.2 SPI During Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.3 Programmable COP Watchdog in Stop Mode . . . . . . . . . . . 71 6.3.4 Non-Programmable COP Watchdog in Stop Mode . . . . . . . 73 6.4 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.1 Programmable COP Watchdog in Wait Mode . . . . . . . . . . . 75 6.4.2 Non-Programmable COP Watchdog in Wait Mode . . . . . . . 75 6.5 Data-Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Section 7. Parallel Input/Output (I/O) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.3.3 Port A Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4.3 Port B Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Table of Contents 9 Table of Contents 7.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.5.2 Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.5.3 Port C Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Section 8. Capture/Compare Timer 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3 Timer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3.1 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.3.2 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 8.4 Timer I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 8.4.1 Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 8.4.2 Timer Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.4.3 Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.4.4 Alternate Timer Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.4.5 Input Capture Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.4.6 Output Compare Registers. . . . . . . . . . . . . . . . . . . . . . . . . 101 Section 9. EPROM/OTPROM (PROM) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.3 EPROM/OTPROM (PROM) Programming . . . . . . . . . . . . . . . 104 9.3.1 Program Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.3.2 Preprogramming Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4 PROM Programming Routines . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4.1 Program and Verify PROM. . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4.2 Verify PROM Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 9.4.3 Secure PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.4 Secure PROM and Verify . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.4.5 Secure PROM and Dump. . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.4.6 Load Program into RAM and Execute . . . . . . . . . . . . . . . . 114 Technical Data 10 MC68HC705C8A — Rev. 3 Table of Contents MOTOROLA Table of Contents 9.4.7 9.4.8 Execute Program in RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 115 Dump PROM Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . .115 9.5 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.5.1 Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.5.2 Mask Option Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9.5.3 Mask Option Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.6 EPROM Erasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Section 10. Serial Communications Interface (SCI) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.4 SCI Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.5 SCI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 10.5.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 10.5.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.6 SCI I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.6.1 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.6.2 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.6.3 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 10.6.4 SCI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.6.5 Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Section 11. Serial Peripheral Interface (SPI) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 11.4 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.4.1 Pin Functions in Master Mode . . . . . . . . . . . . . . . . . . . . . . 143 11.4.2 Pin Functions in Slave Mode . . . . . . . . . . . . . . . . . . . . . . .144 11.5 Multiple-SPI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Table of Contents 11 Table of Contents 11.6 Serial Clock Polarity and Phase . . . . . . . . . . . . . . . . . . . . . . .146 11.7 SPI Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.7.1 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 11.7.2 Write Collision Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.7.3 Overrun Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.8 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 11.9 SPI I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.9.1 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.9.2 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.9.3 SPI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Section 12. Instruction Set 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.3.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.2 Immediate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.4 Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.5 Indexed, No Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.3.6 Indexed, 8-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.3.7 Indexed, 16-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.3.8 Relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.4 Instruction Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.4.1 Register/Memory Instructions. . . . . . . . . . . . . . . . . . . . . . .158 12.4.2 Read-Modify-Write Instructions . . . . . . . . . . . . . . . . . . . . . 159 12.4.3 Jump/Branch Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.4.4 Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . .162 12.4.5 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.5 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.6 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Technical Data 12 MC68HC705C8A — Rev. 3 Table of Contents MOTOROLA Table of Contents Section 13. Electrical Specifications 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.4 Operating Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . 173 13.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 13.6 Power Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13.7 5.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .175 13.8 3.3-Volt DC Electrical Characteristics . . . . . . . . . . . . . . . . . .176 13.9 5.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.10 3.3-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 13.11 5.0-Volt Serial Peripheral Interface (SPI) Timing . . . . . . . . . . 185 13.12 3.3-Volt Serial Peripheral Interface (SPI) Timing . . . . . . . . . . 187 Section 14. Mechanical Specifications 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14.3 40-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . .192 14.4 40-Pin Ceramic Dual In-Line Package (Cerdip) . . . . . . . . . . . 193 14.5 44-Lead Plastic-Leaded Chip Carrier (PLCC) . . . . . . . . . . . . 194 14.6 44-Lead Ceramic-Leaded Chip Carrier (CLCC) . . . . . . . . . . . 195 14.7 44-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 196 14.8 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . .197 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Table of Contents 13 Table of Contents Section 15. Ordering Information 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.3 MCU Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Appendix A. MC68HSC705C8A A.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.3 5.0-Volt High-Speed DC Electrical Characteristics. . . . . . . . .202 A.4 3.3-Volt High-Speed DC Electrical Characteristics . . . . . . . . 203 A.5 5.0-Volt High-Speed Control Timing . . . . . . . . . . . . . . . . . . . . 204 A.6 3.3-Volt High-Speed Control Timing . . . . . . . . . . . . . . . . . . . . 204 A.7 5.0-Volt High-Speed SPI Timing . . . . . . . . . . . . . . . . . . . . . . 205 A.8 3.3-Volt High-Speed SPI Timing. . . . . . . . . . . . . . . . . . . . . . .207 A.9 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Index Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Technical Data 14 MC68HC705C8A — Rev. 3 Table of Contents MOTOROLA Technical Data — MC68HC705C8A List of Figures Figure Title 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 Option Register (Option) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 MC68HC705C8A Block Diagram . . . . . . . . . . . . . . . . . . . . . 25 40-Pin PDIP/Cerdip Pin Assignments . . . . . . . . . . . . . . . . . 26 44-Lead PLCC/CLCC Pin Assignments . . . . . . . . . . . . . . . . 27 44-Pin QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . .27 42-Pin SDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . 28 Bypassing Layout Recommendation . . . . . . . . . . . . . . . . . . 29 Crystal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2-Pin Ceramic Resonator Connections . . . . . . . . . . . . . . . . 31 3-Pin Ceramic Resonator Connections . . . . . . . . . . . . . . . . 31 External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2-1 2-2 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3-1 3-2 3-3 3-4 3-5 3-6 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 044 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 045 Index Register (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 045 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 046 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . .046 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . 047 4-1 4-2 4-3 4-4 4-5 External Interrupt Internal Function Diagram . . . . . . . . . . . . 52 External Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Port B I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Interrupt Stacking Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Reset and Interrupt Processing Flowchart . . . . . . . . . . . . . . 59 MC68HC705C8A — Rev. 3 MOTOROLA Page Technical Data List of Figures 15 List of Figures Figure 5-1 5-2 5-3 5-4 6-1 6-2 6-3 Title Programmable COP Watchdog Diagram . . . . . . . . . . . . . . .63 Programmable COP Reset Register (COPRST) . . . . . . . . . 64 Programmable COP Control Register (COPCR) . . . . . . . . . 64 Non-Programmable COP Watchdog Diagram . . . . . . . . . . . 67 Stop/Wait Mode Function Flowchart . . . . . . . . . . . . . . . . . . 70 Programmable COP Watchdog in Stop Mode (PCOPE = 1) Flowchart. . . . . . . . . . . . . . .72 Non-Programmable COP Watchdog in Stop Mode (NCOPE = 1) Flowchart . . . . . . . . . . . . . . 74 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 Port A Data Register (PORTA). . . . . . . . . . . . . . . . . . . . . . . 78 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . .79 Port A I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Port B Data Register (PORTB). . . . . . . . . . . . . . . . . . . . . . . 81 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . .82 Port B I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Port C Data Register (PORTC) . . . . . . . . . . . . . . . . . . . . . . 85 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . .86 Port C I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Port D Fixed Input Register (PORTD) . . . . . . . . . . . . . . . . . 88 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-10 8-9 8-11 8-12 Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Timer I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .91 Input Capture Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Output Compare Operation . . . . . . . . . . . . . . . . . . . . . . . . . 93 Timer Control Register (TCR) . . . . . . . . . . . . . . . . . . . . . . . 94 Timer Status Register (TSR) . . . . . . . . . . . . . . . . . . . . . . . .96 Timer Registers (TRH and TRL) . . . . . . . . . . . . . . . . . . . . . 97 Timer Register Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Alternate Timer Register Reads . . . . . . . . . . . . . . . . . . . . . . 99 Alternate Timer Registers (ATRH and ATRL) . . . . . . . . . . . 99 Input Capture Registers (ICRH and ICRL) . . . . . . . . . . . . . 100 Output Compare Registers (OCRH and OCRL). . . . . . . . .101 9-1 9-2 EPROM/OTPROM Programming Flowchart . . . . . . . . . . . 105 PROM Programming Circuit . . . . . . . . . . . . . . . . . . . . . . . . 106 Technical Data 16 Page MC68HC705C8A — Rev. 3 List of Figures MOTOROLA List of Figures Figure Title 9-3 9-4 9-5 9-6 Program Register (PROG) . . . . . . . . . . . . . . . . . . . . . . . . . 109 Option Register (Option) . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Mask Option Register 1 (MOR1) . . . . . . . . . . . . . . . . . . . . 117 Mask Option Register 2 (MOR2) . . . . . . . . . . . . . . . . . . . . 118 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 SCI Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 SCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 SCI Transmitter I/O Register Summary . . . . . . . . . . . . . . . 125 SCI Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . . 129 SCI Control Register 1 (SCCR1) . . . . . . . . . . . . . . . . . . . . 130 SCI Control Register 2 (SCCR2) . . . . . . . . . . . . . . . . . . . . 131 SCI Status Register (SCSR) . . . . . . . . . . . . . . . . . . . . . . .133 Baud Rate Register (Baud) . . . . . . . . . . . . . . . . . . . . . . . . 136 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 SPI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 142 Master/Slave Connections . . . . . . . . . . . . . . . . . . . . . . . . . 143 One Master and Three Slaves Block Diagram . . . . . . . . . . 145 Two Master/Slaves and Three Slaves Block Diagram . . . . 146 SPI Clock/Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . 149 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . .149 SPI Status Register (SPSR) . . . . . . . . . . . . . . . . . . . . . . . . 151 13-1 13-2 13-3 Equivalent Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Typical Voltage Compared to Current . . . . . . . . . . . . . . . . 177 Typical Current versus Internal Frequency for Run and Wait Modes . . . . . . . . . . . . . . . 179 Total Current Drain versus Frequency . . . . . . . . . . . . . . . . 180 Timer Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Stop Recovery Timing Diagram . . . . . . . . . . . . . . . . . . . . . 183 Power-On Reset and External Reset Timing Diagram. . . . 184 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 13-4 13-5 13-6 13-7 13-8 13-9 MC68HC705C8A — Rev. 3 MOTOROLA Page Technical Data List of Figures 17 List of Figures Figure 14-1 14-2 14-3 14-4 14-5 14-6 Title MC68HC705C8AP Package Dimensions (Case #711). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 MC68HC705C8AS Package Dimensions (Case #734A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 MC68HC705C8AFN Package Dimensions (Case #777). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 MC68HC705C8AFS Package Dimensions (Case #777B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 MC68HC705C8AFB Package Dimensions (Case #824A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 MC68HC705C8AB Package Dimensions (Case #858). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Technical Data 18 Page MC68HC705C8A — Rev. 3 List of Figures MOTOROLA Technical Data — MC68HC705C8A List of Tables Table Title 2-1 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4-1 Reset/Interrupt Vector Addresses . . . . . . . . . . . . . . . . . . . . . 57 5-1 Programmable COP Timeout Period Selection . . . . . . . . . . . 66 7-1 7-2 7-3 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9-1 9-2 MC68HC05PGMR PCB Reference Designators . . . . . . . . .104 PROM Programming Routines . . . . . . . . . . . . . . . . . . . . . . .108 10-1 10-2 10-3 Baud Rate Generator Clock Prescaling . . . . . . . . . . . . . . . . 136 Baud Rate Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . . . . 138 11-1 SPI Clock Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12-1 12-2 12-3 12-4 12-5 12-6 12-7 Register/Memory Instructions. . . . . . . . . . . . . . . . . . . . . . . . 158 Read-Modify-Write Instructions . . . . . . . . . . . . . . . . . . . . . . 159 Jump and Branch Instructions . . . . . . . . . . . . . . . . . . . . . . .161 Bit Manipulation Instructions. . . . . . . . . . . . . . . . . . . . . . . . . 162 Control Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 15-1 MC68HC705C8A Order Numbers . . . . . . . . . . . . . . . . . . . . 199 MC68HC705C8A — Rev. 3 MOTOROLA Page Technical Data List of Tables 19 List of Tables Table A-1 A-2 Title Programmable COP Timeout Period Selection . . . . . . . . . . . 202 MC68HSC705C8A Order Numbers . . . . . . . . . . . . . . . . . . . . 209 Technical Data 20 Page MC68HC705C8A — Rev. 3 List of Tables MOTOROLA Technical Data — MC68HC705C8A Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Programmable Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 1.7.1 VDD and VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7.2 VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7.3 OSC1 and OSC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 1.7.3.1 Crystal Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.7.3.2 Ceramic Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.7.3.3 External Clock Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7.4 External Reset Pin (RESET) . . . . . . . . . . . . . . . . . . . . . . . .32 1.7.5 External Interrupt Request Pin (IRQ) . . . . . . . . . . . . . . . . . . 32 1.7.6 Input Capture Pin (TCAP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7.7 Output Compare Pin (TCMP) . . . . . . . . . . . . . . . . . . . . . . . .33 1.7.8 Port A I/O Pins (PA7–PA0). . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7.9 Port B I/O Pins (PB7–PB0). . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7.10 Port C I/O Pins (PC7–PC0) . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7.11 Port D I/O Pins (PD7 and PD5–PD0) . . . . . . . . . . . . . . . . . . 33 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 21 General Description 1.2 Introduction The MC68HC705C8A, an enhanced version of the MC68HC705C8, is a member of the low-cost, high-performance M68HC05 Family of 8-bit microcontroller units (MCU). The MC68HSC705C8A, introduced in Appendix A. MC68HSC705C8A, is an enhanced, high-speed version of the MC68HC705C8A. The M68HC05 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the M68HC05 central processor unit (CPU) and are available with a variety of subsystems, memory sizes and types, and package types. 1.3 Features Features of the MC68HC705C8A include: • M68HC05 central processor unit (CPU) • On-chip oscillator with crystal/ceramic resonator • Memory-mapped input/output (I/O) • Selectable memory configurations • Selectable programmable and/or non-programmable computer operating properly (COP) watchdog timers • Selectable port B external interrupt capability • Clock monitor • High current drive on pin C7 (PC7) • 24 bidirectional I/O lines and 7 input-only lines • Serial communications interface (SCI) system • Serial peripheral interface (SPI) system • Bootstrap capability • Power-saving stop, wait, and data-retention modes • Single 3.0-volt to 5.5-volt supply (2-volt data-retention mode) • Fully static operation Technical Data 22 MC68HC705C8A — Rev. 3 General Description MOTOROLA General Description Programmable Options NOTE: • Software-programmable external interrupt sensitivity • Bidirectional RESET pin A line over a signal name indicates an active low signal. For example, RESET is active high and RESET is active low. Any reference to voltage, current, or frequency specified in this document will refer to the nominal values. The exact values and their tolerance or limits are specified in Section 13. Electrical Specifications. 1.4 Programmable Options These options are programmable in the mask option registers: • Enabling of port B pullup devices (see 9.5.2 Mask Option Register 1) • Enabling of non-programmable COP watchdog (see 9.5.3 Mask Option Register 2) These options are programmable in the option register (see Figure 1-1): • One of four selectable memory configurations • Programmable read-only memory (PROM) security1 • External interrupt sensitivity Address: $1FDF Bit 7 6 5 4 3 RAM0 RAM1 0 0 SEC* 0 0 0 0 * Read: 2 1 Bit 0 IRQ 0 1 0 Write: Reset: U *Implemented as an EPROM cell = Unimplemented U = Unaffected Figure 1-1. Option Register (Option) 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the PROM difficult for unauthorized users. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 23 General Description RAM0 — Random-Access Memory Control Bit 0 1 = Maps 32 bytes of RAM into page zero starting at address $0030. Addresses from $0020 to $002F are reserved. This bit can be read or written at any time, allowing memory configuration to be changed during program execution. 0 = Provides 48 bytes of PROM at location $0020–$005F. RAM1 — Random-Access Memory Control Bit 1 1 = Maps 96 bytes of RAM into page one starting at address $0100. This bit can be read or written at any time, allowing memory configuration to be changed during program execution. 0 = Provides 96 bytes of PROM at location $0100. SEC — Security Bit This bit is implemented as an erasable, programmable read-only memory (EPROM) cell and is not affected by reset. 1 = Bootloader disabled; MCU operates only in single-chip mode 0 = Security off; bootloader can be enabled IRQ — Interrupt Request Pin Sensitivity Bit IRQ is set only by reset, but can be cleared by software. This bit can be written only once. 1 = IRQ pin is both negative edge- and level-sensitive. 0 = IRQ pin is negative edge-sensitive only. Bits 5, 4, and 0 — Not used; always read 0 Bit 2 — Unaffected by reset; reads either 1 or 0 1.5 Block Diagram Figure 1-2 shows the structure of the MC68HC705C8A. Technical Data 24 MC68HC705C8A — Rev. 3 General Description MOTOROLA General Description Block Diagram PA0 EPROM/OTPROM — 7744 BYTES (144 BYTES CONFIGURABLE) PA1 PA2 PORT A PROGRAM REGISTER DATA DIRECTION A VPP EPROM PROGRAMMING CONTROL PA3 PA4 PA5 PA6 PA7 OPTION REGISTER RAM — 176 BYTES (304 BYTES MAXIMUM) BOOT ROM — 240 BYTES PB1* PB2* PORT B DATA DIRECTION B PB0* PB3* PB4* PB5* PB6* PB7* RESET ARITHMETIC LOGIC UNIT PC0 M68HC05 CPU CPU REGISTERS ACCUMULATOR INDEX REGISTER 0 0 0 0 0 1 1 PC1 PC2 PORT C CPU CONTROL DATA DIRECTION C IRQ PC3 PC4 PC5 PC6 STACK POINTER PC7† PROGRAM COUNTER CONDITION CODE REGISTER 1 1 1 H I N Z PD7 C RDI (PD0) SCI OSC1 ÷2 OSCILLATOR PORT D OSC2 TDO (PD1) INTERNAL PROCESSOR CLOCK MISO (PD2) MOSI (PD3) SPI SCK (PD4) COP WATCHDOG AND CLOCK MONITOR VDD VSS SS (PD5) BAUD RATE GENERATOR POWER 16-BIT CAPTURE/COMPARE TIMER SYSTEM TCMP TCAP * Port B pins also function as external interrupts. † PC7 has a high current sink and source capability. Figure 1-2. MC68HC705C8A Block Diagram MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 25 General Description 1.6 Pin Assignments The MC68HC705C8A is available in six packages: • 40-pin plastic dual in-line package (PDIP) • 40-pin ceramic dual in-line package (cerdip) • 44-lead plastic-leaded chip carrier (PLCC) • 44-lead ceramic-leaded chip carrier (CLCC) • 44-pin quad flat pack (QFP) • 42-pin shrink dual in-line package (SDIP) The pin assignments for these packages are shown in Figure 1-3, Figure 1-4, Figure 1-5, and Figure 1-6. RESET 1 40 VDD IRQ 2 39 OSC1 VPP 3 38 OSC2 PA7 4 37 TCAP PA6 5 36 PD7 PA5 6 35 TCMP PA4 7 34 PD5/SS PA3 8 33 PD4/SCK PA2 9 32 PD3/MOSI PA1 10 31 PD2/MISO PA0 11 30 PD1/TDO PB0 12 29 PD0/RDI PB1 13 28 PC0 PB2 14 27 PC1 PB3 15 26 PC2 PB4 16 25 PC3 PB5 17 24 PC4 PB6 18 23 PC5 PB7 19 22 PC6 VSS 20 21 PC7 Figure 1-3. 40-Pin PDIP/Cerdip Pin Assignments Technical Data 26 MC68HC705C8A — Rev. 3 General Description MOTOROLA PA6 PA7 VPP NC IRQ RESET VDD OSC1 OSC2 TCAP NC 5 4 3 2 1 44 43 42 41 40 28 PD7 TCMP PD5/SS PD4/SCK PD3/MOSI PD2/MISO PD1/TDO PD0/RDI PC0 PC1 PC2 PC3 25 PC6 27 24 PC7 PC4 23 NC 26 22 VSS PC5 21 PB7 20 PB6 NC 18 PA1 PA0 PB0 PB1 PB2 PB3 PB4 37 36 35 34 33 32 31 30 29 10 11 12 13 14 15 16 17 19 PA3 PA2 39 38 7 8 9 PB5 PA5 PA4 6 General Description Pin Assignments PC3 PC2 PC1 PC0 PD0/RDI PD1/TDO PD2/MISO PD3/MOSI PD4/SCK PD5/SS TCMP Figure 1-4. 44-Lead PLCC/CLCC Pin Assignments PC6 VDD 38 18 PC7 NC 39 17 VSS NC 40 16 NC RESET 41 15 PB7 IRQ 42 14 PB6 VPP 43 13 PB5 PB4 2 3 4 5 6 7 8 9 12 10 11 PB3 PA6 PA7 44 1 PB2 PC5 19 PB1 20 37 PB0 36 OSC1 PA0 OSC2 PA1 PC4 PA2 21 PA3 35 PA4 NC TCAP PA5 33 32 31 30 29 28 27 26 25 24 23 34 22 PD7 Figure 1-5. 44-Pin QFP Pin Assignments MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 27 General Description RESET 1 42 VDD IRQ 2 41 OSC1 VPP 3 40 OSC2 PA7 4 39 TCAP PA6 5 38 PD7 PA5 6 37 TCMP PA4 7 36 PD5/SS PA3 8 35 PD4/SCK PA2 9 34 PD3/MOSI PA1 10 33 PD2/MISO PA0 11 32 PD1/TDO PB0 12 31 PD0/RDI PB1 13 30 PC0 PB2 14 29 PC1 PB3 15 28 PC2 NC 16 27 NC PB4 17 26 PC3 PB5 18 25 PC4 PB6 19 24 PC5 PB7 20 23 PC6 VSS 21 22 PC7 Figure 1-6. 42-Pin SDIP Pin Assignments Technical Data 28 MC68HC705C8A — Rev. 3 General Description MOTOROLA General Description Pin Functions 1.7 Pin Functions This subsection describes the MC68HC705C8A signals. Reference is made, where applicable, to other sections that contain more detail about the function being performed. 1.7.1 VDD and VSS VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Very fast signal transitions occur on the MCU pins, placing high short-duration current demands on the power supply. To prevent noise problems, take special care to provide good power supply bypassing at the MCU. Place bypass capacitors as close to the MCU as possible, as shown in Figure 1-7. V+ VDD + MCU C1 C2 VSS Figure 1-7. Bypassing Layout Recommendation 1.7.2 VPP This pin provides the programming voltage to the EPROM array. For normal operation, VPP shuld be tied to VDD. NOTE: Connecting the VPP pin (programming voltage) to VSS (ground) could result in damage to the MCU. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 29 General Description 1.7.3 OSC1 and OSC2 The OSC1 and OSC2 pins are the control connections for the 2-pin on-chip oscillator. The oscillator can be driven by: NOTE: • Crystal resonator • Ceramic resonator • External clock signal The frequency of the internal oscillator is fOSC. The MCU divides the internal oscillator output by two to produce the internal clock with a frequency of fOP. 1.7.3.1 Crystal Resonator The circuit in Figure 1-8 shows a crystal oscillator circuit for an AT-cut, parallel resonant crystal. Follow the crystal supplier’s recommendations, because the crystal parameters determine the external component values required to provide reliable startup and maximum stability. The load capacitance values used in the oscillator circuit design should account for all stray layout capacitances. To minimize output distortion, mount the crystal and capacitors as close as possible to the pins. NOTE: OSC1 ∗ 10 MΩ ∗ XTAL 2 MHz 22 pF ∗ OSC2 ∗ 22 pF Starting value only. Follow crystal supplier’s recommendations regarding component values that will provide reliable startup and maximum stability. Figure 1-8. Crystal Connections Use an AT-cut crystal and not a strip or tuning fork crystal. The MCU might overdrive or have the incorrect characteristic impedance for a strip or tuning fork crystal. Technical Data 30 MCU MC68HC705C8A — Rev. 3 General Description MOTOROLA General Description Pin Functions 1.7.3.2 Ceramic Resonator To reduce cost, use a ceramic resonator instead of a crystal. Use the circuit shown in Figure 1-9 for a 2-pin ceramic resonator or the circuit shown in Figure 1-10 for a 3-pin ceramic resonator, and follow the resonator manufacturer’s recommendations. MCU OSC1 C R CERAMIC RESONATOR OSC2 C The external component values required for maximum stability and Figure 1-9. 2-Pin Ceramic reliable starting depend upon the Resonator Connections resonator parameters. The load . capacitance values used in the oscillator circuit design should include all stray layout capacitances. To minimize output distortion, mount the resonator and capacitors as close as possible to the pins. MCU OSC1 OSC2 CERAMIC RESONATOR Figure 1-10. 3-Pin Ceramic Resonator Connections NOTE: The bus frequency (fOP) is one-half the external or crystal frequency (fOSC), while the processor clock cycle (tCYC) is two times the fOSC period. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 31 General Description 1.7.3.3 External Clock Signal OSC2 MCU OSC1 An external clock from another CMOS-compatible device can drive the OSC1 input, with the OSC2 pin unconnected, as Figure 1-11 shows. EXTERNAL CMOS CLOCK Figure 1-11. External Clock NOTE: The bus frequency (fOP) is one-half the external frequency (fOSC) while the processor clock cycle is two times the fOSC period. 1.7.4 External Reset Pin (RESET) A logic 0 on the bidirectional RESET pin forces the MCU to a known startup state. The RESET pin contains an internal Schmitt trigger as part of its input to improve noise immunity. See Section 5. Resets. 1.7.5 External Interrupt Request Pin (IRQ) The IRQ pin is an asynchronous external interrupt pin. The IRQ pin contains an internal Schmitt trigger as part of its input to improve noise immunity. See 4.3.2 External Interrupt (IRQ). 1.7.6 Input Capture Pin (TCAP) The TCAP pin is the input capture pin for the on-chip capture/compare timer. The TCAP pin contains an internal Schmitt trigger as part of its input to improve noise immunity. See Section 8. Capture/Compare Timer. Technical Data 32 MC68HC705C8A — Rev. 3 General Description MOTOROLA General Description Pin Functions 1.7.7 Output Compare Pin (TCMP) The TCMP pin is the output compare pin for the on-chip capture/compare timer. See Section 8. Capture/Compare Timer. 1.7.8 Port A I/O Pins (PA7–PA0) These eight I/O lines comprise port A, a general-purpose, bidirectional I/O port. The pins are programmable as either inputs or outputs under software control of the data direction registers. See 7.3 Port A. 1.7.9 Port B I/O Pins (PB7–PB0) These eight I/O pins comprise port B, a general-purpose, bidirectional I/O port. The pins are programmable as either inputs or outputs under software control of the data direction registers. Port B pins also can be configured to function as external interrupts. See 7.4 Port B. 1.7.10 Port C I/O Pins (PC7–PC0) These eight I/O pins comprise port C, a general-purpose, bidirectional I/O port. The pins are programmable as either inputs or outputs under software control of the data direction registers. PC7 has a high current sink and source capability. See 7.5 Port C. 1.7.11 Port D I/O Pins (PD7 and PD5–PD0) These seven lines comprise port D, a fixed input port. All special functions that are enabled (SPI and SCI) affect this port. See 7.6 Port D. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data General Description 33 General Description Technical Data 34 MC68HC705C8A — Rev. 3 General Description MOTOROLA Technical Data — MC68HC705C8A Section 2. Memory 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Input/Output (I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6 EPROM/OTPROM (PROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Bootloader ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 Introduction This section describes the organization of the on-chip memory. 2.3 Memory Map The central processor unit (CPU) can address eight Kbytes of memory and input/output (I/O) registers. The program counter typically advances one address at a time through memory, reading the program instructions and data. The programmable read-only memory (PROM) portion of memory — either one-time programmable read-only memory (OTPROM) or erasable, programmable read-only memory (EPROM) — holds the program instructions, fixed data, user-defined vectors, and interrupt service routines. The random-access memory (RAM) portion of memory holds variable data. I/O registers are memory-mapped so that the CPU can access their locations in the same way that it accesses all other memory locations. The shared stack area is used during processing of an interrupt or MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Memory 35 Memory subroutine call to save the CPU state. The stack pointer decrements during pushes and increments during pulls. Figure 2-1 is a memory map of the MCU. Addresses $0000–$001F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have these addresses: • $1FDF, option register • $1FF0, mask option register 1 (MOR1) • $1FF1, mask option register 2 (MOR2) 2.4 Input/Output (I/O) The first 32 addresses of memory space, from $0000 to $001F, are the I/O section. These are the addresses of the I/O control registers, status registers, and data registers. See Figure 2-2 for more information. 2.5 RAM One of four selectable memory configurations is selected by the state of the RAM1 and RAM0 bits in the option register located at $1FDF. Reset or power-on reset (POR) clears these bits, automatically selecting the first memory configuration as shown in Table 2-1. See 9.5.1 Option Register. Table 2-1. Memory Configurations NOTE: RAM0 RAM1 RAM Bytes PROM Bytes 0 0 176 7744 1 0 208 7696 0 1 272 7648 1 1 304 7600 Be careful when using nested subroutines or multiple interrupt levels. The CPU can overwrite data in the stack RAM during a subroutine or during the interrupt stacking operation. Technical Data 36 MC68HC705C8A — Rev. 3 Memory MOTOROLA Memory EPROM/OTPROM (PROM) 2.6 EPROM/OTPROM (PROM) An MCU with a quartz window has a maximum of 7744 bytes of EPROM. The quartz window allows the EPROM erasure with ultraviolet light. In an MCU without a quartz window, the EPROM cannot be erased and serves a maximum 7744 bytes of OTPROM (see Table 2-1). See Section 9. EPROM/OTPROM (PROM). 2.7 Bootloader ROM The 240 bytes at addresses $1F00–$1FEF are reserved ROM addresses that contain the instructions for the bootloader functions. See Section 9. EPROM/OTPROM (PROM). MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Memory 37 Memory $0000 $001F $0020 $002F $0030 $004F $0050 I/O REGISTERS 32 BYTES UNUSED 16 BYTES USER PROM 48 BYTES RAM 32 BYTES RAM0 = 1(1) $00BF $00C0 RAM0 = 0(1) RAM 176 BYTES STACK 64 BYTES $00FF $0100 $015F $0160 $1EFF $1F00 $1FDE $1FDF $1FE0 USER PROM 96 BYTES RAM 96 BYTES RAM1 = 0(1) RAM1 = 1(1) USER PROM 7584 BYTES BOOTLOADER ROM 240 BYTES OPTION REGISTER PORT A DATA REGISTER PORT B DATA REGISTER PORT C DATA REGISTER PORT D FIXED INPUT PORT PORT A DATA DIRECTION REGISTER PORT B DATA DIRECTION REGISTER PORT C DATA DIRECTION REGISTER UNUSED UNUSED UNUSED SPI CONTROL REGISTER SPI STATUS REGISTER SPI DATA REGISTER SCI BAUD RATE REGISTER SCI CONTROL REGISTER 1 SCI CONTROL REGISTER 2 SCI STATUS REGISTER SCI DATA REGISTER TIMER CONTROL REGISTER TIMER STATUS REGISTER INPUT CAPTURE REGISTER (HIGH) INPUT CAPTURE REGISTER (LOW) OUTPUT COMPARE REGISTER (HIGH) OUTPUT COMPARE REGISTER (LOW) TIMER REGISTER (HIGH) TIMER REGISTER (LOW) ALTERNATE TIMER REGISTER (HIGH) ALTERNATE TIMER REGISTER (LOW) EPROM PROGRAM REGISTER COP RESET REGISTER COP CONTROL REGISTER UNUSED $0000 $0001 $0002 $0003 $0004 $0005 $0006 $0007 $0008 $0009 $000A $000B $000C $000D $000E $000F $0010 $0011 $0012 $0013 $0014 $0015 $0016 $0017 $0018 $0019 $001A $001B $001C $001D $001E $001F RESERVED RESERVED SPI INTERRUPT VECTOR (HIGH) SPI INTERRUPT VECTOR (LOW) SCI INTERRUPT VECTOR (HIGH) SCI INTERRUPT VECTOR (LOW) TIMER INTERRUPT VECTOR (HIGH) TIMER INTERRUPT VECTOR (LOW) EXTERNAL INTERRUPT VECTOR (HIGH) EXTERNAL INTERRUPT VECTOR (LOW) SOFTWARE INTERRUPT VECTOR (HIGH) SOFTWARE INTERRUPT VECTOR (LOW) RESET VECTOR (HIGH) RESET VECTOR (LOW) $1FF2 $1FF3 $1FF4 $1FF5 $1FF6 $1FF7 $1FF8 $1FF9 $1FFA $1FFB $1FFC $1FFD $1FFE $1FFF BOOT ROM VECTORS 16 BYTES $1FEF $1FF0 MASK OPTION REGISTER 1 $1FF1 MASK OPTION REGISTER 2 $1FF2 $1FFF (1) USER PROM VECTORS 12 BYTES See 9.5.1 Option Register for information. Figure 2-1. Memory Map Technical Data 38 MC68HC705C8A — Rev. 3 Memory MOTOROLA Memory Bootloader ROM Addr. Register Name Read: Port A Data Register (PORTA) Write: See page 78. Reset: $0000 Read: Port B Data Register (PORTB) Write: See page 81. Reset: $0001 Read: Port C Data Register (PORTC) Write: See page 85. Reset: $0002 $0003 Read: Port D Fixed Input Register (PORTD) Write: See page 88. Reset: $0004 $0005 $0006 Bit 7 6 5 4 3 2 1 Bit 0 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PB2 PB1 PB0 PC2 PC1 PC0 MISO TDO RDI Unaffected by reset PB7 PB6 PC7 PC6 Unimplemented $0009 Unimplemented PC5 SS PD7 PC4 PC3 SCK MOSI Unaffected by reset DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 Read: Port C Data Direction DDRC7 DDRC6 (DDRC) Write: See page 86. Reset: 0 0 $0008 PB3 Unaffected by reset Read: Port B Data Direction DDRB7 Register (DDRB) Write: See page 82. Reset: 0 Unimplemented PB4 Unaffected by reset Read: Port A Data Direction DDRA7 Register (DDRA) Write: See page 79. Reset: 0 $0007 PB5 = Unimplemented U = Unaffected Figure 2-2. I/O Register Summary (Sheet 1 of 4) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Memory 39 Memory Addr. Register Name Read: SPI Control Register (SPCR) Write: See page 149. Reset: $000A Read: SPI Status Register (SPSR) Write: See page 151. Reset: $000B Read: SPI Data Register (SPDR) Write: See page 149. Reset: $000C Read: Baud Rate Register (Baud) Write: See page 136. Reset: $000D $000E $000F Read: SCI Control Register 1 (SCCR1) Write: See page 130. Reset: Read: SCI Control Register 2 (SCCR2) Write: See page 131. Reset: 6 4 3 2 1 Bit 0 SPIE SPE MSTR CPOL CPHA SPR1 SPR0 0 0 0 U U U U SPIF WCOL MODF 0 0 0 Bit 7 Bit 6 Bit 3 BIt 2 Bit 1 Bit 0 Read: SCI Data Register (SCDR) Write: See page 129. Reset: $0011 Read: Timer Control Register (TCR) Write: See page 94. Reset: 5 SCR2 SCR1 SCR0 U U U Bit 5 Bit 4 Unaffected by reset SCP1 SCP0 0 0 U U U R8 T8 M WAKE U U U U TIE TCIE RIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 TC RDRF IDLE OR NF FE 1 0 0 0 0 0 U Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: TDRE SCI Status Register (SCSR) Write: See page 133. Reset: 1 $0010 $0012 Bit 7 Bit 7 Unaffected by reset ICIE OCIE TOIE 0 0 0 IEDG OLVL 0 0 0 0 0 0 U 0 = Unimplemented U = Unaffected Figure 2-2. I/O Register Summary (Sheet 2 of 4) Technical Data 40 MC68HC705C8A — Rev. 3 Memory MOTOROLA Memory Bootloader ROM Addr. Register Name $0014 $0015 $0017 6 5 4 3 2 1 Bit 0 ICF OCF TOF 0 0 0 0 0 U U U 0 0 0 0 0 Read: Bit 15 Input Capture Register High (ICRH) Write: See page 100. Reset: Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Input Capture Register Low (ICRL) Write: See page 100. Reset: Bit 6 Bit 2 Bit 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Read: Timer Status Register (TSR) Write: See page 96. Reset: $0013 $0016 Bit 7 Bit 7 $0018 $0019 $001A $001B Bit 5 Bit 4 Bit 3 Unaffected by reset Output Compare Register Read: Bit 15 High (OCRH) Write: See page 101. Reset: Read: Output Compare Register Low (OCRL) Write: See page 101. Reset: Unaffected by reset Bit 7 Bit 14 Bit 13 Bit 12 Bit 11 Unaffected by reset Bit 6 Bit 5 Bit 4 Bit 3 Unaffected by reset Read: Bit 15 Timer Register High (TRH) Write: See page 97. Reset: Bit 14 Read: Timer Register Low (TRL) Write: See page 97. Reset: Bit 6 Bit 7 Bit 13 Bit 12 Bit 11 Reset initializes TRH to $FF Bit 5 Bit 4 Bit 3 Reset initializes TRL to $FC Read: Bit 15 Alternate Timer Register High (ATRH) Write: See page 99. Reset: Bit 14 Read: Alternate Timer Register Low (ATRL) Write: See page 99. Reset: Bit 6 Bit 7 Bit 13 Bit 12 Bit 11 Reset initializes ATRH to $FF Bit 5 Bit 4 Bit 3 Reset initializes ATRL to $FC = Unimplemented U = Unaffected Figure 2-2. I/O Register Summary (Sheet 3 of 4) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Memory 41 Memory Addr. $001C $001D $001E Register Name Read: EPROM Programming Register (PROG) Write: See page 109. Reset: Read: Programmable COP Reset Register (COPRST) Write: See page 64. Reset: Read: Programmable COP Control Register (COPCR) Write: See page 64. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 LAT 0 PGM 0 0 0 0 0 0 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 U U U U U U U U 0 0 0 COPF CME PCOPE CM1 CM0 0 0 0 IRQ 0 0 $001F Unimplemented $1FDF Read: Option Register RAM0 (Option) Write: See page 116. Reset: 0 0 0 U 0 RAM1 0 0 SEC* 0 0 0 * U 1 0 PBPU6 PBPU5 PBPU4 PBPU3 PBPU2 PBPU1 PBPU0/ COPC *Implemented as an EPROM cell $1FF0 $1FF1 Read: Mask Option Register 1 PBPU7 (MOR1) Write: See page 117. Reset: Unaffected by reset Read: Mask Option Register 2 (MOR2) Write: See page 118. Reset: NCOPE Unaffected by reset = Unimplemented U = Unaffected Figure 2-2. I/O Register Summary (Sheet 4 of 4) Technical Data 42 MC68HC705C8A — Rev. 3 Memory MOTOROLA Technical Data — MC68HC705C8A Section 3. Central Processor Unit (CPU) 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Introduction This section describes the central processor unit (CPU) registers. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Central Processor Unit (CPU) 43 Central Processor Unit (CPU) 3.3 CPU Registers Figure 3-1 shows the five CPU registers. These are hard-wired registers within the CPU and are not part of the memory map. Bit 7 6 5 4 3 2 1 Bit 0 ACCUMULATOR (A) Bit 7 6 5 4 3 2 1 Bit 0 INDEX REGISTER (X) Bit 12 11 10 9 8 7 6 0 0 0 0 1 1 Bit 12 11 10 9 8 7 6 0 5 4 3 2 1 Bit 0 STACK POINTER (SP) 5 4 3 2 1 Bit 0 PROGRAM COUNTER (PC) Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 H I N Z C CONDITION CODE REGISTER (CCR) HALF-CARRY FLAG INTERRUPT MASK NEGATIVE FLAG ZERO FLAG CARRY/BORROW FLAG Figure 3-1. Programming Model Technical Data 44 MC68HC705C8A — Rev. 3 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers 3.3.1 Accumulator The accumulator (A) shown in Figure 3-2 is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and results of arithmetic and non-arithmetic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 3-2. Accumulator (A) 3.3.2 Index Register In the indexed addressing modes, the CPU uses the byte in the index register (X) shown in Figure 3-3 to determine the conditional address of the operand. See 12.3.5 Indexed, No Offset, 12.3.6 Indexed, 8-Bit Offset, and 12.3.7 Indexed, 16-Bit Offset for more information on indexed addressing. The 8-bit index register also can serve as a temporary data storage location. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 3-3. Index Register (X) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Central Processor Unit (CPU) 45 Central Processor Unit (CPU) 3.3.3 Stack Pointer The stack pointer (SP) shown in Figure 3-4 is a 13-bit register that contains the address of the next free location on the stack. During a reset or after the reset stack pointer (RSP) instruction, the stack pointer initializes to $00FF. The address in the stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. The seven most significant bits of the stack pointer are fixed permanently at 0000011, so the stack pointer produces addresses from $00C0 to $00FF. If subroutines and interrupts use more than 64 stack locations, the stack pointer wraps around to address $00FF and begins writing over the previously stored data. A subroutine uses two stack locations. An interrupt uses five locations. Read: Bit 12 11 10 9 8 7 6 0 0 0 0 0 1 1 0 0 0 0 0 1 1 5 4 3 2 1 Bit 0 1 1 1 1 1 1 Write: Reset: = Unimplemented Figure 3-4. Stack Pointer (SP) 3.3.4 Program Counter The program counter (PC) shown in Figure 3-5 is a 13-bit register that contains the address of the next instruction or operand to be fetched. Normally, the address in the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. Bit 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with reset vector from $1FFE and $1FFF Figure 3-5. Program Counter (PC) Technical Data 46 MC68HC705C8A — Rev. 3 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers 3.3.5 Condition Code Register The condition code register (CCR) shown in Figure 3-6 is an 8-bit register whose three most significant bits are permanently fixed at 111. The condition code register contains the interrupt mask and four bits that indicate the results of prior instructions. Read: Bit 7 6 5 1 1 1 4 3 2 1 Bit 0 H I N Z C U 1 U U U Write: Reset: 1 1 1 = Unimplemented U = Unaffected Figure 3-6. Condition Code Register (CCR) H — Half-Carry Bit The CPU sets the half-carry flag when a carry occurs between bits 3 and 4 of the accumulator during an add without carry (ADD) or add with carry (ADC) operation. The half-carry bit is required for binary-coded decimal (BCD) arithmetic operations. Reset has no affect on the half-carry flag. I — Interrupt Mask Bit Setting the interrupt mask (I) disables interrupts. If an interrupt request occurs while the interrupt mask is a logic 0, the CPU saves the CPU registers on the stack, sets the interrupt mask, and then fetches the interrupt vector. If an interrupt request occurs while the interrupt mask is set, the interrupt request is latched. The CPU processes the latched interrupt as soon as the interrupt mask is cleared again. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack, restoring the interrupt mask to its cleared state. After a reset, the interrupt mask is set and can be cleared only by a CLI, STOP, or WAIT instruction. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Central Processor Unit (CPU) 47 Central Processor Unit (CPU) N — Negative Flag The CPU sets the negative flag when an arithmetic operation, logical operation, or data manipulation produces a negative result (bit 7 in the results is a logic 1). Reset has no effect on the negative flag. Z — Zero Flag The CPU sets the zero flag when an arithmetic operation, logical operation, or data manipulation produces a result of $00. Reset has no effect on the zero flag. C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some logical operations and data manipulation instructions also clear or set the carry/borrow bit. Reset has no effect on the carry/borrow flag. 3.4 Arithmetic/Logic Unit (ALU) The arithmetic/logic unit (ALU) performs the arithmetic and logical operations defined by the instruction set. The binary arithmetic circuits decode instructions and set up the ALU for the selected operation. Most binary arithmetic is based on the addition algorithm, carrying out subtraction as negative addition. Multiplication is not performed as a discrete operation but as a chain of addition and shift operations within the ALU. The multiply instruction requires 11 internal clock cycles to complete this chain of operations. Technical Data 48 MC68HC705C8A — Rev. 3 Central Processor Unit (CPU) MOTOROLA Technical Data — MC68HC705C8A Section 4. Interrupts 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Software Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.2 External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.3 Port B Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 4.3.4 Capture/Compare Timer Interrupts . . . . . . . . . . . . . . . . . . .55 4.3.5 SCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.6 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 4.2 Introduction This section describes how interrupts temporarily change the normal processing sequence. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Interrupts 49 Interrupts 4.3 Interrupt Sources These sources can generate interrupts: • Software instructions (SWI) • External interrupt pin (IRQ) • Port B pins • Serial communications interface (SCI): – SCI transmit data register empty – SCI transmission complete – SCI receive data register full – SCI receiver overrun – SCI receiver input idle • Serial peripheral interface (SPI): – SPI transmission complete – SPI mode fault – SPI overrun The IRQ pin, port B pins, SCI, and SPI can be masked (disabled) by setting the I bit of the condition code register (CCR). The software interrupt (SWI) instruction is non-maskable. An interrupt temporarily changes the program sequence to process a particular event. An interrupt does not stop the execution of the instruction in progress but takes effect when the current instruction completes its execution. Interrupt processing automatically saves the central processor unit (CPU) registers on the stack and loads the program counter with a user-defined vector address. 4.3.1 Software Interrupt The software interrupt instruction (SWI) causes a non-maskable interrupt. Technical Data 50 MC68HC705C8A — Rev. 3 Interrupts MOTOROLA Interrupts Interrupt Sources 4.3.2 External Interrupt (IRQ) An interrupt signal on the IRQ pin latches an external interrupt request. After completing the current instruction, the CPU tests these bits: • IRQ latch • I bit in the CCR Setting the I bit in the CCR disables external interrupts. If the IRQ latch is set and the I bit is clear, the CPU then begins the interrupt sequence. The CPU clears the IRQ latch while it fetches the interrupt vector, so that another external interrupt request can be latched during the interrupt service routine. As soon as the I bit is cleared during the return-from-interrupt (RTI) instruction, the CPU can recognize the new interrupt request. Figure 4-1 shows the logic for external interrupts. Figure 4-1 shows an external interrupt functional diagram. Figure 4-2 shows an external interrupt timing diagram for the interrupt line. The timing diagram illustrates two treatments of the interrupt line to the processor. 1. Two single pulses on the interrupt line are spaced far enough apart to be serviced. The minimum time between pulses is a function of the length of the interrupt service. Once a pulse occurs, the next pulse normally should not occur until an RTI occurs. This time (tILIL) is obtained by adding 19 instruction cycles to the total number of cycles needed to complete the service routine (not including the RTI instruction). 2. Many interrupt lines are “wire-ORed” to the IRQ line. If the interrupt line remains low after servicing an interrupt, then the CPU continues to recognize an interrupt. NOTE: The internal interrupt latch is cleared in the first part of the interrupt service routine. Therefore, a new external interrupt pulse could be latched and serviced as soon as the I bit is cleared. If the IRQ pin is not in use, connect it to the VDD pin. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Interrupts 51 Interrupts EDGE- AND LEVEL-SENSITIVE TRIGGER OPTION REGISTER VDD D EXTERNAL INTERRUPT REQUEST Q I BIT (CCR) IRQ LATCH INTERRUPT PIN C Q POR R INTERNAL RESET (COP) EXTERNAL RESET EXTERNAL INTERRUPT BEING SERVICED (VECTOR FETCH) Figure 4-1. External Interrupt Internal Function Diagram tILIL tILIH IRQ PIN a. Edge-Sensitive Trigger Condition. The minimum pulse width (tILIH) is either 125 ns (fOP = 2.1 MHz) or 250 ns (fOP = 1 MHz). The period tILIL should not be less than the number of tCYC cycles it takes to execute the interrupt service routine plus 19 tCYC cycles. IRQ1 NORMALLY USED WITH WIRED-OR CONNECTION tILIH . . . IRQn IRQ (INTERNAL) b. Level-Sensitive Trigger Condition. If the interrupt line remains low after servicing an interrupt, then the CPU continues to recognize an interrupt. Figure 4-2. External Interrupt Timing Technical Data 52 MC68HC705C8A — Rev. 3 Interrupts MOTOROLA Interrupts Interrupt Sources 4.3.3 Port B Interrupts When these three conditions are true, a port B pin (PBx) acts as an external interrupt pin: • The corresponding port B pullup bit (PBPUx) in mask option register 1 (MOR1) is programmed to a logic 1. • The corresponding port B data direction bit (DDRBx) in data direction register B (DDRB) is a logic 0. • The clear interrupt mask (CLI) instruction has cleared the I bit in the CCR. MOR1 is an erasable, programmable read-only memory (EPROM) register that enables the port B pullup device. Data from MOR1 is latched on the rising edge of the voltage on the RESET pin. See 9.5.2 Mask Option Register 1. Port B external interrupt pins can be falling-edge sensitive only or both falling-edge and low-level sensitive, depending on the state of the IRQ bit in the option register at location $1FDF. When the IRQ bit is a logic 1, a falling edge or a low level on a port B external interrupt pin latches an external interrupt request. As long as any port B external interrupt pin is low, an external interrupt request is present, and the CPU continues to execute the interrupt service routine. When the IRQ bit is a logic 0, a falling-edge only on a port B external interrupt pin latches an external interrupt request. A subsequent port B external interrupt request can be latched only after the voltage level of the previous port B external interrupt signal returns to a logic 1 and then falls again to a logic 0. Figure 4-3 shows the port B input/output (I/O) logic. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Interrupts 53 Interrupts VDD PBPU7 FROM MOR1 READ $0005 INTERNAL DATA BUS WRITE $0005 RESET WRITE $0001 DATA DIRECTION REGISTER B BIT DDRB7 PORT B DATA REGISTER BIT PB7 PB7 READ $0001 IRQ FROM OPTION REGISTER VDD D FROM OTHER PORT B PINS C EXTERNAL INTERRUPT REQUEST Q R Q I BIT FROM CCR IRQ RESET EXTERNAL INTERRUPT VECTOR FETCH Figure 4-3. Port B I/O Logic Technical Data 54 MC68HC705C8A — Rev. 3 Interrupts MOTOROLA Interrupts Interrupt Sources 4.3.4 Capture/Compare Timer Interrupts Setting the I bit in the CCR disables all interrupts except for SWI. 4.3.5 SCI Interrupts The serial communications interface (SCI) can generate these interrupts: • Transmit data register empty interrupt • Transmission complete interrupt • Receive data register full interrupt • Receiver overrun interrupt • Receiver input idle interrupt Setting the I bit in the CCR disables all SCI interrupts. • SCI Transmit Data Register Empty Interrupt — The transmit data register empty bit (TDRE) indicates that the SCI data register is ready to receive a byte for transmission. TDRE becomes set when data in the SCI data register transfers to the transmit shift register. TDRE generates an interrupt request if the transmit interrupt enable bit (TIE) is set also. • SCI Transmission Complete Interrupt — The transmission complete bit (TC) indicates the completion of an SCI transmission. TC becomes set when the TDRE bit becomes set and no data, preamble, or break character is being transmitted. TC generates an interrupt request if the transmission complete interrupt enable bit (TCIE) is set also. • SCI Receive Data Register Full Interrupt — The receive data register full bit (RDRF) indicates that a byte is ready to be read in the SCI data register. RDRF becomes set when the data in the receive shift register transfers to the SCI data register. RDRF generates an interrupt request if the receive interrupt enable bit (RIE) is set also. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Interrupts 55 Interrupts • SCI Receiver Overrun Interrupt — The overrun bit (OR) indicates that a received byte is lost because software has not read the previously received byte. OR becomes set when a byte shifts into the receive shift register before software reads the word already in the SCI data register. OR generates an interrupt request if the receive interrupt enable bit (RIE) is set also. • SCI Receiver Input Idle Interrupt — The receiver input idle bit (IDLE) indicates that the SCI receiver input is not receiving data. IDLE becomes set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an interrupt request if the idle line interrupt enable bit (ILIE) is set also. 4.3.6 SPI Interrupts The serial peripheral interrupt (SPI) can generate these interrupts: • SPI transmission complete interrupt • SPI mode fault interrupt Setting the I bit in the CCR disables all SPI interrupts. • SPI Transmission Complete Interrupt — The SPI flag bit (SPIF) in the SPI status register indicates the completion of an SPI transmission. SPIF becomes set when a byte shifts into or out of the SPI data register. SPIF generates an interrupt request if the SPIE bit is set also. • SPI Mode Fault Interrupt — The mode fault bit (MODF) in the SPI status register indicates an SPI mode error. MODF becomes set when a logic 0 occurs on the PD5/SS pin while the master bit (MSTR) in the SPI control register is set. MODF generates an interrupt request if the SPIE bit is set also. Technical Data 56 MC68HC705C8A — Rev. 3 Interrupts MOTOROLA Interrupts Interrupt Processing 4.4 Interrupt Processing The CPU takes these actions to begin servicing an interrupt: 1. Stores the CPU registers on the stack in the order shown in Figure 4-4 2. Sets the I bit in the CCR to prevent further interrupts 3. Loads the program counter with the contents of the appropriate interrupt vector locations as shown in Table 4-1. Table 4-1. Reset/Interrupt Vector Addresses Function Source Reset Power-on logic Local Mask Global Mask Priority (1 = Highest) Vector Address None None 1 $1FFE–$1FFF None None Same priority as any instruction $1FFC–$1FFD None I bit 2 $1FFA–$1FFB I bit 3 $1FF8–$1FF9 I bit 4 $1FF6–$1FF7 I bit 5 $1FF4–$1FF5 RESET pin Software interrupt (SWI) External interrupt Timer interrupts User code IRQ pin Port B pins ICF bit ICIE bit OCF bit OCIE bit TOF bit TOIE bit TDRE bit TCIE bit TC bit SCI interrupts RDRF bit RIE bit OR bit IDLE bit SPI interrupts ILIE bit SPIF bit SPIE MODF bit The return-from-interrupt (RTI) instruction causes the CPU to recover the CPU registers from the stack as shown in Figure 4-4. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Interrupts 57 Interrupts $00C0 (BOTTOM OF STACK) $00C1 $00C2 UNSTACKING ORDER • • • • • • 5 1 CONDITION CODE REGISTER 4 2 ACCUMULATOR 3 3 INDEX REGISTER 2 4 PROGRAM COUNTER (HIGH BYTE) 1 5 PROGRAM COUNTER (LOW BYTE) STACKING ORDER • • • • • • $00FD $00FE $00FF (TOP OF STACK) Figure 4-4. Interrupt Stacking Order NOTE: If more than one interrupt request is pending, the CPU fetches the vector of the higher priority interrupt first. A higher priority interrupt does not interrupt a lower priority interrupt service routine unless the lower priority interrupt service routine clears the I bit. See Table 4-1 for a priority listing. Figure 4-5 shows the sequence of events caused by an interrupt. Technical Data 58 MC68HC705C8A — Rev. 3 Interrupts MOTOROLA Interrupts Interrupt Processing FROM RESET YES I BIT IN CCR REGISTER SET? NO EXTERNAL IRQ INTERRUPT? YES CLEAR IRQ REQUEST LATCH NO TIMER INTERRUPT? YES NO SCI INTERRUPT? YES NO SPI INTERRUPT? YES NO 1. STACK PC, X, A, CCR 2. SET I BIT 3. LOAD PC WITH VECTOR SWI: $1FFC–$1FFD IRQ: $1FFA–$1FFB TIMER: $1FF8–$1FF9 SCI: $1FF6–$1FF7 SPI: $1FF4–$1FF5 FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES RESTORE REGISTERS FROM STACK: CCR, A, X, PC NO EXECUTE INSTRUCTION Figure 4-5. Reset and Interrupt Processing Flowchart MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Interrupts 59 Interrupts Technical Data 60 MC68HC705C8A — Rev. 3 Interrupts MOTOROLA Technical Data — MC68HC705C8A Section 5. Resets 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.1 Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3 Programmable and Non-Programmable COP Watchdog Resets . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3.1 Programmable COP Watchdog Reset . . . . . . . . . . . . . . .63 5.3.3.2 Non-Programmable COP Watchdog . . . . . . . . . . . . . . . . 66 5.3.4 Clock Monitor Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Introduction This section describes how resets initialize the microcontroller unit (MCU). 5.3 Reset Sources A reset immediately stops the operation of the instruction being executed, initializes certain control bits, and loads the program counter with a user-defined reset vector address. These conditions produce a reset: • Power-on reset (POR) — Initial power-up • External reset — A logic 0 applied to the RESET pin • Internal programmable computer operating properly (COP) watchdog timer reset • Internal non-programmable COP watchdog timer reset • Internal clock monitor reset MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Resets 61 Resets 5.3.1 Power-On Reset (POR) A positive transition on the VDD pin generates a power-on reset (POR). The POR is strictly for the power-up condition and cannot be used to detect drops in power supply voltage. A 4064 tCYC (internal clock cycle) delay after the oscillator becomes active allows the clock generator to stabilize. If the RESET pin is at logic 0 at the end of 4064 tCYC, the MCU remains in the reset condition until the signal on the RESET pin goes to logic 1. 5.3.2 External Reset The minimum time required for the MCU to recognize a reset is 1 1/2 tCYC. However, to guarantee that the MCU recognizes an external reset as an external reset and not as a COP or clock monitor reset, the RESET pin must be low for eight tCYC. After six tCYC, the input on the RESET pin is sampled. If the pin is still low, an external reset has occurred. If the input is high, then the MCU assumes that the reset was initiated internally by either the COP watchdog timer or by the clock monitor. This method of differentiating between external and internal reset conditions assumes that the RESET pin will rise to a logic 1 less than two tCYC after its release and that an externally generated reset should stay active for at least eight tCYC. 5.3.3 Programmable and Non-Programmable COP Watchdog Resets A timeout of a COP watchdog generates a COP reset. A COP watchdog, once enabled, is part of a software error detection system and must be cleared periodically to start a new timeout period. The MC68HC705C8A has two different COP watchdogs for compatibility with devices such as the MC68HC705C8 and the MC68HC05C4A: 1. Programmable COP watchdog reset 2. Non-programmable COP watchdog One COP has four programmable timeout periods and the other has a fixed non-programmable timeout period. Technical Data 62 MC68HC705C8A — Rev. 3 Resets MOTOROLA Resets Reset Sources 5.3.3.1 Programmable COP Watchdog Reset A timeout of the 18-stage ripple counter in the programmable COP watchdog generates a reset. Figure 5-1 is a diagram of the programmable COP watchdog. Two registers control and monitor operation of the programmable COP watchdog: • COP reset register (COPRST), $001D • COP control register (COPCR), $001E To clear the programmable COP watchdog and begin a new timeout period, write these values to the COP reset register (COPRST). See Figure 5-2. 1. $55 2. $AA The $55 write must precede the $AA write. Instructions may be executed between the write operations provided that the COP watchdog does not time out before the second write. INTERNAL CLOCK (fOP) PROGRAMMABLE COP WATCHDOG (MC68HC705C8 TYPE) ÷4 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 213 CM0 CM1 215 217 RESET 219 ÷4 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 221 PCOPE COPRST Figure 5-1. Programmable COP Watchdog Diagram MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Resets 63 Resets Address: $001D Bit 7 6 5 4 3 2 1 Bit 0 Write: Bit 7 6 5 4 3 2 1 Bit 0 Reset: U U U U U U U U Read: = Unimplemented U = Unaffected Figure 5-2. Programmable COP Reset Register (COPRST) The programmable COP control register (COPCR) shown in Figure 5-3 does these functions: • Flags programmable COP watchdog resets • Enables the clock monitor • Enables the programmable COP watchdog • Controls the timeout period of the programmable COP watchdog Address: Read: $001E Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 COPF CME PCOPE CM1 CM0 0 0 0 U 0 0 0 0 Write: Reset: = Unimplemented U = Unaffected Figure 5-3. Programmable COP Control Register (COPCR) COPF — COP Flag This read-only bit is set when a timeout of the programmable COP watchdog occurs or when the clock monitor detects a slow or absent internal clock. Clear the COPF bit by reading the COP control register. Reset has no effect on the COPF bit. 1 = COP timeout or internal clock failure 0 = No COP timeout and no internal clock failure Technical Data 64 MC68HC705C8A — Rev. 3 Resets MOTOROLA Resets Reset Sources CME — Clock Monitor Enable Bit This read/write bit enables the clock monitor. The clock monitor sets the COPF bit and generates a reset if it detects an absent internal clock for a period of from 5 µs to 100 µs. CME is readable and writable at any time. Reset clears the CME bit. 1 = Clock monitor enabled 0 = Clock monitor disabled NOTE: Do not enable the clock monitor in applications with an internal clock frequency of 200 kHz or less. If the clock monitor detects a slow clock, it drives the bidirectional RESET pin low for four clock cycles. If the clock monitor detects an absent clock, it drives the RESET pin low until the clock recovers. PCOPE — Programmable COP Enable Bit This read/write bit enables the programmable COP watchdog. PCOPE is readable at any time but can be written only once after reset. Reset clears the PCOPE bit. 1 = Programmable COP watchdog enabled 0 = Programmable COP watchdog disabled NOTE: Programming the non-programmable COP enable bit (NCOPE) in mask option register 2 (MOR2) to logic 1 enables the non-programmable COP watchdog. Setting the PCOPE bit while the NCOPE bit is programmed to logic 1 enables both COP watchdogs to operate at the same time. (See 9.5.3 Mask Option Register 2.) CM1 and CM0 — COP Mode Bits These read/write bits select the timeout period of the programmable COP watchdog. (See Table 5-1.) CM1 and CM0 can be read anytime but can be written only once. They can be cleared only by reset. Bits 7–5 — Unused Bits 7–5 always read as logic 0s. Reset clears bits 7–5. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Resets 65 Resets Table 5-1. Programmable COP Timeout Period Selection Programmable COP Timeout Period CM1:CM0 COP Timeout Rate 00 fOSC = 4.0 MHz fOP = 2.0 MHz fOSC = 3.5795 MHz fOP = 1.7897 MHz fOSC = 2.0 MHz fOP = 1.0 MHz fOSC = 1.0 MHz fOP = 0.5 MHz fOP ÷ 215 16.38 ms 18.31 ms 32.77 ms 65.54 ms 01 fOP ÷ 217 65.54 ms 73.24 ms 131.07 ms 262.14 ms 10 fOP ÷ 219 262.14 ms 292.95 ms 524.29 ms 1.048 s 11 fOP ÷ 221 1.048 s 1.172 s 2.097 s 4.194 s 5.3.3.2 Non-Programmable COP Watchdog A timeout of the 18-stage ripple counter in the non-programmable COP watchdog generates a reset. The timeout period is 65.536 ms when fOSC = 4 MHz. The timeout period for the non-programmable COP timer is a direct function of the crystal frequency. The equation is: Timeout period = 262,144 fOSC Two memory locations control operation of the non-programmable COP watchdog: 1. Non-programmable COP enable bit (NCOPE) in mask option register 2 (MOR2) Programming the NCOPE bit in MOR2 to a logic 1 enables the non-programmable COP watchdog. See 9.5.3 Mask Option Register 2. NOTE: Writing a logic 1 to the programmable COP enable bit (PCOPE) in the COP control register enables the programmable COP watchdog. Setting the PCOPE bit while the NCOPE bit is programmed to logic 1 enables both COP watchdogs to operate at the same time. Technical Data 66 MC68HC705C8A — Rev. 3 Resets MOTOROLA Resets Reset Sources 2. COP clear bit (COPC) at address $1FF0 To clear the non-programmable COP watchdog and start a new COP timeout period, write a logic 0 to bit 0 of address $1FF0. Reading address $1FF0 returns the mask option register 1 (MOR1) data at that location. See 9.5.2 Mask Option Register 1. NOTE: The non-programmable watchdog COP is disabled in bootloader mode, even if the NCOPE bit is programmed. Figure 5-4 is a diagram of the non-programmable COP. NON-PROGRAMMABLE COP WATCHDOG (MC68HC05C4A TYPE) ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 NCOPE ÷2 ÷2 ÷2 ÷2 ÷2 Figure 5-4. Non-Programmable COP Watchdog Diagram 5.3.4 Clock Monitor Reset When the CME bit in the COP control register is set, the clock monitor detects the absence of the internal bus clock for a certain period of time. The timeout period depends on processing parameters and varies from 5 µs to 100 µs, which implies that systems using a bus clock rate of 200 kHz or less should not use the clock monitor function. If a slow or absent clock is detected, the clock monitor causes a system reset. The reset is issued to the external system for four bus cycles using the bidirectional RESET pin. Special consideration is required when using the STOP instruction with the clock monitor. Since STOP causes the system clocks to halt, the clock monitor issues a system reset when STOP is executed. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Resets 67 Resets The clock monitor is a useful backup to the COP watchdog system. Because the watchdog timer requires a clock to function, it cannot indicate a system clock failure. The clock monitor would detect such a condition and force the MCU to a reset state. Clocks are not required for the MCU to reach a reset condition. They are, however, required to bring the MCU through the reset sequence and back to run condition. Technical Data 68 MC68HC705C8A — Rev. 3 Resets MOTOROLA Technical Data — MC68HC705C8A Section 6. Low-Power Modes 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.1 SCI During Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 6.3.2 SPI During Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.3 Programmable COP Watchdog in Stop Mode . . . . . . . . . . . 71 6.3.4 Non-Programmable COP Watchdog in Stop Mode . . . . . . . 73 6.4 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.1 Programmable COP Watchdog in Wait Mode . . . . . . . . . . . 75 6.4.2 Non-Programmable COP Watchdog in Wait Mode . . . . . . . 75 6.5 Data-Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Introduction This section describes the three low-power modes: • Stop mode • Wait mode • Data-retention mode 6.3 Stop Mode The STOP instruction places the microcontroller unit (MCU) in its lowest power consumption mode. In stop mode, the internal oscillator is turned off, halting all internal processing including timer, serial communications interface (SCI), and master mode serial peripheral interface (SPI) operation. See Figure 6-1. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Low-Power Modes 69 Low-Power Modes STOP WAIT STOP OSCILLATOR AND ALL CLOCKS CLEAR I BIT OSCILLATOR ACTIVE TIMER, SCI, AND SPI CLOCKS ACTIVE CPU CLOCKS STOPPED CLEAR I BIT RESET RESET NO NO EXTERNAL INTERRUPT (IRQ) NO YES YES YES EXTERNAL INTERRUPT (IRQ) NO YES INTERNAL TIMER INTERRUPT YES TURN ON OSCILLATOR WAIT FOR TIME DELAY TO STABILIZE 1. FETCH RESET VECTOR OR 2. SERVICE INTERRUPT: a. STACK b. SET I BIT c. VECTOR TO INTERRUPT ROUTINE NO RESTART CPU CLOCK YES 1. FETCH RESET VECTOR OR 2. SERVICE INTERRUPT: a. STACK b. SET I BIT c. VECTOR TO INTERRUPT ROUTINE INTERNAL SCI INTERRUPT NO YES INTERNAL SPI INTERRUPT NO Figure 6-1. Stop/Wait Mode Function Flowchart During stop mode, the I bit in the condition code register (CCR) is cleared to enable external interrupts. All other registers and memory remain unaltered. All input/output (I/O) lines remain unchanged. The processor can be brought out of stop mode only by an external interrupt or reset. Technical Data 70 MC68HC705C8A — Rev. 3 Low-Power Modes MOTOROLA Low-Power Modes Stop Mode 6.3.1 SCI During Stop Mode When the MCU enters stop mode, the baud rate generator stops, halting all SCI activity. If the STOP instruction is executed during a transmitter transfer, that transfer is halted. If a low input to the IRQ pin is used to exit stop mode, the transfer resumes. If the SCI receiver is receiving data and stop mode is entered, received data sampling stops because the baud rate generator stops, and all subsequent data is lost. Therefore, all SCI transfers should be in the idle state when the STOP instruction is executed. 6.3.2 SPI During Stop Mode When the MCU enters stop mode, the baud rate generator stops, terminating all master mode SPI operations. If the STOP instruction is executed during an SPI transfer, that transfer halts until the MCU exits stop mode by a low signal on the IRQ pin. If reset is used to exit stop mode, the SPI control and status bits are cleared, and the SPI is disabled. If the MCU is in slave mode when the STOP instruction is executed, the slave SPI continues to operate and can still accept data and clock information in addition to transmitting its own data back to a master device. At the end of a possible transmission with a slave SPI in stop mode, no flags are set until a low on the IRQ pin wakes up the MCU. NOTE: Although a slave SPI in stop mode can exchange data with a master SPI, the status bits of a slave SPI are inactive in stop mode. 6.3.3 Programmable COP Watchdog in Stop Mode The STOP instruction turns off the internal oscillator and suspends the computer operating properly (COP) watchdog counter. If the RESET pin brings the MCU out of stop mode, the reset function clears and disables the COP watchdog. If the IRQ pin brings the MCU out of stop mode, the COP counter resumes counting from its suspended value after the 4064-tCYC clock stabilization delay. See Figure 6-2. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Low-Power Modes 71 Low-Power Modes NOTE: If the clock monitor is enabled (CME = 1), the STOP instruction causes the clock monitor to time out and reset the MCU. STOP CLEAR I BIT IN CCR TURN OFF INTERNAL OSCILLATOR SUSPEND COP COUNTER EXTERNAL RESET? YES NO NO EXTERNAL INTERRUPT? TURN ON INTERNAL OSCILLATOR CLEAR COP COUNTER CLEAR PCOPE BIT IN COPCR YES TURN ON INTERNAL OSCILLATOR END OF STABILIZATION DELAY? YES NO END OF STABILIZATION DELAY? YES NO TURN ON INTERNAL CLOCK TURN ON INTERNAL CLOCK RESUME COP WATCHDOG COUNT 1. LOAD PC WITH RESET VECTOR OR 2. SERVICE INTERRUPT: a. SAVE CPU REGISTERS ON STACK b. SET I BIT IN CCR c. LOAD PC WITH INTERRUPT VECTOR 1. LOAD PC WITH RESET VECTOR OR 2. SERVICE INTERRUPT: a. SAVE CPU REGISTERS ON STACK b. SET I BIT IN CCR c. LOAD PC WITH INTERRUPT VECTOR Figure 6-2. Programmable COP Watchdog in Stop Mode (PCOPE = 1) Flowchart Technical Data 72 MC68HC705C8A — Rev. 3 Low-Power Modes MOTOROLA Low-Power Modes Wait Mode 6.3.4 Non-Programmable COP Watchdog in Stop Mode The STOP instruction has these effects on the non-programmable COP watchdog: • Turns off the oscillator and the COP watchdog counter • Clears the COP watchdog counter If the RESET pin brings the MCU out of stop mode, the COP watchdog begins counting immediately. The reset function clears the COP counter again after the 4064-tCYC clock stabilization delay. If the IRQ pin brings the MCU out of stop mode, the COP watchdog begins counting immediately. The IRQ function does not clear the COP counter again after the 4064-tCYC clock stabilization delay. See Figure 6-3. NOTE: If the clock monitor is enabled (CME = 1), the STOP instruction causes it to time out and reset the MCU. 6.4 Wait Mode The WAIT instruction places the MCU in an intermediate power consumption mode. All central processor unit (CPU) activity is suspended, but the oscillator, capture/compare timer, SCI, and SPI remain active. Any interrupt or reset brings the MCU out of wait mode. See Figure 6-1. The WAIT instruction has these effects on the CPU: • Clears the I bit in the condition code register, enabling interrupts • Stops the CPU clock, but allows the internal clock to drive the capture/compare timer, SCI, and SPI The WAIT instruction does not affect any other registers or I/O lines. The capture/compare timer, SCI, and SPI can be enabled to allow a periodic exit from wait mode. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Low-Power Modes 73 Low-Power Modes STOP CLEAR I BIT IN CCR CLEAR COP COUNTER TURN OFF INTERNAL OSCILLATOR TURN OFF COP COUNTER EXTERNAL RESET? YES NO NO EXTERNAL INTERRUPT? TURN ON INTERNAL OSCILLATOR TURN ON COP WATCHDOG YES TURN ON INTERNAL OSCILLATOR TURN ON COP WATCHDOG END OF STABILIZATION DELAY? YES NO END OF STABILIZATION DELAY? YES NO CLEAR COP COUNTER TURN ON INTERNAL CLOCK TURN ON INTERNAL CLOCK 1. LOAD PC WITH RESET VECTOR OR 2. SERVICE INTERRUPT: a. SAVE CPU REGISTERS ON STACK b. SET I BIT IN CCR c. LOAD PC WITH INTERRUPT VECTOR 1. LOAD PC WITH RESET VECTOR OR 2. SERVICE INTERRUPT: a. SAVE CPU REGISTERS ON STACK b. SET I BIT IN CCR c. LOAD PC WITH INTERRUPT VECTOR Figure 6-3. Non-Programmable COP Watchdog in Stop Mode (NCOPE = 1) Flowchart Technical Data 74 MC68HC705C8A — Rev. 3 Low-Power Modes MOTOROLA Low-Power Modes Data-Retention Mode 6.4.1 Programmable COP Watchdog in Wait Mode The programmable COP watchdog is active during wait mode. Software must periodically bring the MCU out of wait mode to clear the programmable COP watchdog. 6.4.2 Non-Programmable COP Watchdog in Wait Mode The non-programmable COP watchdog is active during wait mode. Software must periodically bring the MCU out of wait mode to clear the non-programmable COP watchdog. 6.5 Data-Retention Mode In data-retention mode, the MCU retains random-access memory (RAM) contents and CPU register contents at VDD voltages as low as 2.0 Vdc. The data-retention feature allows the MCU to remain in a low power-consumption state during which it retains data, but the CPU cannot execute instructions. To put the MCU in data-retention mode: 1. Drive the RESET pin to logic 0. 2. Lower VDD voltage. The RESET pin must remain low continuously during data-retention mode. To take the MCU out of data-retention mode: 1. Return VDD to normal operating voltage. 2. Return the RESET pin to logic 1. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Low-Power Modes 75 Low-Power Modes Technical Data 76 MC68HC705C8A — Rev. 3 Low-Power Modes MOTOROLA Technical Data — MC68HC705C8A Section 7. Parallel Input/Output (I/O) 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.3.3 Port A Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4.3 Port B Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.5.2 Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.5.3 Port C Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.2 Introduction This section describes the programming of ports A, B, C, and D. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Parallel Input/Output (I/O) 77 Parallel Input/Output (I/O) 7.3 Port A Port A is an 8-bit, general-purpose, bidirectional input/output (I/O) port. 7.3.1 Port A Data Register The port A data register (PORTA) shown in Figure 7-1 contains a data latch for each of the eight port A pins. When a port A pin is programmed to be an output, the state of its data register bit determines the state of the output pin. When a port A pin is programmed to be an input, reading the port A data register returns the logic state of the pin. Address: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Read: Write: Reset: Unaffected by reset Figure 7-1. Port A Data Register (PORTA) PA7–PA0 — Port A Data Bits These read/write bits are software programmable. Data direction of each bit is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. Technical Data 78 MC68HC705C8A — Rev. 3 Parallel Input/Output (I/O) MOTOROLA Parallel Input/Output (I/O) Port A 7.3.2 Data Direction Register A The contents of data direction register A (DDRA) shown in Figure 7-2 determine whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the associated port A pin; a logic 0 disables the output buffer. A reset clears all DDRA bits, configuring all port A pins as inputs. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 7-2. Data Direction Register A (DDRA) DDRA7–DDRA0 — Port A Data Direction Bits These read/write bits control port A data direction. Reset clears bits DDRA7–DDRA0. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing DDRA bits from logic 0 to logic 1. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Parallel Input/Output (I/O) 79 Parallel Input/Output (I/O) 7.3.3 Port A Logic Figure 7-3 is a diagram of the port A I/O logic. READ $0004 WRITE $0004 DATA DIRECTION REGISTER A BIT DDRAx INTERNAL DATA BUS RESET PORT A DATA REGISTER BIT PAx WRITE $0000 PAx READ $0000 Figure 7-3. Port A I/O Logic When a port A pin is programmed to be an output, the state of its data register bit determines the state of the output pin. When a port A pin is programmed to be an input, reading the port A data register returns the logic state of the pin. The data latch can always be written, regardless of the state of its DDRA bit. Table 7-1 summarizes the operation of the port A pins. Table 7-1. Port A Pin Functions Accesses to DDRA DDRA Bit Accesses to PORTA I/O Pin Mode Read/Write Read Write 0 Input, Hi-Z(1) DDRA7–DDRA0 Pin PA7–PA0(2) 1 Output DDRA7–DDRA0 PA7–PA0 PA7–PA0 1. Hi-Z = high impedance 2. Writing affects data register but does not affect input. NOTE: To avoid excessive current draw, tie all unused input pins to VDD or VSS, or change I/O pins to outputs by writing to DDRA in user code as early as possible. Technical Data 80 MC68HC705C8A — Rev. 3 Parallel Input/Output (I/O) MOTOROLA Parallel Input/Output (I/O) Port B 7.4 Port B Port B is an 8-bit, general-purpose, bidirectional I/O port. Port B pins can also be configured to function as external interrupts. The port B pullup devices are enabled in mask option register 1 (MOR1). See 9.5.2 Mask Option Register 1 and 4.3.3 Port B Interrupts. 7.4.1 Port B Data Register The port B data register (PORTB) shown in Figure 7-4 contains a data latch for each of the eight port B pins. Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Read: Write: Reset: Unaffected by reset Figure 7-4. Port B Data Register (PORTB) PB7–PB0 — Port B Data Bits These read/write bits are software programmable. Data direction of each bit is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Parallel Input/Output (I/O) 81 Parallel Input/Output (I/O) 7.4.2 Data Direction Register B The contents of data direction register B (DDRB) shown in Figure 7-5 determine whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the associated port B pin; a logic 0 disables the output buffer. A reset clears all DDRB bits, configuring all port B pins as inputs. If the pullup devices are enabled by mask option, setting a DDRB bit to a logic 1 turns off the pullup device for that pin. Address: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 7-5. Data Direction Register B (DDRB) DDRB7–DDRB0 — Port B Data Direction Bits These read/write bits control port B data direction. Reset clears bits DDRB7–DDRB0. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing DDRB bits from logic 0 to logic 1. Technical Data 82 MC68HC705C8A — Rev. 3 Parallel Input/Output (I/O) MOTOROLA Parallel Input/Output (I/O) Port B 7.4.3 Port B Logic Figure 7-6 shows the port B I/O logic. VDD PBPU7 FROM MOR1 READ $0005 INTERNAL DATA BUS WRITE $0005 RESET WRITE $0001 DATA DIRECTION REGISTER B BIT DDRB7 PORT B DATA REGISTER BIT PB7 PB7 READ $0001 IRQ FROM OPTION REGISTER VDD D FROM OTHER PORT B PINS EXTERNAL INTERRUPT REQUEST Q IRQ LATCH C Q R I BIT FROM CCR IRQ RESET EXTERNAL INTERRUPT VECTOR FETCH Figure 7-6. Port B I/O Logic MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Parallel Input/Output (I/O) 83 Parallel Input/Output (I/O) When a port B pin is programmed as an output, reading the port bit reads the value of the data latch and not the voltage on the pin itself. When a port B pin is programmed as an input, reading the port bit reads the voltage level on the pin. The data latch can always be written, regardless of the state of its DDRB bit. Table 7-2. Port B Pin Functions Accesses to DDRB DDRB Bit Accesses to PORTB I/O Pin Mode Read/Write Read Write 0 Input, Hi-Z(1) DDRB7–DDRB0 Pin PB7–PB0(2) 1 Output DDRB7–DDRB0 PB7–PB0 PB7–PB0 1. Hi-Z = high impedance 2. Writing affects data register but does not affect input. NOTE: To avoid excessive current draw, tie all unused input pins to VDD or VSS, or for I/O pins change to outputs by writing to DDRB in user code as early as possible. Technical Data 84 MC68HC705C8A — Rev. 3 Parallel Input/Output (I/O) MOTOROLA Parallel Input/Output (I/O) Port C 7.5 Port C Port C is an 8-bit, general-purpose, bidirectional I/O port. PC7 has a high current sink and source capability. 7.5.1 Port C Data Register The port C data register (PORTC) shown in Figure 7-7 contains a data latch for each of the eight port C pins. When a port C pin is programmed to be an output, the state of its data register bit determines the state of the output pin. When a port C pin is programmed to be an input, reading the port C data register returns the logic state of the pin. Address: $0002 Bit 7 6 5 4 3 2 1 Bit 0 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Read: Write: Reset: Unaffected by reset Figure 7-7. Port C Data Register (PORTC) PC7–PC0 — Port C Data Bits These read/write bits are software programmable. Data direction of each bit is under the control of the corresponding bit in data direction register C. PC7 has a high current sink and source capability. Reset has no effect on port C data. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Parallel Input/Output (I/O) 85 Parallel Input/Output (I/O) 7.5.2 Data Direction Register C The contents of data direction register C (DDRC) shown in Figure 7-8 determine whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the associated port C pin; a logic 0 disables the output buffer. A reset clears all DDRC bits, configuring all port C pins as inputs. Address: $0006 Bit 7 6 5 4 3 2 1 Bit 0 DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 7-8. Data Direction Register C (DDRC) DDRC7–DDRC0 — Port C Data Direction Bits These read/write bits control port C data direction. Reset clears bits DDRC7–DDRC0. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input NOTE: Avoid glitches on port C pins by writing to the port C data register before changing DDRC bits from logic 0 to logic 1. Technical Data 86 MC68HC705C8A — Rev. 3 Parallel Input/Output (I/O) MOTOROLA Parallel Input/Output (I/O) Port C 7.5.3 Port C Logic Figure 7-9 shows port C I/O logic. READ $0006 WRITE $0006 DATA DIRECTION REGISTER C BIT DDRCx INTERNAL DATA BUS RESET PORT C DATA REGISTER BIT PCx WRITE $0002 PCx READ $0002 Figure 7-9. Port C I/O Logic When a port C pin is programmed as an output, reading the port bit reads the value of the data latch and not the voltage on the pin. When a port C pin is programmed as an input, reading the port bit reads the voltage level on the pin. The data latch can always be written, regardless of the state of its DDRC bit. Table 7-3 summarizes the operation of the port C pins. Table 7-3. Port C Pin Functions Accesses to DDRC DDRC Bit Accesses to PORTC I/O Pin Mode Read/Write Read Write 0 Input, Hi-Z(1) DDRC7–DDRC0 Pin PC7–PC0(2) 1 Output DDRC7–DDRC0 PC7–PC0 PC7–PC0 1. Hi-Z = high impedance 2. Writing affects data register but does not affect input. NOTE: To avoid excessive current draw, tie all unused input pins to VDD or VSS or change I/O pins to outputs by writing to DDRC in user code as early as possible. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Parallel Input/Output (I/O) 87 Parallel Input/Output (I/O) 7.6 Port D Port D is a 7-bit, special-purpose, input-only port that has no data register. Reading address $0003 returns the logic states of the port D pins. Port D shares pins PD5–PD2 with the serial peripheral interface module (SPI). When the SPI is enabled, PD5–PD2 read as logic 0s. When the SPI is disabled, reading address $0003 returns the logic states of the PD5–PD2 pins. Port D shares pins PD1 and PD0 with the SCI module. When the SCI is enabled, PD1 and PD0 read as logic 0s. When the SCI is disabled, reading address $0003 returns the logic states of the PD1 and PD0 pins. Address: $0003 Bit 7 Read: PD7 6 5 4 3 2 1 Bit 0 SS SCK MOSI MISO TDO RDI Write: Reset: Unaffected by reset = Unimplemented Figure 7-10. Port D Fixed Input Register (PORTD) Technical Data 88 MC68HC705C8A — Rev. 3 Parallel Input/Output (I/O) MOTOROLA Technical Data — MC68HC705C8A Section 8. Capture/Compare Timer 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3 Timer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3.1 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.3.2 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 8.4 Timer I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 8.4.1 Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 8.4.2 Timer Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.4.3 Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.4.4 Alternate Timer Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.4.5 Input Capture Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.4.6 Output Compare Registers. . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Introduction This section describes the operation of the 16-bit capture/compare timer. Figure 8-1 shows the structure of the timer module. Figure 8-2 is a summary of the timer input/output (I/O) registers. 8.3 Timer Operation The core of the capture/compare timer is a 16-bit free-running counter. The counter is the timing reference for the input capture and output compare functions. The input capture and output compare functions can latch the times at which external events occur, measure input waveforms, and generate output waveforms and timing delays. Software can read the value in the counter at any time without affecting the counter sequence. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 89 Capture/Compare Timer TCAP EDGE SELECT/ DETECT LOGIC ICRH ($0014) ICRL ($0015) TRH ($0018) TRL ($0019) ÷4 16-BIT COUNTER OVERFLOW ATRH ($001A) INTERNAL CLOCK (XTAL ÷ 2) PIN CONTROL LOGIC 16-BIT COMPARATOR OCRH ($0016) ATRL ($001B) TCMP OCRL ($0017) $0012 TIMER CONTROL REGISTER TOF OCF ICF OLVL IEDG TOIE OCIE ICIE TIMER INTERRUPT REQUEST TIMER STATUS REGISTER $0013 INTERNAL DATA BUS Figure 8-1. Timer Block Diagram Technical Data 90 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Capture/Compare Timer Timer Operation Addr. Register Name $0012 Read: Timer Control Register (TCR) Write: See page 94. Reset: $0014 $0015 $0017 6 5 4 3 2 1 Bit 0 ICIE OCIE TOIE 0 0 0 IEDG OLVL 0 0 0 0 0 0 U 0 ICF OCF TOF 0 0 0 0 0 U U U 0 0 0 0 0 Read: Bit 15 Input Capture Register High (ICRH) Write: See page 100. Reset: Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Input Capture Register Low (ICRL) Write: See page 100. Reset: Bit 6 Bit 2 Bit 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Read: Timer Status Register (TSR) Write: See page 96. Reset: $0013 $0016 Bit 7 Bit 7 $0018 $0019 $001A $001B Bit 5 Bit 4 Bit 3 Unaffected by reset Output Compare Register Read: Bit 15 High (OCRH) Write: See page 101. Reset: Read: Output Compare Register Low (OCRL) Write: See page 101. Reset: Unaffected by reset Bit 7 Bit 14 Bit 13 Bit 12 Bit 11 Unaffected by reset Bit 6 Bit 5 Bit 4 Bit 3 Unaffected by reset Read: Bit 15 Timer Register High (TRH) Write: See page 97. Reset: Bit 14 Read: Timer Register Low (TRL) Write: See page 97. Reset: Bit 6 Bit 7 Bit 13 Bit 12 Bit 11 Reset initializes TRH to $FF Bit 5 Bit 4 Bit 3 Reset initializes TRL to $FC Read: Bit 15 Alternate Timer Register High (ATRH) Write: See page 99. Reset: Bit 14 Read: Alternate Timer Register Low (ATRL) Write: See page 99. Reset: Bit 6 Bit 7 Bit 13 Bit 12 Bit 11 Reset initializes ATRH to $FF Bit 5 Bit 4 Bit 3 Reset initializes ATRL to $FC = Unimplemented U = Unaffected Figure 8-2. Timer I/O Register Summary MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 91 Capture/Compare Timer Because of the 16-bit timer architecture, the I/O registers for the input capture and output compare functions are pairs of 8-bit registers. Because the counter is 16 bits long and preceded by a fixed divide-by-four prescaler, the counter rolls over every 262,144 internal clock cycles. Timer resolution with a 4-MHz crystal is 2 µs. 8.3.1 Input Capture The input capture function can record the time at which an external event occurs. When the input capture circuitry detects an active edge on the input capture pin (TCAP), it latches the contents of the timer registers into the input capture registers. The polarity of the active edge is programmable. Latching values into the input capture registers at successive edges of the same polarity measures the period of the input signal on the TCAP pin. Latching the counter values at successive edges of opposite polarity measures the pulse width of the signal. Figure 8-3 shows the logic of the input capture function. 15 $0018 8 TIMER REGISTER HIGH TCAP EDGE SELECT/DETECT LOGIC 0 TIMER REGISTER LOW 8 15 LATCH $0019 7 7 0 INPUT CAPTURE REGISTER HIGH INPUT CAPTURE REGISTER LOW $0014 $0015 TOF OCF ICF OLVL TOIE OCIE TIMER CONTROL REGISTER TIMER STATUS REGISTER $0012 $0013 IEDG ICIE TIMER INTERRUPT REQUEST Figure 8-3. Input Capture Operation Technical Data 92 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Capture/Compare Timer Timer Operation 8.3.2 Output Compare The output compare function can generate an output signal when the 16-bit counter reaches a selected value. Software writes the selected value into the output compare registers. On every fourth internal clock cycle the output compare circuitry compares the value of the counter to the value written in the output compare registers. When a match occurs, the timer transfers the programmable output level bit (OLVL) from the timer control register to the output compare pin (TCMP). Software can use the output compare register to measure time periods, to generate timing delays, or to generate a pulse of specific duration or a pulse train of specific frequency and duty cycle on the TCMP pin. Figure 8-4 shows the logic of the output compare function. 15 0 COUNTER LOW BYTE COUNTER HIGH BYTE PIN CONTROL LOGIC 16-BIT COMPARATOR 8 15 TCMP 0 7 OUTPUT COMPARE REGISTER HIGH OUTPUT COMPARE REGISTER LOW $0016 $0017 TOF OCF ICF TOIE OCIE ICIE TIMER INTERRUPT REQUEST TIMER STATUS REGISTER TIMER STATUS REGISTER $0012 $0013 Figure 8-4. Output Compare Operation MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 93 Capture/Compare Timer 8.4 Timer I/O Registers These registers control and monitor the timer operation: • Timer control register (TCR) • Timer status register (TSR) • Timer registers (TRH and TRL) • Alternate timer registers (ATRH and ATRL) • Input capture registers (ICRH and ICRL) • Output compare registers (OCRH and OCRL) 8.4.1 Timer Control Register The timer control register (TCR) as shown in Figure 8-5 performs these functions: • Enables input capture interrupts • Enables output compare interrupts • Enables timer overflow interrupts • Controls the active edge polarity of the TCAP signal • Controls the active level of the TCMP output Address: $0012 Bit 7 6 5 4 3 2 1 Bit 0 ICIE OCIE TOIE 0 0 0 IEDG OLVL 0 0 0 0 0 0 U 0 Read: Write: Reset: U = Unaffected Figure 8-5. Timer Control Register (TCR) Technical Data 94 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Capture/Compare Timer Timer I/O Registers ICIE — Input Capture Interrupt Enable Bit This read/write bit enables interrupts caused by an active signal on the TCAP pin. Reset clears the ICIE bit. 1 = Input capture interrupts enabled 0 = Input capture interrupts disabled OCIE — Output Compare Interrupt Enable Bit This read/write bit enables interrupts caused by an active signal on the TCMP pin. Reset clears the OCIE bit. 1 = Output compare interrupts enabled 0 = Output compare interrupts disabled TOIE — Timer Overflow Interrupt Enable Bit This read/write bit enables interrupts caused by a timer overflow. Reset clears the TOIE bit. 1 = Timer overflow interrupts enabled 0 = Timer overflow interrupts disabled IEDG — Input Edge Bit The state of this read/write bit determines whether a positive or negative transition on the TCAP pin triggers a transfer of the contents of the timer register to the input capture registers. Reset has no effect on the IEDG bit. 1 = Positive edge (low-to-high transition) triggers input capture 0 = Negative edge (high-to-low transition) triggers input capture OLVL — Output Level Bit The state of this read/write bit determines whether a logic 1 or a logic 0 appears on the TCMP pin when a successful output compare occurs. Reset clears the OLVL bit. 1 = TCMP goes high on output compare 0 = TCMP goes low on output compare Bits 4–2 — Not used; these bits always read 0 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 95 Capture/Compare Timer 8.4.2 Timer Status Register The timer status register (TSR) is a read-only register shown in Figure 8-6 contains flags for these events: • An active signal on the TCAP pin, transferring the contents of the timer registers to the input capture registers • A match between the 16-bit counter and the output compare registers, transferring the OLVL bit to the TCMP pin • A timer rollover from $FFFF to $0000 Address: Read: $0013 Bit 7 6 5 4 3 2 1 Bit 0 ICF OCF TOF 0 0 0 0 0 U U U 0 0 0 0 0 Write: Reset: = Unimplemented U = Unaffected Figure 8-6. Timer Status Register (TSR) ICF — Input Capture Flag The ICF bit is set automatically when an edge of the selected polarity occurs on the TCAP pin. Clear the ICF bit by reading the timer status register with ICF set and then reading the low byte ($0015) of the input capture registers. Reset has no effect on ICF. 1 = Input capture 0 = No input capture OCF — Output Compare Flag The OCF bit is set automatically when the value of the timer registers matches the contents of the output compare registers. Clear the OCF bit by reading the timer status register with OCF set and then reading the low byte ($0017) of the output compare registers. Reset has no effect on OCF. 1 = Output compare 0 = No output compare Technical Data 96 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Capture/Compare Timer Timer I/O Registers TOF — Timer Overflow Flag The TOF bit is automatically set when the 16-bit counter rolls over from $FFFF to $0000. Clear the TOF bit by reading the timer status register with TOF set and then reading the low byte ($0019) of the timer registers. Reset has no effect on TOF. 1 = Timer overflow 0 = No timer overflow Bits 4–0 — Not used; these bits always read 0 8.4.3 Timer Registers The read-only timer registers (TRH and TRL) shown in Figure 8-7 contain the current high and low bytes of the 16-bit counter. Reading TRH before reading TRL causes TRL to be latched until TRL is read. Reading TRL after reading the timer status register clears the timer overflow flag bit (TOF). Writing to the timer registers has no effect. Bit 7 6 5 4 3 2 1 Bit 0 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Register Name and Address: Timer Register High — $0018 Read: Bit 15 Bit 14 Bit 13 Bit 12 Write: Reset: Reset initializes TRH to $FF Register Name and Address: Timer Register Low — $0019 Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Write: Reset: Reset initializes TRL to $FC = Unimplemented Figure 8-7. Timer Registers (TRH and TRL) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 97 Capture/Compare Timer Reading TRH returns the current value of the high byte of the counter and causes the low byte to be latched into a buffer, as shown in Figure 8-8. The buffer value remains fixed even if the high byte is read more than once. Reading TRL reads the transparent low byte buffer and completes the read sequence of the timer registers. INTERNAL DATA BUS 7 LATCH 15 $0018 8 TIMER REGISTER HIGH 0 LOW BYTE BUFFER 7 0 TIMER REGISTER LOW $0019 READ TRH Figure 8-8. Timer Register Reads NOTE: To prevent interrupts from occurring between readings of TRH and TRL, set the interrupt mask (I bit) in the condition code register before reading TRH, and clear the mask after reading TRL. 8.4.4 Alternate Timer Registers The alternate timer registers (ATRH and ATRL) shown in Figure 8-9 contain the current high and low bytes of the 16-bit counter. Reading ATRH before reading ATRL causes ATRL to be latched until ATRL is read. Reading does not affect the timer overflow flag (TOF). Writing to the alternate timer registers has no effect. Technical Data 98 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Capture/Compare Timer Timer I/O Registers Bit 7 6 5 4 3 2 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Register Name and Address: Alternate Timer Register High — $001A Read: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Write: Reset: Reset initializes ATRH to $FF Register Name and Address: Alternate Timer Register Low — $001B Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Write: Reset: Reset initializes ATRL to $FC = Unimplemented Figure 8-9. Alternate Timer Registers (ATRH and ATRL) Reading ATRH returns the current value of the high byte of the counter and causes the low byte to be latched into a buffer, as shown in Figure 8-10. INTERNAL DATA BUS 7 LATCH 15 $001A 8 ALTERNATE TIMER REGISTER HIGH 0 LOW BYTE BUFFER 7 0 ALTERNATE TIMER REGISTER LOW $001B READ ATRH Figure 8-10. Alternate Timer Register Reads NOTE: To prevent interrupts from occurring between readings of ATRH and ATRL, set the interrupt mask (I bit) in the condition code register before reading ATRH, and clear the mask after reading ATRL. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 99 Capture/Compare Timer 8.4.5 Input Capture Registers When a selected edge occurs on the TCAP pin, the current high and low bytes of the 16-bit counter are latched into the read-only input capture registers (ICRH and ICRL) shown in Figure 8-11. Reading ICRH before reading ICRL inhibits further captures until ICRL is read. Reading ICRL after reading the timer status register clears the input capture flag (ICF). Writing to the input capture registers has no effect. Bit 7 6 5 4 3 2 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Register Name and Address: Input Capture Register High — $0014 Read: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Write: Reset: Unaffected by reset Register Name and Address: Input Capture Register Low — $0015 Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Write: Reset: Unaffected by reset = Unimplemented Figure 8-11. Input Capture Registers (ICRH and ICRL) NOTE: To prevent interrupts from occurring between readings of ICRH and ICRL, set the interrupt mask (I bit) in the condition code register before reading ICRH and clear the mask after reading ICRL. Technical Data 100 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Capture/Compare Timer Timer I/O Registers 8.4.6 Output Compare Registers When the value of the 16-bit counter matches the value in the read/write output compare registers (OCRH and OCRL) shown in Figure 8-12, the planned TCMP pin action takes place. Writing to OCRH before writing to OCRL inhibits timer compares until OCRL is written. Reading or writing to OCRL after reading the timer status register clears the output compare flag (OCF). Bit 7 6 5 4 3 2 1 Bit 0 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Register Name and Address: Output Compare Register High — $0016 Read: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Write: Reset: Unaffected by reset Register Name and Address: Output Compare Register Low — $0017 Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Write: Reset: Unaffected by reset Figure 8-12. Output Compare Registers (OCRH and OCRL) To prevent OCF from being set between the time it is read and the time the output compare registers are updated, use this procedure: 1. Disable interrupts by setting the I bit in the condition code register. 2. Write to OCRH. Compares are now inhibited until OCRL is written. 3. Clear bit OCF by reading the timer status register (TSR). 4. Enable the output compare function by writing to OCRL. 5. Enable interrupts by clearing the I bit in the condition code register. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Capture/Compare Timer 101 Capture/Compare Timer Technical Data 102 MC68HC705C8A — Rev. 3 Capture/Compare Timer MOTOROLA Technical Data — MC68HC705C8A Section 9. EPROM/OTPROM (PROM) 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.3 EPROM/OTPROM (PROM) Programming . . . . . . . . . . . . . . . 104 9.3.1 Program Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.3.2 Preprogramming Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4 PROM Programming Routines . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4.1 Program and Verify PROM. . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4.2 Verify PROM Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 9.4.3 Secure PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.4 Secure PROM and Verify . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.4.5 Secure PROM and Dump. . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.4.6 Load Program into RAM and Execute . . . . . . . . . . . . . . . . 114 9.4.7 Execute Program in RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.4.8 Dump PROM Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . .115 9.5 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.5.1 Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.5.2 Mask Option Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9.5.3 Mask Option Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.6 EPROM Erasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.2 Introduction This section describes erasable, programmable read-only memory/one-time programmable read-only memory (EPROM/OTPROM (PROM)) programming. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 103 EPROM/OTPROM (PROM) 9.3 EPROM/OTPROM (PROM) Programming The internal PROM can be programmed efficiently using the Motorola MC68HC05PGMR-2 programmer board, which can be purchased from a Motorola-authorized distributor. The user can program the microcontroller unit (MCU) using this printed circuit board (PCB) in conjunction with an EPROM device already programmed with user code. Only standalone programming is discussed in this section. For more information concerning the MC68HC05PGMR and its usages, contact a local Motorola representative for a copy of the MC68HC05PGMR Programmer Board User’s Manual #2, Motorola document number MC68HC05PGMR2/D1. Refer to Figure 9-1 for an EPROM programming flowchart. Figure 9-2 provides a schematic of the MC68HC05PGMR PCB with the reference designators defined in Table 9-1. Table 9-1. MC68HC05PGMR PCB Reference Designators Reference Designators Device Type Ground +5 V +12 V –12 V VPP U1 2764 14, 20 1, 26, 27, 28 — — — 8 K x 8-bit EPROM U2 MCU 20 40 — — 3 40-pin DIP socket U3 MCU 22 44 — — 4 44-lead PLCC socket U4 MC145406 9 16 1 8 — Driver/receiver VR1 NMA0512S 2.5 1 6 4 — DC-DC converter Technical Data 104 Notes MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) EPROM/OTPROM (PROM) Programming START APPLY VPP NTRYS = 0 START AT BEGINNING OF MEMORY LAT = 1 WRITE PROM DATA PGM = 1 WAIT 1 ms PGM = 0 LAT = 0 YES WRITE ADDITIONAL BYTE NO NTRYS = NTRYS + 1 NO NTRYS = 2 YES VPP OFF END Figure 9-1. EPROM/OTPROM Programming Flowchart MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 105 EPROM/OTPROM (PROM) VR1 NMA0512S DC-DC CONVERTER (OPTIONAL) S1 OFF A +5 V ON P1 +5 V 4 +12 V 2 –12 V 3 +V 6 OFF 1 VCC 5 0V –V 4 GND 2 5 GND 1 + C1 100 µF 40 VDD +12 V ON VPP R15 10 K 39 B OSC1 –12 V 3 D1 1N4001 38 C OSC2 VPP VPP 1 RESET +5 V 16 RXD E IRQ 9 37 P3 3 D 2 14 3 F TCAP 30 PD1 36 PD1 G PD7 35 2 TXD 15 2 29 PD0 +12 V U1 2764 A0 A1 +5 V –12 V VPP A3 NC A4 27 PGM A5 VCC A6 28 CTS 5 C5 0.1 µF DSR 6 (A0) PA0 PD5 11 9 (A1) PA1 PD4 10 (A2) PA2 9 PD3 PA2 7 (A3) PA3 8 6 (A4) PA4 7 5 (A5) PA5 6 4 (A6) PA6 5 3 (A7) PA7 4 PD2 PA6 PC5 20 GND 1 (A8) 25 (A9) 24 (A10) 21 (A11) 23 (A12) 2 PB0 12 (D1) PB1 D3 A9 A10 13 (D2) PB2 14 15 (D3) PB3 15 16 (D4) PB4 16 17 (D5) PB5 17 A12 D6 OE D7 18 (D6) PB6 18 PC1 PB2 PC2 19 (D7) PB7 19 28 (A8) 27 (A9) 26 (A10) 25 (A11) 24 (A12) PC3 PC4 PB5 PB6 GND Notes: 1. The asterisk (*) denotes option T command only. 2. Unless otherwise specified, resistors are in ohms, ±5% 1/4 W; capacitors are in µF; voltages are dc. PB1 PB4 D5 22 PC0 PB3 D4 A11 PB0 13 D2 M N PC6 12 D1 A8 GND 7 (D0) D0 CE 23 22 PA7 11 20 DTR L U2 PA4 40-PIN DIP SOCKET PA5 DCD 8 K 31 PA3 A7 J 32 PA1 8 I 33 PA0 A2 1 26 34 PD0 10 U4 MC145406 8 1 H TCMP 14 21 PC7 PB7 O VSS 20 P Q (ENABLE) 3. Device type numbers shown in circuit are for reference only. Device type number varies with manufacturer. R S Figure 9-2. PROM Programming Circuit Technical Data 106 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) EPROM/OTPROM (PROM) Programming R3 10 K R2 J1 3 2 1 +5 V A NC B +12 V NC NC NC NC 2.7 K C R5 C2 1.0 µF +5 V 10 M Y1 C4 22 pF 1 NC 10 K R1 S2 3 38 39 40 OUT RESET R13 10 K R4 10 K +5 V C3 22 pF 2.0 MHz IRQ +5 V D P2 2 E F S3 G S4 S5 S6 H PD5 I 34 PD4 J 33 PD3 K +5 V +5 V R10* 470 1 2 VERF R9 10 K DS2* 31 36 R12 10 K J2 TCAP +5 V TCMP PB0 (VERF) (PROG) NC PROG DS1* (A5) (A4) (A3) (A2) (A1) (A0) R11* 470 +5 V 14 15 16 17 PA5 PA4 PA3 PA2 PA1 PA0 PB0 PB1 PB2 PB3 PB4 PD7 TCMP PD5 PD4 PD3 PD2 PD1 PD0 PC0 PC1 PC2 U3 44-LEAD PLCC SOCKET PB1 PB2 PB3 PB4 PB5 C6 0.1 µF 39 38 37 36 35 34 33 32 31 30 29 PD5 PD4 PD3 PD2 PD1 PD0 (A8) (A9) (A10) (D5) (D6) (D7) 18 19 20 21 22 23 24 (PROG) 25 (VERF) 26 (A12) 27 (A11) 28 NC PB5 PB6 PB7 VSS NC PC7 PC6 PC5 (D0) (D1) (D2) (D3) (D4) 7 8 9 10 11 12 13 NC PC4 PC3 N R6 10 K 6 (A6) PA6 5 (A7) PA7 VPP 4 3 NC 2 IRQ 1 RESET VDD 44 43 OSC1 42 OSC2 41 TCAP 40 NC M R7 10 K R8 10 K 32 PD2 PD7 L O NC NC P PB6 PB7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PC0 PC1 PC2 PC3 PC4 PD1 PD0 PC5 Q R PC6 PC7 S VSS 37 35 12 13 14 15 16 17 18 19 11 10 9 8 7 6 5 4 28 27 26 25 24 30 29 23 22 21 20 Figure 9-2. PROM Programming Circuit (Continued) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 107 EPROM/OTPROM (PROM) To program the PROM MCU, the MCU is installed in the PCB, along with an EPROM device programmed with user code; the MCU is then subjected to a series of routines. The routines necessary to program, verify, and secure the PROM MCU are: • Program and verify PROM • Verify PROM contents only • Secure PROM and verify • Secure PROM and dump through the serial communications interface (SCI) Other board routines available to the user are: • Load program into random-access memory (RAM) and execute • Execute program in RAM • Dump PROM contents (binary upload) The user first configures the MCU for the bootstrap mode of operations by installing a fabricated jumper across pins 1 and 2 of the board’s mode select header, J1. Next, the board’s mode switches (S3, S4, S5, and S6) are set to determine the routine to be executed after the next reset, as shown in Table 9-2. Table 9-2. PROM Programming Routines Routine S3 S4 S5 S6 Program and verify PROM Off Off Off Off Verify PROM contents only Off Off On Off Secure PROM contents and verify On Off On Off Secure PROM contents and dump On On On Off Load program into RAM and execute Off On Off Off Execute program in RAM Off Off Off On Dump PROM contents Off On On Off Technical Data 108 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) EPROM/OTPROM (PROM) Programming 9.3.1 Program Register The program register (PROG) shown in Figure 9-3 is used for PROM programming. Address: $001C Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 LAT 0 PGM 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 9-3. Program Register (PROG) LAT — Latch Enable Bit This bit is both readable and writable. 1 = Enables PROM data and address bus latches for programming on the next byte write cycle 0 = Latch disabled. PROM data and address buses are unlatched for normal CPU operations. PGM — Program Bit If LAT is cleared, PGM cannot be set. 1 = Enables VPP power to the PROM for programming 0 = VPP is disabled. Bits 1 and 3−7 — Not used; always read 0 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 109 EPROM/OTPROM (PROM) 9.3.2 Preprogramming Steps Before programming the PROM using an MC68HC05PGMR PCB in standalone mode, the user should ensure that: NOTE: • A jumper is installed on pins 1 and 2 of mode select header J1. • An EPROM is programmed with the necessary user code. • The erasure window (if any) of the device to be programmed is covered. • VDD of +5 Vdc is available on the board. • VPP is available on the board. If the VPP level at the MCU exceeds +16 Vdc, then the MC68HC705C8A MCU device will suffer permanent damage. Once those conditions are met, the user should take these steps before beginning programming: 1. Remove the VPP power source. 2. Set switch 1 in the OFF position (removes VDD). 3. Place the programmed EPROM in socket U1. 4. Insert the erased PROM MCU device to be programmed in the proper socket: – MC68HC705C8S or MC68HC705C8P in socket U2 (40-pin dual in-line package (DIP)) or – MC68HC705C8FN in socket U3 (44-pin plastic leaded chip carrier (PLCC)) with the device notch at the upper right corner of the socket. 5. Set switch S2 in the RESET position. NOTE: No PROM MCU should be inserted in or removed from its board socket (U2 or U3) while VPP (P1, slot 5) or VDD (switch 1) is active on the board. Technical Data 110 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) PROM Programming Routines 9.4 PROM Programming Routines This subsection describes the routines necessary to program, verify, and secure the PROM device, and other routines available to the user. 9.4.1 Program and Verify PROM The program and verify PROM routine copies the contents of the external EPROM into the MCU PROM with direct correspondence between the addresses. Memory addresses in the MCU that are not implemented in PROM are skipped. Unprogrammed addresses in the EPROM being copied should contain $00 bytes to speed up the programming process. To run the program and verify the PROM routine on the PROM MCU, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Restore the VPP power source. 3. Set switches S3, S4, S5, and S6 in the OFF position (selects proper routine). 4. Set switch 2 in the OUT position (routine is activated). The red light-emitting diode (LED) is illuminated, showing that the programming part of the routine is running. The LED goes out when programming is finished. The verification part of the routine now begins. When the green LED is illuminated, verification is successfully completed and the routine is finished. 5. Set switch 2 in the RESET position. At this point, if no other MCU is to be programmed or secured, remove VPP power from the board. If another routine is to be performed on the MCU being programmed, the user can then set switches S3, S4, S5, and S6 to the positions necessary to select the next routine, and begin the routine by setting switch 2 to the OUT position. If no other routine is to be performed, remove VDD from the board and remove the MCU from the programming socket. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 111 EPROM/OTPROM (PROM) 9.4.2 Verify PROM Contents The verify PROM contents routine is normally run automatically after the PROM is programmed. Direct entry to this routine causes the PROM contents of the MCU to be compared to the contents of the external memory locations of the EPROM at the same addresses. To invoke the verify PROM contents routine of the MCU, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Connect VPP to VDD. 3. Set switches S3, S4, and S6 in the OFF position. 4. Set S5 in the ON position. 5. Set switch 2 in the OUT position (routine is activated). The red LED is not illuminated during this routine, since no programming takes place. If verification fails, the routine halts with the failing address in the external memory bus. When the green LED is illuminated, verification is completed successfully and the routine is finished. 6. Set switch 2 in the RESET position. At this point, if another routine is to be performed on the MCU being programmed, the user can set switches S3, S4, S5, and S6 to the positions necessary to select the next routine and move switch S2 to the OUT position to start the routine. If no other routine is to be performed, remove VDD from the board and remove the MCU from the programming socket. 9.4.3 Secure PROM The secure PROM routines are used after the PROM is successfully programmed and verified. Only the SEC bit of the option register ($1FDF) is programmed, but VPP is necessary. Once this bit is programmed, PROM is secure and can be neither verified nor dumped. Technical Data 112 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) PROM Programming Routines 9.4.4 Secure PROM and Verify This routine is used after the PROM is programmed successfully to verify the contents of the MCU PROM against the contents of the EPROM and then to secure the PROM. To accomplish this routine, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Restore VPP power to the programming board. 3. Set switches S4 and S6 in the OFF position. 4. Set switches S3 and S5 in the ON position. 5. Set switch 2 in the OUT position (routine is activated). Execution time for this routine is about one second. 6. Set switch 2 in the RESET position when the routine is completed. No LED is illuminated during this routine. Further, the end of the routine does not mean that the SEC bit was verified. To ensure that security is properly enabled, attempt to perform another verify routine. If the green LED does not light, the PROM has been secured properly. 9.4.5 Secure PROM and Dump This routine is used after the PROM is successfully programmed to dump the contents of the MCU PROM through the SCI (binary upload) and then to secure the PROM. To accomplish this routine, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Restore VPP power to the programming board. 3. Set switch S6 in the OFF position. 4. Set switches S3, S4, and S5 in the ON position. 5. Set switch 2 in the OUT position (routine is activated). Execution time for this routine is about one second. 6. Set switch 2 in the RESET position when the routine is completed. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 113 EPROM/OTPROM (PROM) No LED is illuminated during this routine. Further, the end of the routine does not mean that the SEC bit was verified. To ensure that security is properly enabled, attempt to perform another verify routine. If the green LED does not light, the PROM has been secured properly. 9.4.6 Load Program into RAM and Execute In the load program in RAM and execute routine, user programs are loaded via the SCI port and then executed. Data is loaded sequentially starting at address $0050. After the last byte is loaded, control is transferred to the RAM program starting at $0051. The first byte loaded is the count of the total number of bytes in the program plus the count byte. The program starts at location $0051 in RAM. During initialization, the SCI is configured for eight data bits and one stop bit. The baud rate is 4800 with a 2-MHz crystal or 9600 with a 4-MHz crystal. To load a program into RAM and execute it, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Connect VPP to VDD. 3. Set switches S3, S5, and S6 in the OFF position. 4. Set switch S4 in the ON position. 5. Set switch 2 in the OUT position (routine is activated). The downloaded program starts executing as soon as the last byte is received by the SCI. Execution of the routine can be held off by setting the byte count in the count byte (the first byte loaded) to a value greater than the number of bytes to be loaded. After loading the last byte, the firmware waits for more data. Program execution does not begin. At this point, placing switch 2 in the RESET position resets the MCU with the RAM data intact. Any other routine can be entered, including the one to execute the program in RAM, simply by setting switches S3–S6 as necessary to select the desired routine, then setting switch 2 in the OUT position. Technical Data 114 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) PROM Programming Routines 9.4.7 Execute Program in RAM This routine allows the MCU to transfer control to a program previously loaded in RAM. This program is executed once bootstrap mode is entered, if switch S6 is in the ON position and switch 2 is in the OUT position, without any firmware initialization. The program must start at location $0051 to be compatible with the load program in RAM routine. To run the execute program in RAM routine, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Connect VPP to VDD. 3. Set switch S6 in the OFF position. 4. Switches S3, S4, and S5 can be in either position. 5. Set switch 2 in the OUT position (routine is activated). NOTE: The non-programmable watchdog COP is disabled in bootloader mode, even if the NCOPE bit is programmed. 9.4.8 Dump PROM Contents In the dump PROM contents routine, the PROM contents are dumped sequentially to the SCI output, provided the PROM has not been secured. The first location sent is $0020 and the last location sent is $1FFF. Unused locations are skipped so that no gaps exist in the data stream. The external memory address lines indicate the current location being sent. Data is sent with eight data bits and one stop bit at 4800 baud with a 2-MHz crystal or 9600 baud with a 4-MHz crystal. To run the dump PROM contents routine, take these steps: 1. Set switch 1 in the ON position (restores VDD). 2. Connect VPP to VDD. 3. Set switches S3 and S6 in the OFF position. 4. Set switches S4 and S5 in the ON position. 5. Set switch 2 in the OUT position (routine is activated). 6. Once PROM dumping is complete, set switch 2 in the RESET position. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 115 EPROM/OTPROM (PROM) 9.5 Control Registers This subsection describes the three registers that control memory configuration, PROM security, and IRQ edge or level sensitivity; port B pullups; and non-programmable COP enable/disable. 9.5.1 Option Register The option register shown in Figure 9-4 is used to select the IRQ sensitivity, enable the PROM security, and select the memory configuration. Address: $1FDF Bit 7 6 5 4 3 RAM0 RAM1 0 0 SEC* 0 0 0 0 * Read: 2 1 Bit 0 IRQ 0 1 0 Write: Reset: U *Implemented as an EPROM cell = Unimplemented U = Unaffected Figure 9-4. Option Register (Option) RAM0 — Random-Access Memory Control Bit 0 1 = Maps 32 bytes of RAM into page zero starting at address $0030. Addresses from $0020 to $002F are reserved. This bit can be read or written at any time, allowing memory configuration to be changed during program execution. 0 = Provides 48 bytes of PROM at location $0020–$005F. RAM1 — Random-Access Memory Control Bit 1 1 = Maps 96 bytes of RAM into page one starting at address $0100. This bit can be read or written at any time, allowing memory configuration to be changed during program execution. 0 = Provides 96 bytes of PROM at location $0100. Technical Data 116 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) Control Registers SEC — Security Bit This bit is implemented as an EPROM cell and is not affected by reset. 1 = Security enabled 0 = Security off; bootloader able to be enabled IRQ — Interrupt Request Pin Sensitivity Bit IRQ is set only by reset, but can be cleared by software. This bit can only be written once. 1 = IRQ pin is both negative edge- and level-sensitive. 0 = IRQ pin is negative edge-sensitive only. Bits 5, 4, and 0 — Not used; always read 0 Bit 2 — Unaffected by reset; reads either 1 or 0 9.5.2 Mask Option Register 1 Mask option register 1 (MOR1) shown in Figure 9-5 is an EPROM register that enables the port B pullup devices. Data from MOR1 is latched on the rising edge of the voltage on the RESET pin. See 4.3.3 Port B Interrupts. Address: $1FF0 Bit 7 6 5 4 3 2 1 Bit 0 PBPU7 PBPU6 PBPU5 PBPU4 PBPU3 PBPU2 PBPU1 PBPU0/ COPC 0 0 0 Read: Write: Reset: Erased: Unaffected by reset 0 0 0 0 0 Figure 9-5. Mask Option Register 1 (MOR1) PBPU7–PBPU0/COPC — Port B Pullup Enable Bits 7–0 These EPROM bits enable the port B pullup devices. 1 = Port B pullups enabled 0 = Port B pullups disabled MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 117 EPROM/OTPROM (PROM) NOTE: PBPU0/COPC programmed to a 1 enables the port B pullup bit. This bit is also used to clear the non-programmable COP (MC68HC05C4A type). Writing to this bit to clear the COP will not affect the state of the port B pull-up (bit 0). See 5.3.3 Programmable and Non-Programmable COP Watchdog Resets. When using the MC68HC705C8A in an MC68HC705C8 or MC68HSC705C8 application, program locations $1FF0 and $1FF1 to $00. 9.5.3 Mask Option Register 2 Mask option register 2 (MOR2) shown in Figure 9-6 is an EPROM register that enables the non-programmable COP watchdog. Data from MOR2 is latched on the rising edge of the voltage on the RESET pin. See 5.3.3 Programmable and Non-Programmable COP Watchdog Resets. Address: $1FF1 Bit 7 6 5 4 3 2 1 Bit 0 Read: NCOPE Write: Reset: Erased: Unaffected by reset 0 0 0 0 0 0 0 0 = Unimplemented Figure 9-6. Mask Option Register 2 (MOR2) NCOPE — Non-Programmable COP Watchdog Enable Bit This EPROM bit enables the non-programmable COP watchdog. 1 = Non-programmable COP watchdog enabled 0 = Non-programmable COP watchdog disabled Technical Data 118 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA EPROM/OTPROM (PROM) EPROM Erasing 9.6 EPROM Erasing The erased state of an EPROM or OTPROM byte is $00. EPROM devices can be erased by exposure to a high intensity ultraviolet (UV) light with a wave length of 2537 Å. The recommended erasure dosage (UV intensity on a given surface area x exposure time) is 15 Ws/cm2. UV lamps should be used without short-wave filters, and the EPROM device should be positioned about one inch from the UV source. OTPROM devices are shipped in an erased state. Once programmed, they cannot be erased. Electrical erasing procedures cannot be performed on either EPROM or OTPROM devices. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data EPROM/OTPROM (PROM) 119 EPROM/OTPROM (PROM) Technical Data 120 MC68HC705C8A — Rev. 3 EPROM/OTPROM (PROM) MOTOROLA Technical Data — MC68HC705C8A Section 10. Serial Communications Interface (SCI) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.4 SCI Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.5 SCI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 10.5.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 10.5.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.6 SCI I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.6.1 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.6.2 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 10.6.3 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 10.6.4 SCI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.6.5 Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.2 Introduction The serial communications interface (SCI) module allows high-speed asynchronous communication with peripheral devices and other microcontroller units (MCUs). MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 121 Serial Communications Interface (SCI) 10.3 Features Features of the SCI module include: • Standard mark/space non-return-to-zero format • Full-duplex operation • 32 programmable baud rates • Programmable 8-bit or 9-bit character length • Separately enabled transmitter and receiver • Two receiver wakeup methods: – Idle line wakeup – Address mark wakeup • Interrupt-driven operation capability with five interrupt flags: – Transmitter data register empty – Transmission complete – Receiver data register full – Receiver overrun – Idle receiver input • Receiver framing error detection • 1/16 bit-time noise detection 10.4 SCI Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 10-1. Technical Data 122 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI Operation 8-BIT DATA FORMAT (BIT M IN SCCR1 CLEAR) START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT BIT 6 BIT 7 BIT 8 NEXT START BIT 9-BIT DATA FORMAT (BIT M IN SCCR1 SET) START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 STOP BIT NEXT START BIT Figure 10-1. SCI Data Format 10.5 SCI Operation The SCI allows full-duplex, asynchronous, RS232 or RS422 serial communication between the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud-rate generator. This subsection describes the operation of the SCI transmitter and receiver. 10.5.1 Transmitter Figure 10-2 shows the structure of the SCI transmitter. Figure 10-3 is a summary of the SCI transmitter input/output (I/O) registers. • Character Length — The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCCR1) determines character length. When transmitting 9-bit data, bit T8 in SCCR1 is the ninth bit (bit 8). • Character Transmission — During transmission, the transmit shift register shifts a character out to the PD1/TDO pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 123 Serial Communications Interface (SCI) SCDR ($0011) 1X BAUD RATE CLOCK TRANSMIT SHIFT REGISTER PIN BUFFER AND CONTROL SCSR ($0010) INTERNAL DATA BUS TDRE TC RDRF IDLE OR NF FE M WAKE R8 T8 TRANSMITTER CONTROL LOGIC SCCR1 ($000E) PD1/ TDO BREAK (ALL LOGIC 0s) PREAMBLE (ALL LOGIC 1s) SHIFT ENABLE LOAD FROM SCDR H 8 7 6 5 4 3 2 1 0 L TDRE TIE TC TCIE TIE TCIE RIE ILIE TE RE RWU SBK SCI RECEIVE REQUESTS SCCR2 ($000F) SCI INTERRUPT REQUEST Figure 10-2. SCI Transmitter Technical Data 124 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI Operation Addr. $000D $000E $000F $0010 $0011 Register Name Bit 7 Read: Baud Rate Register (Baud) Write: See page 136. Reset: Read: SCI Control Register 1 (SCCR1) Write: See page 130. Reset: Read: SCI Control Register 2 (SCCR2) Write: See page 131. Reset: 5 4 3 SCP1 SCP0 0 0 U 2 1 Bit 0 SCR2 SCR1 SCR0 U U U U U R8 T8 M WAKE U U U U TIE TCIE RIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 TC RDRF IDLE OR NF FE 1 0 0 0 0 0 U Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: TDRE SCI Status Register (SCSR) Write: See page 133. Reset: 1 Read: SCI Data Register (SCDR) Write: See page 129. Reset: 6 Bit 7 Unaffected by reset = Unimplemented U = Unaffected Figure 10-3. SCI Transmitter I/O Register Summary Writing a logic 1 to the TE bit in SCI control register 2 (SCCR2) and then writing data to the SCDR begins the transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, the control logic transfers the SCDR data into the shift register. A logic 0 start bit automatically goes into the least significant bit (LSB) position of the shift register, and a logic 1 stop bit goes into the most significant bit (MSB) position. When the data in the SCDR transfers to the transmit shift register, the transmit data register empty (TDRE) flag in the SCI status register (SCSR) becomes set. The TDRE flag indicates that the SCDR can accept new data from the internal data bus. When the shift register is not transmitting a character, the PD1/TDO pin goes to the idle condition, logic 1. If software clears the TE bit during the idle condition, and while TDRE is set, the transmitter relinquishes control of the PD1/TDO pin. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 125 Serial Communications Interface (SCI) • Break Characters — Writing a logic 1 to the SBK bit in SCCR2 loads the shift register with a break character. A break character contains all logic 0s and has no start and stop bits. Break character length depends on the M bit in SCCR1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character is to guarantee the recognition of the start bit of the next character. • Idle Characters — An idle character contains all logic 1s and has no start or stop bits. Idle character length depends on the M bit in SCCR1. The preamble is a synchronizing idle character that begins every transmission. Clearing the TE bit during a transmission relinquishes the PD1/TDO pin after the last character to be transmitted is shifted out. The last character may already be in the shift register, or waiting in the SCDR, or it may be a break character generated by writing to the SBK bit. Toggling TE from logic 0 to logic 1 while the last character is in transmission generates an idle character (a preamble) that allows the receiver to maintain control of the PD1/TDO pin. • Transmitter Interrupts — These sources can generate SCI transmitter interrupt requests: – Transmit Data Register Empty (TDRE) — The TDRE bit in the SCSR indicates that the SCDR has transferred a character to the transmit shift register. TDRE is a source of SCI interrupt requests. The transmission complete interrupt enable bit (TCIE) in SCCR2 is the local mask for TDRE interrupts. – Transmission Complete (TC) — The TC bit in the SCSR indicates that both the transmit shift register and the SCDR are empty and that no break or idle character has been generated. TC is a source of SCI interrupt requests. The transmission complete interrupt enable bit (TCIE) in SCCR2 is the local mask for TC interrupts. Technical Data 126 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI Operation 10.5.2 Receiver 16X BAUD RATE CLOCK PD0/ RDI PIN BUFFER AND CONTROL STOP ÷16 DATA RECOVERY RECEIVE SHIFT REGISTER 8 7 6 5 4 3 2 1 0 DISABLE DRIVER IDLE MSB RDRF OR RE M SCCR1 ($000E) IDLE OR NF FE TDRE TC RDRF M WAKE T8 WAKEUP LOGIC R8 INTERNAL DATA BUS START Figure 10-4 shows the structure of the SCI receiver. Refer to Figure 10-3 for a summary of the SCI receiver I/O registers. SCSR ($0010) SCDR ($0011) RDRF IDLE SCI TRANSMIT REQUESTS ILIE OR TCIE RIE ILIE TE RE RWU SBK TIE RIE INTERNAL DATA BUS RIE SCCR2 ($000F) SCI INTERRUPT REQUEST Figure 10-4. SCI Receiver MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 127 Serial Communications Interface (SCI) • Character Length — The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCCR1) determines character length. When receiving 9-bit data, bit R8 in SCCR1 is the ninth bit (bit 8). • Character Reception — During reception, the receive shift register shifts characters in from the PD0/RDI pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character is transferred to the SCDR, setting the receive data register full (RDRF) flag. The RDRF flag can be used to generate an interrupt. • Receiver Wakeup — So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the MCU can be put into a standby state. Setting the receiver wakeup enable (RWU) bit in SCI control register 2 (SCCR2) puts the MCU into a standby state during which receiver interrupts are disabled. Either of two conditions on the PD0/RDI pin can bring the MCU out of the standby state: – Idle input line condition — If the PD0/RDI pin is at logic 1 long enough for 10 or 11 logic 1s to shift into the receive shift register, receiver interrupts are again enabled. – Address mark — If a logic 1 occurs in the most significant bit position of a received character, receiver interrupts are again enabled. The state of the WAKE bit in SCCR1 determines which of the two conditions wakes up the MCU. • Receiver Noise Immunity — The data recovery logic samples each bit 16 times to identify and verify the start bit and to detect noise. Any conflict between noise detection samples sets the noise flag (NF) in the SCSR. The NF bit is set at the same time that the RDRF bit is set. Technical Data 128 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI I/O Registers • Framing Errors — If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error (FE) bit in the SCSR. The FE bit is set at the same time that the RDRF bit is set. • Receiver Interrupts — These sources can generate SCI receiver interrupt requests: – Receive Data Register Full (RDRF) — The RDRF bit in the SCSR indicates that the receive shift register has transferred a character to the SCDR. – Receiver Overrun (OR) — The OR bit in the SCSR indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. – Idle Input (IDLE) — The IDLE bit in the SCSR indicates that 10 or 11 consecutive logic 1s shifted in from the PD0/RDI pin. 10.6 SCI I/O Registers These I/O registers control and monitor SCI operation: • SCI data register (SCDR) • SCI control register 1 (SCCR1) • SCI control register 2 (SCCR2) • SCI status register (SCSR) 10.6.1 SCI Data Register The SCI data register (SCDR) shown in Figure 10-5 is the buffer for characters received and for characters transmitted. Address: $0011 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 10-5. SCI Data Register (SCDR) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 129 Serial Communications Interface (SCI) 10.6.2 SCI Control Register 1 SCI control register 1 (SCCR1) shown in Figure 10-6 has these functions: • Stores ninth SCI data bit received and ninth SCI data bit transmitted • Controls SCI character length • Controls SCI wakeup method Address: $000E Bit 7 6 R8 U 5 4 3 T8 M WAKE U U U 2 1 Bit 0 Read: Write: Reset: = Unimplemented U = Unaffected Figure 10-6. SCI Control Register 1 (SCCR1) R8 — Bit 8 (Received) When the SCI is receiving 9-bit characters, R8 is the ninth bit of the received character. R8 receives the ninth bit at the same time that the SCDR receives the other eight bits. Reset has no effect on the R8 bit. T8 — Bit 8 (Transmitted) When the SCI is transmitting 9-bit characters, T8 is the ninth bit of the transmitted character. T8 is loaded into the transmit shift register at the same time that SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. M — Character Length Bit This read/write bit determines whether SCI characters are eight or nine bits long. The ninth bit can be used as an extra stop bit, as a receiver wakeup signal, or as a mark or space parity bit. Reset has no effect on the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters Technical Data 130 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI I/O Registers WAKE — Wakeup Bit This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition of the PD0/RDI pin. Reset has no effect on the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup 10.6.3 SCI Control Register 2 SCI control register 2 (SCCR2) shown in Figure 10-7 has these functions: • Enables the SCI receiver and SCI receiver interrupts • Enables the SCI transmitter and SCI transmitter interrupts • Enables SCI receiver idle interrupts • Enables SCI transmission complete interrupts • Enables SCI wakeup • Transmits SCI break characters Address: $000F Bit 7 6 5 4 3 2 1 Bit 0 TIE TCIE RIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 10-7. SCI Control Register 2 (SCCR2) TIE — Transmit Interrupt Enable Bit This read/write bit enables SCI interrupt requests when the TDRE bit becomes set. Reset clears the TIE bit. 1 = TDRE interrupt requests enabled 0 = TDRE interrupt requests disabled MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 131 Serial Communications Interface (SCI) TCIE — Transmission Complete Interrupt Enable Bit This read/write bit enables SCI interrupt requests when the TC bit becomes set. Reset clears the TCIE bit. 1 = TC interrupt requests enabled 0 = TC interrupt requests disabled RIE — Receive Interrupt Enable Bit This read/write bit enables SCI interrupt requests when the RDRF bit or the OR bit becomes set. Reset clears the RIE bit. 1 = RDRF interrupt requests enabled 0 = RDRF interrupt requests disabled ILIE — Idle Line Interrupt Enable Bit This read/write bit enables SCI interrupt requests when the IDLE bit becomes set. Reset clears the ILIE bit. 1 = IDLE interrupt requests enabled 0 = IDLE interrupt requests disabled TE — Transmit Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the PD1/TDO pin. Reset clears the TE bit. 1 = Transmission enabled 0 = Transmission disabled RE — Receive Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver and receiver interrupts but does not affect the receiver interrupt flags. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled RWU — Receiver Wakeup Enable Bit This read/write bit puts the receiver in a standby state. Typically, data transmitted to the receiver clears the RWU bit and returns the receiver to normal operation. The WAKE bit in SCCR1 determines whether an Technical Data 132 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI I/O Registers idle input or an address mark brings the receiver out of the standby state. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation SBK — Send Break Bit Setting this read/write bit continuously transmits break codes in the form of 10-bit or 11-bit groups of logic 0s. Clearing the SBK bit stops the break codes and transmits a logic 1 as a start bit. Reset clears the SBK bit. 1 = Break codes being transmitted 0 = No break codes being transmitted 10.6.4 SCI Status Register The SCI status register (SCSR) shown in Figure 10-8 contains flags to signal these conditions: • Transfer of SCDR data to transmit shift register complete • Transmission complete • Transfer of receive shift register data to SCDR complete • Receiver input idle • Receiver overrun • Noisy data • Framing error Address: Read: $0010 Bit 7 6 5 4 3 2 1 TDRE TC RDRF IDLE OR NF FE 1 1 0 0 0 0 0 Bit 0 Write: Reset: = Unimplemented U U = Unaffected Figure 10-8. SCI Status Register (SCSR) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 133 Serial Communications Interface (SCI) TDRE — Transmit Data Register Empty Bit This clearable, read-only bit is set when the data in the SCDR transfers to the transmit shift register. TDRE generates an interrupt request if the TIE bit in SCCR2 is also set. Clear the TDRE bit by reading the SCSR with TDRE set and then writing to the SCDR. Reset sets the TDRE bit. Software must initialize the TDRE bit to logic 0 to avoid an instant interrupt request when turning on the transmitter. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register TC — Transmission Complete Bit This clearable, read-only bit is set when the TDRE bit is set and no data, preamble, or break character is being transmitted. TC generates an interrupt request if the TCIE bit in SCCR2 is also set. Clear the TC bit by reading the SCSR with TC set and then writing to the SCDR. Reset sets the TC bit. Software must initialize the TC bit to logic 0 to avoid an instant interrupt request when turning on the transmitter. 1 = No transmission in progress 0 = Transmission in progress RDRF — Receive Data Register Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. RDRF generates an interrupt request if the RIE bit in SCCR2 is also set. Clear the RDRF bit by reading the SCSR with RDRF set and then reading the SCDR. Reset clears the RDRF bit. 1 = Received data available in SCDR 0 = Received data not available in SCDR IDLE — Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an interrupt request if the ILIE bit in SCCR2 is also set. Clear the IDLE bit by reading the SCSR with IDLE set, and then reading the SCDR. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input not idle Technical Data 134 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI I/O Registers OR — Receiver Overrun Bit This clearable, read-only bit is set if the SCDR is not read before the receive shift register receives the next word. OR generates an interrupt request if the RIE bit in SCCR2 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading the SCSR with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receiver shift register full and RDRF = 1 0 = No receiver overrun NF — Receiver Noise Flag Bit This clearable, read-only bit is set when noise is detected in data received in the SCI data register. Clear the NF bit by reading the SCSR and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected in SCDR 0 = No noise detected in SCDR FE — Receiver Framing Error Bit This clearable, read-only flag is set when a logic 0 is located where a stop bit should be in the character shifted into the receive shift register. If the received word causes both a framing error and an overrun error, the OR bit is set and the FE bit is not set. Clear the FE bit by reading the SCSR and then reading the SCDR. Reset clears the FE bit. 1 = Framing error 0 = No framing error MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 135 Serial Communications Interface (SCI) 10.6.5 Baud Rate Register The baud rate register shown in Figure 10-9 selects the baud rate for both the receiver and the transmitter. Address: $000D Bit 7 6 5 4 SCP1 SCP0 0 0 3 2 1 Bit 0 SCR2 SCR1 SCR0 U U U Read: Write: Reset: U U = Unimplemented U U = Unaffected Figure 10-9. Baud Rate Register (Baud) SCP1 and SCP0 — SCI Prescaler Select Bits These read/write bits control prescaling of the baud rate generator clock, as shown in Table 10-1. Resets clear both SCP1 and SCP0. Table 10-1. Baud Rate Generator Clock Prescaling SCP[1:0] Baud Rate Generator Clock 00 Internal clock ÷1 01 Internal clock ÷3 10 Internal clock ÷4 11 Internal clock ÷ 13 Technical Data 136 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) SCI I/O Registers SCR2–SCR0 — SCI Baud Rate Select Bits These read/write bits select the SCI baud rate, as shown in Table 10-2. Reset has no effect on the SCR2–SCR0 bits. Table 10-2. Baud Rate Selection SCR[2:1:0] SCI Baud Rate (Baud) 000 Prescaled clock ÷ 1 001 Prescaled clock ÷ 2 010 Prescaled clock ÷ 4 011 Prescaled clock ÷ 8 100 Prescaled clock ÷ 16 101 Prescaled clock ÷ 32 110 Prescaled clock ÷ 64 111 Prescaled clock ÷ 128 Table 10-3 shows all possible SCI baud rates derived from crystal frequencies of 2 MHz, 4 MHz, and 4.194304 MHz. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Communications Interface (SCI) 137 Serial Communications Interface (SCI) Table 10-3. Baud Rate Selection Examples SCI Baud Rate SCP[1:0] SCR[2:1:0] 00 fOSC = 2 MHz fOSC = 4 MHz fOSC = 4.194304 MHz 000 62.50 Kbaud 125 Kbaud 131.1 Kbaud 00 001 31.25 Kbaud 62.50 Kbaud 65.54 Kbaud 00 010 15.63 Kbaud 31.25 Kbaud 32.77 Kbaud 00 011 7813 baud 15.63 Kbaud 16.38 Kbaud 00 100 3906 baud 7813 baud 8192 baud 00 101 1953 baud 3906 baud 4096 baud 00 110 976.6 baud 1953 baud 2048 baud 00 111 488.3 baud 976.6 baud 1024 baud 01 000 20.83 Kbaud 41.67 Kbaud 43.69 Kbaud 01 001 10.42 Kbaud 20.83 Kbaud 21.85 Kbaud 01 010 5208 baud 10.42 Kbaud 10.92 Kbaud 01 011 2604 baud 5208 baud 5461 baud 01 100 1302 baud 2604 baud 2731 baud 01 101 651.0 baud 1302 baud 1365 baud 01 110 325.5 baud 651.0 baud 682.7 baud 01 111 162.8 baud 325.5 baud 341.3 baud 10 000 15.63 Kbaud 31.25 Kbaud 32.77 Kbaud 10 001 7813 baud 15.63 Kbaud 16.38 Kbaud 10 010 3906 baud 7813 baud 8192 baud 10 011 1953 baud 3906 baud 4906 baud 10 100 976.6 baud 1953 baud 2048 baud 10 101 488.3 baud 976.6 baud 1024 baud 10 110 244.1 baud 488.3 baud 512.0 baud 10 111 122.1 baud 244.1 baud 256.0 baud 11 000 4808 baud 9615 baud 10.08 Kbaud 11 001 2404 baud 4808 baud 5041 baud 11 010 1202 baud 2404 baud 2521 baud 11 011 601.0 baud 1202 baud 1260 baud 11 100 300.5 baud 601.0 baud 630.2 baud 11 101 150.2 baud 300.5 baud 315.1 baud 11 110 75.12 baud 150.2 baud 157.5 baud 11 111 37.56 baud 75.12 baud 78.77 baud Technical Data 138 MC68HC705C8A — Rev. 3 Serial Communications Interface (SCI) MOTOROLA Technical Data — MC68HC705C8A Section 11. Serial Peripheral Interface (SPI) 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 11.4 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.4.1 Pin Functions in Master Mode . . . . . . . . . . . . . . . . . . . . . . 143 11.4.2 Pin Functions in Slave Mode . . . . . . . . . . . . . . . . . . . . . . .144 11.5 Multiple-SPI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.6 Serial Clock Polarity and Phase . . . . . . . . . . . . . . . . . . . . . . .146 11.7 SPI Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.7.1 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 11.7.2 Write Collision Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.7.3 Overrun Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.8 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 11.9 SPI I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.9.1 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.9.2 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.9.3 SPI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 11.2 Introduction The serial peripheral interface (SPI) module allows full-duplex, synchronous, serial communication with peripheral devices. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 139 Serial Peripheral Interface (SPI) 11.3 Features Features of the SPI include: • Full-duplex operation • Master and slave modes • Four programmable master mode frequencies (1.05 MHz maximum) • 2.1-MHz maximum slave mode frequency • Serial clock with programmable polarity and phase • End of transmission interrupt flag • Write collision error flag • Bus contention error flag Figure 11-1 shows the structure of the SPI module. Figure 11-2 is a summary of the SPI input/output (I/O) registers. Technical Data 140 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Serial Peripheral Interface (SPI) Features INTERNAL CLOCK (XTAL ÷2) S M M 7 6 5 4 3 2 1 0 S PIN CONTROL LOGIC SPI SHIFT REGISTER DIVIDER ÷2 ÷4 ÷6 ÷32 SHIFT CLOCK SPDR ($000C) SPI CLOCK (MASTER) PD4/ SCK PD5/ SS SPR0 SPR1 CPOL CPHA MSTR DWOM SPIE SPE MSTR SPE DWOM MODF SPIF WCOL S MSTR SPE SPIE SPI CONTROL PD3/ MOSI M CLOCK LOGIC SPR0 SPR1 SELECT PD2/ MISO SPCR ($000A) SPSR ($000B) SPI INTERRUPT REQUEST INTERNAL DATA BUS Figure 11-1. SPI Block Diagram MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 141 Serial Peripheral Interface (SPI) Addr. $000A $000B $000C Register Name Read: SPI Control Register (SPCR) Write: See page 149. Reset: Read: SPI Status Register (SPSR) Write: See page 151. Reset: Read: SPI Data Register (SPDR) Write: See page 149. Reset: Bit 7 6 SPIE 5 4 3 2 1 Bit 0 SPE MSTR CPOL CPHA SPR1 SPR0 0 0 0 U U U U SPIF WCOL MODF 0 0 0 Bit 7 Bit 6 Bit 3 BIt 2 Bit 1 Bit 0 Bit 5 Bit 4 Unaffected by reset = Unimplemented U = Unaffected Figure 11-2. SPI I/O Register Summary 11.4 Operation The master/slave SPI allows full-duplex, synchronous, serial communication between the microcontroller unit (MCU) and peripheral devices, including other MCUs. As the 8-bit shift register of a master SPI transmits each byte to another device, a byte from the receiving device enters the master SPI shift register. A clock signal from the master SPI synchronizes data transmission. Only a master SPI can initiate transmissions. Software begins the transmission from a master SPI by writing to the SPI data register (SPDR). The SPDR does not buffer data being transmitted from the SPI. Data written to the SPDR goes directly into the shift register and begins the transmission immediately under the control of the serial clock. The transmission ends after eight cycles of the serial clock when the SPI flag (SPIF) becomes set. At the same time that SPIF becomes set, the data shifted into the master SPI from the receiving device transfers to the SPDR. The SPDR buffers data being received by the SPI. Before the master SPI sends the next byte, software must clear the SPIF bit by reading the SPSR and then accessing the SPDR. Technical Data 142 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Serial Peripheral Interface (SPI) Operation In a slave SPI, data enters the shift register under the control of the serial clock from the master SPI. After a byte enters the shift register of a slave SPI, it transfers to the SPDR. To prevent an overrun condition, slave software must then read the byte in the SPDR before another byte enters the shift register and is ready to transfer to the SPDR. Figure 11-3 shows how a master SPI exchanges data with a slave SPI. PD3/MOSI SPI SHIFT REGISTER 7 6 5 4 3 2 1 0 PD2/MISO SPI SHIFT REGISTER 7 6 5 4 3 2 1 0 PD5/SS SPDR ($000C) SPDR ($000C) PD4/SCK MASTER MCU SLAVE MCU Figure 11-3. Master/Slave Connections 11.4.1 Pin Functions in Master Mode Setting the MSTR bit in the SPI control register (SPCR) configures the SPI for operation in master mode. The master-mode functions of the SPI pins are: • PD4/SCK (serial clock) — In master mode, the PD4/SCK pin is the synchronizing clock output. • PD3/MOSI (master output, slave input) — In master mode, the PD3/MOSI pin is the serial output. • PD2/MISO (master input, slave output) — In master mode, the PD2/MISO pin is configured as the serial input. • PD5/SS (slave select) — In master mode, the PD5/SS pin protects against driver contention caused by the simultaneous operation of two SPIs in master mode. A logic 0 on the PD5/SS pin of a master SPI disables the SPI, clears the MSTR bit, and sets the mode-fault flag (MODF). MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 143 Serial Peripheral Interface (SPI) 11.4.2 Pin Functions in Slave Mode Clearing the MSTR bit in the SPCR configures the SPI for operation in slave mode. The slave-mode functions of the SPI pins are: • PD4/SCK (serial clock) — In slave mode, the PD4/SCK pin is the input for the synchronizing clock signal from the master SPI. • PD3/MOSI (master output, slave input) — In slave mode, the PD3/MOSI pin is the serial input. • PD2/MISO (master input, slave output) — In slave mode, the PD2/MISO pin is the serial output. • PD5/SS (slave select) — In slave mode, the PD5/SS pin enables the SPI for data and serial clock reception from a master SPI. When CPHA = 0, the shift clock is the OR of SS with SCK. In this clock phase mode, SS must go high between successive characters in an SPI message. When CPHA = 1, SS may be left low for several SPI characters. In cases with only one SPI slave MCU, the slave MCU SS line can be tied to VSS as long as CPHA = 1 clock modes are used. The WCOL flag bit can be improperly set when attempting the first transmission after a reset if these conditions are present: MSTR = 0, CPOL = 0, CPHA = 1, SS pin = 0, and SCK pin = 1. The reset states of the CPOL and CPHA bits are 0 and 1, respectively. Under normal operating conditions (CPOL = 0, CPHA = 1), the SCK input will be low. The incorrect setting of the WCOL bit can be prevented in two ways: 1. Send a dummy transmission after reset, clear the WCOL flag, and then proceed with the real transmission. 2. Use the MSTR bit in the SPCR (SPI control register). This is accomplished by setting the MSTR bit at the same time the CPOL and CPHA bits are programmed to the desired logic levels. Then, the data register can be written to if desired. After this, the MSTR bit should be set to a logic 0, the SPE (SPI enable bit) should be set to a logic 1, and the CPOL, CPHA, SPR1, and SPR0 bits set to the desired logic levels. If this procedure is followed after a reset and before the first access to the SPDR, the WCOL flag will not be set. Technical Data 144 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Serial Peripheral Interface (SPI) Multiple-SPI Systems Example: LDA #$1C STA SPCR LDA #$4C STA SPCR ; ; ; ; ; ; MSTR = 1, CPOL = 1, CPHA = 1, SPR1 = SPR0 = 0 SPI control register MSTR = 0, SPE = 1, CPOL = 1, CPHA = 1, SPR1 = SPR0 = 0 SPI control register 11.5 Multiple-SPI Systems In a multiple-SPI system, all PD4/SCK pins are connected together, all PD3/MOSI pins are connected together, and all PD2/MISO pins are connected together. Before a transmission, one SPI is configured as master and the rest are configured as slaves. Figure 11-4 is a block diagram showing a single master SPI and three slave SPIs. MASTER MCU PD2/MISO PD3/MOSI PD4/SCK PD5/SS VDD 2 SLAVE MCU 2 SLAVE MCU 1 PD2/MISO PD3/MOSI PD5/SS PD4/SCK PD2/MISO PD3/MOSI PD5/SS PD4/SCK PD2/MISO PD3/MOSI PD5/SS PD4/SCK I/O PORT 1 0 SLAVE MCU 0 Figure 11-4. One Master and Three Slaves Block Diagram Figure 11-5 is another block diagram with two master/slave SPIs and three slave SPIs. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 145 Serial Peripheral Interface (SPI) MASTER/SLAVE MCU 1 MASTER/SLAVE MCU 2 PD2/MISO PD2/MISO PD3/MOSI PD3/MOSI PD4/SCK PD4/SCK PD5/SS PD5/SS SLAVE MCU 2 SLAVE MCU 1 I/O PORT PD2/MISO PD3/MOSI PD4/SCK PD5/SS PD2/MISO PD3/MOSI 3 PD4/SCK 3 PD5/SS 2 PD2/MISO 2 PD3/MOSI 1 PD4/SCK 0 1 PD5/SS I/O PORT 0 SLAVE MCU 0 Figure 11-5. Two Master/Slaves and Three Slaves Block Diagram 11.6 Serial Clock Polarity and Phase To accommodate the different serial communication requirements of peripheral devices, software can change the phase and polarity of the SPI serial clock. The clock polarity bit (CPOL) and the clock phase bit (CPHA), both in the SPCR, control the timing relationship between the serial clock and the transmitted data. Figure 11-6 shows how the CPOL and CPHA bits affect the clock/data timing. SS CPHA CPOL 0 0 SCK (A) 1 0 SCK (B) 0 1 SCK (C) 1 1 SCK (D) SDO/SDI MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB CAPTURE STROBE Figure 11-6. SPI Clock/Data Timing Technical Data 146 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Serial Peripheral Interface (SPI) SPI Error Conditions 11.7 SPI Error Conditions These conditions produce SPI system errors: • Bus contention caused by multiple master SPIs (mode fault error) • Writing to the SPDR during a transmission (write-collision error) • Failing to read the SPDR before the next incoming byte sets the SPIF bit (overrun error) 11.7.1 Mode Fault Error A mode fault error results when a logic 0 occurs on the PD5/SS pin of a master SPI. The MCU takes these actions when a mode fault error occurs: • Puts the SPI in slave mode by clearing the MSTR bit • Disables the SPI by clearing the SPE bit • Sets the MODF bit 11.7.2 Write Collision Error Writing to the SPDR during a transmission causes a write collision error and sets the WCOL bit in the SPSR. Either a master SPI or a slave SPI can generate a write collision error. • Master — A master SPI can cause a write collision error by writing to the SPDR while the previously written byte is still being shifted out to the PD3/MOSI pin. The error does not affect the transmission of the previously written byte, but the byte that caused the error is lost. • Slave — A slave SPI can cause a write collision error in either of two ways, depending on the state of the CPHA bit: – CPHA = 0 — A slave SPI can cause a write collision error by writing to the SPDR while the PD5/SS pin is at logic 0. The error does not affect the byte in the SPDR, but the byte that caused the error is lost. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 147 Serial Peripheral Interface (SPI) – CPHA = 1 — A slave SPI can cause a write collision error by writing to the SPDR while receiving a transmission, that is, between the first active SCK edge and the end of the eighth SCK cycle. The error does not affect the transmission from the master SPI, but the byte that caused the error is lost. 11.7.3 Overrun Error Failing to read the byte in the SPDR before a subsequent byte enters the shift register causes an overrun condition. In an overrun condition, all incoming data is lost until software clears SPIF. The overrun condition has no flag. 11.8 SPI Interrupts The SPIF bit in the SPSR indicates a byte has shifted into or out of the SPDR. The SPIF bit is a source of SPI interrupt requests. The SPI interrupt enable bit (SPIE) in the SPCR is the local mask for SPIF interrupts. The MODF bit in the SPSR indicates a mode error and is a source of SPI interrupt requests. The MODF bit is set when a logic 0 occurs on the PD5/SS pin while the MSTR bit is set. The SPI interrupt enable bit (SPIE) in the SPCR is the local mask for MODF interrupts. 11.9 SPI I/O Registers These input/output (I/O) registers control and monitor SPI operation: • SPI data register (SPDR) • SPI control register (SPCR) • SPI status register (SPSR) Technical Data 148 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Serial Peripheral Interface (SPI) SPI I/O Registers 11.9.1 SPI Data Register The SPDR shown in Figure 11-7 is the read buffer for characters received by the SPI. Writing a byte to the SPDR places the byte directly into the SPI shift register. Address: $000C Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 11-7. SPI Data Register (SPDR) 11.9.2 SPI Control Register • Enables SPI interrupt requests • Enables the SPI • Configures the SPI as master or slave • Selects serial clock polarity, phase, and frequency Address: $000A Bit 7 6 SPIE 0 5 4 3 2 1 Bit 0 SPE MSTR CPOL CPHA SPR1 SPR0 0 0 U U U U Read: Write: Reset: = Unimplemented U = Unaffected Figure 11-8. SPI Control Register (SPCR) SPIE — SPI Interrupt Enable Bit This read/write bit enables SPI interrupts. Reset clears the SPIE bit. 1 = SPI interrupts enabled 0 = SPI interrupts disabled MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 149 Serial Peripheral Interface (SPI) SPI — SPI Enable Bit This read/write bit enables the SPI. Reset clears the SPE bit. 1 = SPI enabled 0 = SPI disabled MSTR — Master Bit This read/write bit selects master mode operation or slave mode operation. Reset clears the MSTR bit. 1 = Master mode 0 = Slave mode CPOL — Clock Polarity Bit This read/write bit determines the logic state of the PD4/SCK pin between transmissions. To transmit data between SPIs, the SPIs must have identical CPOL bits. Reset has no effect on the CPOL bit. 1 = PD4/SCK pin at logic 1 between transmissions 0 = PD4/SCK pin at logic 0 between transmissions CPHA — Clock Phase Bit This read/write bit controls the timing relationship between the serial clock and SPI data. To transmit data between SPIs, the SPIs must have identical CPHA bits. When CPHA = 0, the PD5/SS pin of the slave SPI must be set to logic 1 between bytes. Reset has no effect on the CPHA bit. 1 = Edge following first active edge on PD4/SCK latches data 0 = First active edge on PD4/SCK latches data SPR1 and SPR0 — SPI Clock Rate Bits These read/write bits select the master mode serial clock rate, as shown in Table 11-1. The SPR1 and SPR0 bits of a slave SPI have no effect on the serial clock. Reset has no effect on SPR1 and SPR0. Table 11-1. SPI Clock Rate Selection SPR[1:0] SPI Clock Rate 00 Internal Clock ÷2 01 Internal Clock ÷4 10 Internal Clock ÷ 16 11 Internal Clock ÷ 32 Technical Data 150 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Serial Peripheral Interface (SPI) SPI I/O Registers 11.9.3 SPI Status Register The SPSR shown in Figure 11-9 contains flags to signal these conditions: • SPI transmission complete • Write collision • Mode fault Address: Read: $000B Bit 7 6 5 4 SPIF WCOL MODF 0 0 0 3 2 1 Bit 0 Write: Reset: = Unimplemented Figure 11-9. SPI Status Register (SPSR) SPIF — SPI Flag This clearable, read-only bit is set each time a byte shifts out of or into the shift register. SPIF generates an interrupt request if the SPIE bit in the SPCR is also set. Clear SPIF by reading the SPSR with SPIF set and then reading or writing the SPDR. Reset clears the SPIF bit. 1 = Transmission complete 0 = Transmission not complete WCOL — Write Collision Bit This clearable, read-only flag is set when software writes to the SPDR while a transmission is in progress. Clear the WCOL bit by reading the SPSR with WCOL set and then reading or writing the SPDR. Reset clears WCOL. 1 = Invalid write to SPDR 0 = No invalid write to SPDR MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Serial Peripheral Interface (SPI) 151 Serial Peripheral Interface (SPI) MODF — Mode Fault Bit This clearable, read-only bit is set when a logic 0 occurs on the PD5/SS pin while the MSTR bit is set. MODF generates an interrupt request if the SPIE bit is also set. Clear the MODF bit by reading the SPSR with MODF set and then writing to the SPCR. Reset clears MODF. 1 = PD5/SS pulled low while MSTR bit set 0 = PD5/SS not pulled low while MSTR bit set Technical Data 152 MC68HC705C8A — Rev. 3 Serial Peripheral Interface (SPI) MOTOROLA Technical Data — MC68HC705C8A Section 12. Instruction Set 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.3.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.2 Immediate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.4 Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.3.5 Indexed, No Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.3.6 Indexed, 8-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.3.7 Indexed, 16-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.3.8 Relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.4 Instruction Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.4.1 Register/Memory Instructions. . . . . . . . . . . . . . . . . . . . . . .158 12.4.2 Read-Modify-Write Instructions . . . . . . . . . . . . . . . . . . . . . 159 12.4.3 Jump/Branch Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.4.4 Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . .162 12.4.5 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.5 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.6 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Instruction Set 153 Instruction Set 12.2 Introduction The MCU instruction set has 62 instructions and uses eight addressing modes. The instructions include all those of the M146805 CMOS Family plus one more: the unsigned multiply (MUL) instruction. The MUL instruction allows unsigned multiplication of the contents of the accumulator (A) and the index register (X). The high-order product is stored in the index register, and the low-order product is stored in the accumulator. 12.3 Addressing Modes The CPU uses eight addressing modes for flexibility in accessing data. The addressing modes provide eight different ways for the CPU to find the data required to execute an instruction. The eight addressing modes are: • Inherent • Immediate • Direct • Extended • Indexed, no offset • Indexed, 8-bit offset • Indexed, 16-bit offset • Relative Technical Data 154 MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Addressing Modes 12.3.1 Inherent Inherent instructions are those that have no operand, such as return from interrupt (RTI) and stop (STOP). Some of the inherent instructions act on data in the CPU registers, such as set carry flag (SEC) and increment accumulator (INCA). Inherent instructions require no operand address and are one byte long. 12.3.2 Immediate Immediate instructions are those that contain a value to be used in an operation with the value in the accumulator or index register. Immediate instructions require no operand address and are two bytes long. The opcode is the first byte, and the immediate data value is the second byte. 12.3.3 Direct Direct instructions can access any of the first 256 memory locations with two bytes. The first byte is the opcode, and the second is the low byte of the operand address. In direct addressing, the CPU automatically uses $00 as the high byte of the operand address. 12.3.4 Extended Extended instructions use three bytes and can access any address in memory. The first byte is the opcode; the second and third bytes are the high and low bytes of the operand address. When using the Motorola assembler, the programmer does not need to specify whether an instruction is direct or extended. The assembler automatically selects the shortest form of the instruction. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Instruction Set 155 Instruction Set 12.3.5 Indexed, No Offset Indexed instructions with no offset are 1-byte instructions that can access data with variable addresses within the first 256 memory locations. The index register contains the low byte of the effective address of the operand. The CPU automatically uses $00 as the high byte, so these instructions can address locations $0000–$00FF. Indexed, no offset instructions are often used to move a pointer through a table or to hold the address of a frequently used RAM or I/O location. 12.3.6 Indexed, 8-Bit Offset Indexed, 8-bit offset instructions are 2-byte instructions that can access data with variable addresses within the first 511 memory locations. The CPU adds the unsigned byte in the index register to the unsigned byte following the opcode. The sum is the effective address of the operand. These instructions can access locations $0000–$01FE. Indexed 8-bit offset instructions are useful for selecting the kth element in an n-element table. The table can begin anywhere within the first 256 memory locations and could extend as far as location 510 ($01FE). The k value is typically in the index register, and the address of the beginning of the table is in the byte following the opcode. 12.3.7 Indexed, 16-Bit Offset Indexed, 16-bit offset instructions are 3-byte instructions that can access data with variable addresses at any location in memory. The CPU adds the unsigned byte in the index register to the two unsigned bytes following the opcode. The sum is the effective address of the operand. The first byte after the opcode is the high byte of the 16-bit offset; the second byte is the low byte of the offset. Indexed, 16-bit offset instructions are useful for selecting the kth element in an n-element table anywhere in memory. As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing. Technical Data 156 MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Instruction Types 12.3.8 Relative Relative addressing is only for branch instructions. If the branch condition is true, the CPU finds the effective branch destination by adding the signed byte following the opcode to the contents of the program counter. If the branch condition is not true, the CPU goes to the next instruction. The offset is a signed, two’s complement byte that gives a branching range of –128 to +127 bytes from the address of the next location after the branch instruction. When using the Motorola assembler, the programmer does not need to calculate the offset, because the assembler determines the proper offset and verifies that it is within the span of the branch. 12.4 Instruction Types The MCU instructions fall into five categories: • Register/memory instructions • Read-modify-write instructions • Jump/branch instructions • Bit manipulation instructions • Control instructions MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Instruction Set 157 Instruction Set 12.4.1 Register/Memory Instructions These instructions operate on CPU registers and memory locations. Most of them use two operands. One operand is in either the accumulator or the index register. The CPU finds the other operand in memory. Table 12-1. Register/Memory Instructions Instruction Add memory byte and carry bit to accumulator ADC Add memory byte to accumulator ADD AND memory byte with accumulator AND Bit test accumulator BIT Compare accumulator CMP Compare index register with memory byte CPX Exclusive OR accumulator with memory byte EOR Load accumulator with memory byte LDA Load Index register with memory byte LDX Multiply MUL OR accumulator with memory byte ORA Subtract memory byte and carry bit from accumulator SBC Store accumulator in memory STA Store index register in memory STX Subtract memory byte from accumulator SUB Technical Data 158 Mnemonic MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Instruction Types 12.4.2 Read-Modify-Write Instructions These instructions read a memory location or a register, modify its contents, and write the modified value back to the memory location or to the register. NOTE: Do not use read-modify-write operations on write-only registers. Table 12-2. Read-Modify-Write Instructions Instruction Mnemonic Arithmetic shift left (same as LSL) ASL Arithmetic shift right ASR Bit clear BCLR(1) Bit set BSET(1) Clear register CLR Complement (one’s complement) COM Decrement DEC Increment INC Logical shift left (same as ASL) LSL Logical shift right LSR Negate (two’s complement) NEG Rotate left through carry bit ROL Rotate right through carry bit ROR Test for negative or zero TST(2) 1. Unlike other read-modify-write instructions, BCLR and BSET use only direct addressing. 2. TST is an exception to the read-modify-write sequence because it does not write a replacement value. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Instruction Set 159 Instruction Set 12.4.3 Jump/Branch Instructions Jump instructions allow the CPU to interrupt the normal sequence of the program counter. The unconditional jump instruction (JMP) and the jump-to-subroutine instruction (JSR) have no register operand. Branch instructions allow the CPU to interrupt the normal sequence of the program counter when a test condition is met. If the test condition is not met, the branch is not performed. The BRCLR and BRSET instructions cause a branch based on the state of any readable bit in the first 256 memory locations. These 3-byte instructions use a combination of direct addressing and relative addressing. The direct address of the byte to be tested is in the byte following the opcode. The third byte is the signed offset byte. The CPU finds the effective branch destination by adding the third byte to the program counter if the specified bit tests true. The bit to be tested and its condition (set or clear) is part of the opcode. The span of branching is from –128 to +127 from the address of the next location after the branch instruction. The CPU also transfers the tested bit to the carry/borrow bit of the condition code register. Technical Data 160 MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Instruction Types Table 12-3. Jump and Branch Instructions Instruction Branch if carry bit clear BCC Branch if carry bit set BCS Branch if equal BEQ Branch if half-carry bit clear BHCC Branch if half-carry bit set BHCS Branch if higher BHI Branch if higher or same BHS Branch if IRQ pin high BIH Branch if IRQ pin low BIL Branch if lower BLO Branch if lower or same BLS Branch if interrupt mask clear BMC Branch if minus BMI Branch if interrupt mask set BMS Branch if not equal BNE Branch if plus BPL Branch always BRA Branch if bit clear Branch never Branch if bit set BRCLR BRN BRSET Branch to subroutine BSR Unconditional jump JMP Jump to subroutine JSR MC68HC705C8A — Rev. 3 MOTOROLA Mnemonic Technical Data Instruction Set 161 Instruction Set 12.4.4 Bit Manipulation Instructions The CPU can set or clear any writable bit in the first 256 bytes of memory, which includes I/O registers and on-chip RAM locations. The CPU can also test and branch based on the state of any bit in any of the first 256 memory locations. Table 12-4. Bit Manipulation Instructions Instruction Bit clear BCLR Branch if bit clear BRCLR Branch if bit set BRSET Bit set BSET Technical Data 162 Mnemonic MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Instruction Types 12.4.5 Control Instructions These instructions act on CPU registers and control CPU operation during program execution. Table 12-5. Control Instructions Instruction Clear carry bit CLC Clear interrupt mask CLI No operation NOP Reset stack pointer RSP Return from interrupt RTI Return from subroutine RTS Set carry bit SEC Set interrupt mask SEI Stop oscillator and enable IRQ pin STOP Software interrupt SWI Transfer accumulator to index register TAX Transfer index register to accumulator TXA Stop CPU clock and enable interrupts WAIT MC68HC705C8A — Rev. 3 MOTOROLA Mnemonic Technical Data Instruction Set 163 Instruction Set 12.5 Instruction Set Summary #opr opr opr opr,X opr,X ,X ADD ADD ADD ADD ADD ADD #opr opr opr opr,X opr,X ,X AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X ASL opr ASLA ASLX ASL opr,X ASL ,X IMM DIR EXT IX2 IX1 IX ii A9 2 B9 dd 3 C9 hh ll 4 D9 ee ff 5 E9 ff 4 F9 3 IMM DIR EXT IX2 IX1 IX AB ii 2 BB dd 3 CB hh ll 4 DB ee ff 5 EB ff 4 FB 3 — IMM DIR EXT IX2 IX1 IX ii A4 2 B4 dd 3 C4 hh ll 4 D4 ee ff 5 E4 ff 4 F4 3 38 48 58 68 78 dd DIR INH INH IX1 IX DIR INH INH IX1 IX 37 47 57 67 77 dd REL 24 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) — — — — — DIR (b4) DIR (b5) DIR (b6) DIR (b7) 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 5 5 5 5 5 5 5 5 Effect on CCR Description H I N Z C A ← (A) ∧ (M) Logical AND C Arithmetic Shift Right BCC rel Branch if Carry Bit Clear — — — — 0 b7 ASR opr ASRA ASRX ASR opr,X ASR ,X A ← (A) + (M) Add without Carry Arithmetic Shift Left (Same as LSL) A ← (A) + (M) + (C) Add with Carry — — b0 C b7 — — b0 PC ← (PC) + 2 + rel ? C = 0 Mn ← 0 — — — — — ff ff Cycles Opcode ADC ADC ADC ADC ADC ADC Operation Address Mode Source Form Operand Table 12-6. Instruction Set Summary (Sheet 1 of 6) 5 3 3 6 5 5 3 3 6 5 BCLR n opr Clear Bit n BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? C = 1 — — — — — REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? Z = 1 — — — — — REL 27 rr 3 BHCC rel Branch if Half-Carry Bit Clear PC ← (PC) + 2 + rel ? H = 0 — — — — — REL 28 rr 3 BHCS rel Branch if Half-Carry Bit Set PC ← (PC) + 2 + rel ? H = 1 — — — — — REL 29 rr 3 BHI rel Branch if Higher PC ← (PC) + 2 + rel ? C ∨ Z = 0 — — — — — REL 22 rr 3 BHS rel Branch if Higher or Same REL 24 rr 3 PC ← (PC) + 2 + rel ? C = 0 Technical Data 164 — — — — — MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Instruction Set Summary Address Mode Opcode Operand Cycles Table 12-6. Instruction Set Summary (Sheet 2 of 6) BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 — — — — — REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 — — — — — REL 2E rr 3 — IMM DIR EXT IX2 IX1 IX ii A5 2 B5 dd 3 C5 hh ll 4 D5 ee ff 5 E5 ff 4 F5 3 — — — — — REL 25 rr 3 PC ← (PC) + 2 + rel ? C ∨ Z = 1 — — — — — REL 23 rr 3 Source Form Operation Description Effect on CCR H I N Z C BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X Bit Test Accumulator with Memory Byte BLO rel Branch if Lower (Same as BCS) BLS rel Branch if Lower or Same BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? I = 0 — — — — — REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? N = 1 — — — — — REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? I = 1 — — — — — REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? Z = 0 — — — — — REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? N = 0 — — — — — REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel ? 1 = 1 — — — — — REL 20 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7) 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 BRCLR n opr rel Branch if Bit n Clear BRN rel Branch Never BRSET n opr rel Branch if Bit n Set BSET n opr (A) ∧ (M) PC ← (PC) + 2 + rel ? C = 1 PC ← (PC) + 2 + rel ? Mn = 0 PC ← (PC) + 2 + rel ? 1 = 0 — — — — — — REL 21 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 DIR (b0) DIR (b1) DIR (b2) DIR (b3) — — — — — DIR (b4) DIR (b5) DIR (b6) DIR (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 5 5 5 5 5 5 5 5 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel — — — — — REL AD rr 6 PC ← (PC) + 2 + rel ? Mn = 1 Mn ← 1 Set Bit n — — — — — — — — — BSR rel Branch to Subroutine CLC Clear Carry Bit C←0 — — — — 0 INH 98 2 CLI Clear Interrupt Mask I←0 — 0 — — — INH 9A 2 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Instruction Set 165 Instruction Set CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X COM opr COMA COMX COM opr,X COM ,X CPX CPX CPX CPX CPX CPX #opr opr opr opr,X opr,X ,X DEC opr DECA DECX DEC opr,X DEC ,X EOR EOR EOR EOR EOR EOR #opr opr opr opr,X opr,X ,X INC opr INCA INCX INC opr,X INC ,X JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X 3F 4F 5F 6F 7F dd IMM DIR EXT IX2 IX1 IX ii A1 2 B1 dd 3 C1 hh ll 4 D1 ee ff 5 E1 ff 4 F1 3 1 DIR INH INH IX1 IX 33 43 53 63 73 IMM DIR EXT IX2 IX1 IX ii A3 2 B3 dd 3 C3 hh ll 4 D3 ee ff 5 E3 ff 4 F3 3 DIR INH INH IX1 IX 3A 4A 5A 6A 7A — IMM DIR EXT IX2 IX1 IX ii A8 2 B8 dd 3 C8 hh ll 4 D8 ee ff 5 E8 ff 4 F8 3 — DIR INH INH IX1 IX 3C 4C 5C 6C 7C DIR EXT IX2 IX1 IX BC dd 2 CC hh ll 3 DC ee ff 4 EC ff 3 FC 2 H I N Z C Clear Byte Compare Accumulator with Memory Byte Complement Byte (One’s Complement) Compare Index Register with Memory Byte Decrement Byte EXCLUSIVE OR Accumulator with Memory Byte Increment Byte Unconditional Jump M ← $00 A ← $00 X ← $00 M ← $00 M ← $00 (A) – (M) M ← (M) = $FF – (M) A ← (A) = $FF – (A) X ← (X) = $FF – (X) M ← (M) = $FF – (M) M ← (M) = $FF – (M) (X) – (M) M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 A ← (A) ⊕ (M) M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 PC ← Jump Address Technical Data 166 DIR INH INH IX1 IX Effect on CCR — — 0 1 — — — — — — — — — — — — — — — — — — — ff dd ff dd ff dd ff Cycles Description Operand CLR opr CLRA CLRX CLR opr,X CLR ,X Operation Opcode Source Form Address Mode Table 12-6. Instruction Set Summary (Sheet 3 of 6) 5 3 3 6 5 5 3 3 6 5 5 3 3 6 5 5 3 3 6 5 MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Instruction Set Summary LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LSL opr LSLA LSLX LSL opr,X LSL ,X Jump to Subroutine A ← (M) Logical Shift Left (Same as ASL) ii A6 2 B6 dd 3 C6 hh ll 4 D6 ee ff 5 E6 ff 4 F6 3 — IMM DIR EXT IX2 IX1 IX AE ii 2 BE dd 3 CE hh ll 4 DE ee ff 5 EE ff 4 FE 3 38 48 58 68 78 dd DIR INH INH IX1 IX 0 DIR INH INH IX1 IX 34 44 54 64 74 dd 0 — — — 0 INH 42 NEG opr NEGA NEGX NEG opr,X NEG ,X DIR INH INH IX1 IX 30 40 50 60 70 Negate Byte (Two’s Complement) NOP No Operation INH 9D — IMM DIR EXT IX2 IX1 IX AA ii 2 BA dd 3 CA hh ll 4 DA ee ff 5 EA ff 4 FA 3 DIR INH INH IX1 IX 39 49 59 69 79 C — — 0 b0 X : A ← (X) × (A) M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) — — — — — — — A ← (A) ∨ (M) Logical OR Accumulator with Memory Rotate Byte Left through Carry Bit b0 0 b7 — — — — C — — b7 MC68HC705C8A — Rev. 3 b0 ff ff Cycles — IMM DIR EXT IX2 IX1 IX — — — — — — — C b7 Unsigned Multiply MOTOROLA BD dd 5 CD hh ll 6 DD ee ff 7 ED ff 6 FD 5 — — X ← (M) Load Index Register with Memory Byte MUL ROL opr ROLA ROLX ROL opr,X ROL ,X PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Effective Address Load Accumulator with Memory Byte Logical Shift Right #opr opr opr opr,X opr,X ,X DIR EXT IX2 IX1 IX H I N Z C LSR opr LSRA LSRX LSR opr,X LSR ,X ORA ORA ORA ORA ORA ORA Description Opcode JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X Operation Effect on CCR Address Mode Source Form Operand Table 12-6. Instruction Set Summary (Sheet 4 of 6) 5 3 3 6 5 5 3 3 6 5 1 1 dd ff 5 3 3 6 5 2 dd ff 5 3 3 6 5 Technical Data Instruction Set 167 Instruction Set Opcode Operand DIR INH INH IX1 IX 36 46 56 66 76 dd — — — — — INH 9C 2 Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) INH 80 9 Return from Subroutine SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) — — — — — INH 81 6 IMM DIR EXT IX2 IX1 IX ii A2 2 B2 dd 3 C2 hh ll 4 D2 ee ff 5 E2 ff 4 F2 3 Source Form Operation Effect on CCR Description H I N Z C ROR opr RORA RORX ROR opr,X ROR ,X Rotate Byte Right through Carry Bit RSP Reset Stack Pointer SP ← $00FF RTI RTS C b7 — — b0 ff Cycles Address Mode Table 12-6. Instruction Set Summary (Sheet 5 of 6) 5 3 3 6 5 SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X Subtract Memory Byte and Carry Bit from Accumulator SEC Set Carry Bit C←1 — — — — 1 INH 99 2 SEI Set Interrupt Mask I←1 — 1 — — — INH 9B 2 — DIR EXT IX2 IX1 IX B7 dd 4 C7 hh ll 5 D7 ee ff 6 E7 ff 5 F7 4 — 0 — — — INH 8E — DIR EXT IX2 IX1 IX BF dd 4 CF hh ll 5 DF ee ff 6 EF ff 5 FF 4 IMM DIR EXT IX2 IX1 IX ii A0 2 B0 dd 3 C0 hh ll 4 D0 ee ff 5 E0 ff 4 F0 3 PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) — 1 — — — SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte INH 83 1 0 INH 97 2 STA opr STA opr STA opr,X STA opr,X STA ,X Store Accumulator in Memory STOP Stop Oscillator and Enable IRQ Pin STX opr STX opr STX opr,X STX opr,X STX ,X SUB SUB SUB SUB SUB SUB #opr opr opr opr,X opr,X ,X Store Index Register In Memory Subtract Memory Byte from Accumulator SWI Software Interrupt TAX Transfer Accumulator to Index Register A ← (A) – (M) – (C) M ← (A) M ← (X) A ← (A) – (M) X ← (A) Technical Data 168 — — — — — — — — — — — — — 2 MC68HC705C8A — Rev. 3 Instruction Set MOTOROLA Instruction Set Opcode Map Test Memory Byte for Negative or Zero TXA Transfer Index Register to Accumulator WAIT Stop CPU Clock and Enable Interrupts (M) – $00 A ← (X) — — — — — — — — — Accumulator Carry/borrow flag Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry flag High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, 8-bit offset addressing mode Indexed, 16-bit offset addressing mode Memory location Negative flag Any bit opr PC PCH PCL REL rel rr SP X Z # ∧ ∨ ⊕ () –( ) ← ? : — — — — DIR INH INH IX1 IX 3D 4D 5D 6D 7D dd INH 9F 2 INH 8F 2 ff Cycles H I N Z C TST opr TSTA TSTX TST opr,X TST ,X A C CCR dd dd rr DIR ee ff EXT ff H hh ll I ii IMM INH IX IX1 IX2 M N n Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 12-6. Instruction Set Summary (Sheet 6 of 6) 4 3 3 5 4 Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer Index register Zero flag Immediate value Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Loaded with If Concatenated with Set or cleared Not affected 12.6 Opcode Map See Table 12-7. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Instruction Set 169 Bit Manipulation MSB LSB 0 1 2 3 4 5 Instruction Set 6 7 8 9 A B C MOTOROLA MC68HC705C8A — Rev. 3 D E F Branch Read-Modify-Write Control Register/Memory DIR DIR REL DIR INH INH IX1 IX INH INH IMM DIR EXT IX2 IX1 IX 0 1 2 3 4 5 6 7 8 9 A B C D E F 5 5 BSET0 BRSET0 DIR 3 DIR 2 5 5 BCLR0 BRCLR0 DIR 3 DIR 2 5 5 BSET1 BRSET1 DIR 3 DIR 2 5 5 BCLR1 BRCLR1 DIR 3 DIR 2 5 5 BSET2 BRSET2 DIR 3 DIR 2 5 5 BCLR2 BRCLR2 DIR 3 DIR 2 5 5 BSET3 BRSET3 DIR 3 DIR 2 5 5 BCLR3 BRCLR3 DIR 3 DIR 2 5 5 BSET4 BRSET4 DIR 3 DIR 2 5 5 BCLR4 BRCLR4 DIR 3 DIR 2 5 5 BSET5 BRSET5 DIR 3 DIR 2 5 5 BCLR5 BRCLR5 DIR 3 DIR 2 5 5 BSET6 BRSET6 DIR 3 DIR 2 5 5 BCLR6 BRCLR6 DIR 3 DIR 2 5 5 BSET7 BRSET7 DIR 3 DIR 2 5 5 BCLR7 BRCLR7 DIR 3 DIR 2 INH = Inherent IMM = Immediate DIR = Direct EXT = Extended 5 6 3 3 5 3 NEG NEG NEGX NEGA NEG BRA IX 1 IX1 1 INH 2 INH 1 DIR 1 REL 2 3 BRN 2 REL 1 3 11 BHI MUL 2 REL 1 INH 5 6 3 3 5 3 COM COM COMX COMA COM BLS IX 1 IX1 1 INH 2 INH 1 DIR 1 2 REL 2 5 6 3 3 5 3 LSR LSR LSRX LSRA LSR BCC IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 3 BCS/BLO 2 REL 5 6 3 3 5 3 ROR ROR RORX RORA ROR BNE IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 5 6 3 3 5 3 ASR ASR ASRX ASRA ASR BEQ IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 5 6 3 3 5 3 ASL/LSL ASLA/LSLA ASLX/LSLX ASL/LSL ASL/LSL BHCC IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 5 6 3 3 5 3 ROL ROL ROLX ROLA ROL BHCS IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 5 6 3 3 5 3 DEC DEC DECX DECA DEC BPL IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 3 BMI 2 REL 5 6 3 3 5 3 INC INC INCX INCA INC BMC IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 4 5 3 3 4 3 TST TST TSTX TSTA TST BMS IX IX1 1 INH 2 INH 1 DIR 1 2 REL 2 3 BIL 2 REL 1 5 6 3 3 5 3 CLR CLR CLRX CLRA CLR BIH IX 1 IX1 1 INH 2 INH 1 DIR 1 2 REL 2 2 REL = Relative IX = Indexed, No Offset IX1 = Indexed, 8-Bit Offset IX2 = Indexed, 16-Bit Offset 9 RTI INH 6 RTS INH 2 2 2 10 SWI INH 2 2 2 2 1 1 1 1 1 1 1 2 TAX INH 2 CLC INH 2 SEC INH 2 CLI INH 2 SEI INH 2 RSP INH 2 NOP INH 2 STOP INH 2 2 TXA WAIT INH INH 1 2 SUB IMM 2 CMP IMM 2 SBC IMM 2 CPX IMM 2 AND IMM 2 BIT IMM 2 LDA IMM 2 2 2 2 2 2 2 2 EOR IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 2 2 2 2 2 2 6 BSR 2 REL 2 2 LDX 2 IMM 2 2 MSB LSB LSB of Opcode in Hexadecimal 2 0 3 SUB DIR 3 CMP DIR 3 SBC DIR 3 CPX DIR 3 AND DIR 3 BIT DIR 3 LDA DIR 4 STA DIR 3 EOR DIR 3 ADC DIR 3 ORA DIR 3 ADD DIR 2 JMP DIR 5 JSR DIR 3 LDX DIR 4 STX DIR 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB EXT 4 CMP EXT 4 SBC EXT 4 CPX EXT 4 AND EXT 4 BIT EXT 4 LDA EXT 5 STA EXT 4 EOR EXT 4 ADC EXT 4 ORA EXT 4 ADD EXT 3 JMP EXT 6 JSR EXT 4 LDX EXT 5 STX EXT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 SUB IX2 5 CMP IX2 5 SBC IX2 5 CPX IX2 5 AND IX2 5 BIT IX2 5 LDA IX2 6 STA IX2 5 EOR IX2 5 ADC IX2 5 ORA IX2 5 ADD IX2 4 JMP IX2 7 JSR IX2 5 LDX IX2 6 STX IX2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 SUB IX1 1 4 CMP IX1 1 4 SBC IX1 1 4 CPX IX1 1 4 AND IX1 1 4 BIT IX1 1 4 LDA IX1 1 5 STA IX1 1 4 EOR IX1 1 4 ADC IX1 1 4 ORA IX1 1 4 ADD IX1 1 3 JMP IX1 1 6 JSR IX1 1 4 LDX IX1 1 5 STX IX1 1 MSB of Opcode in Hexadecimal 5 Number of Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes/Addressing Mode MSB LSB 3 SUB 0 IX 3 1 CMP IX 3 2 SBC IX 3 3 CPX IX 3 4 AND IX 3 5 BIT IX 3 LDA 6 IX 4 7 STA IX 3 8 EOR IX 3 9 ADC IX 3 A ORA IX 3 B ADD IX 2 JMP C IX 5 D JSR IX 3 E LDX IX 4 F STX IX Instruction Set Technical Data 170 Table 12-7. Opcode Map Technical Data — MC68HC705C8A Section 13. Electrical Specifications 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.4 Operating Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . 173 13.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 13.6 Power Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13.7 5.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .175 13.8 3.3-Volt DC Electrical Characteristics . . . . . . . . . . . . . . . . . .176 13.9 5.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.10 3.3-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 13.11 5.0-Volt Serial Peripheral Interface (SPI) Timing . . . . . . . . . . 185 13.12 3.3-Volt Serial Peripheral Interface (SPI) Timing . . . . . . . . . . 187 13.2 Introduction This section contains electrical and timing specifications. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 171 Electrical Specifications 13.3 Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. The MCU contains circuitry to protect the inputs against damage from high static voltages; however, do not apply voltages higher than those shown in the table here. Keep VIn and VOut within the range VSS ≤ (VIn or VOut) ≤ VDD. Connect unused inputs to the appropriate voltage level, either VSS or VDD. Rating(1) Symbol Value Unit Supply voltage VDD –0.3 to +7.0 V Input voltage VIn VSS –0.3 to VDD +0.3 V Programming voltage VPP VDD –0.3 to 16.0 Bootstrap mode (IRQ pin only) VIn VSS – 0.3 to 2 x VDD + 0.3 V Current drain per pin excluding VDD and VSS I 25 mA TSTG –65 to +150 °C Storage temperature range 1. Voltages referenced to VSS NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 13.7 5.0-Volt DC Electrical Characteristics and 13.8 3.3-Volt DC Electrical Characteristics for guaranteed operating conditions. Technical Data 172 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications Operating Temperature Range 13.4 Operating Temperature Range Rating(1) Symbol Value Unit TA TL to TH – 40 to + 85 °C Symbol Value Unit Operating temperature range(2) MC68HC705C8ACB MC68HC705C8ACFB MC68HC705C8ACFS MC68HC705C8ACP MC68HC705C8ACFN MC68HC705C8ACFS 1. Voltages referenced to VSS 2. C = Extended temperature range (– 40°C to + 85°C) P = Plastic dual in-line package (PDIP) B = Plastic shrink dual in-line package (SDIP) S = Ceramic dual in-line package (cerdip) FN = Plastic-leaded chip carrier (PLCC) FB = Quad flat pack (QFP) FS = Ceramic-leaded chip carrier (CLCC) 13.5 Thermal Characteristics Characteristic Thermal resistance Plastic dual in-line package (DIP) Ceramic dual in-line package (cerdip) Plastic leaded chip carrier (PLCC) Quad flat pack (QFP) Plastic shrink DIP (SDIP) 60 50 70 95 60 θJA °C/W VDD = 4.5 V VDD Pins R2 (SEE TABLE) TEST POINT C (SEE TABLE) R1 (SEE TABLE) PA7–PA0 PB7–PB0 PC7–PC0 PD4–PD1 R1 R2 C 3.26 kΩ 2.38 kΩ 50 pF R1 R2 C 10.91 kΩ 6.32 kΩ 50 pF 6 kΩ 6 kΩ 200 pF VDD = 3.0 V Pins PA7–PA0 PB7–PB0 PC7–PC0 PD4–PD1 PD7, PD5, PD0 Figure 13-1. Equivalent Test Load MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 173 Electrical Specifications 13.6 Power Considerations The average chip junction temperature, TJ, in °C can be obtained from: TJ = TA + (PD x θJA) (1) Where: TA = ambient temperature in °C θJA = package thermal resistance, junction to ambient in °C/W PD = PINT + PI/O PINT = ICC × VCC = chip internal power dissipation PI/O = power dissipation on input and output pins (user-determined) For most applications, PI/O < PINT and can be neglected. Ignoring PI/O, the relationship between PD and TJ is approximately: K PD = (2) TJ + 273°C Solving equations (1) and (2) for K gives: = PD x (TA + 273°C) + θJA x (PD)2 (3) where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. Technical Data 174 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 5.0-Volt DC Electrical Characteristics 13.7 5.0-Volt DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output voltage, ILoad ≤ 10.0 µA VOL VOH — VDD – 0.1 — — 0.1 — V Output high voltage ILoad = –0.8 mA, PA7–PA0, PB7–PB0, PC6–PC0, TCMP (see Figure 13-2) ILoad = –1.6 mA, PD4–PD1 (see Figure 13-3) ILoad = –5.0 mA, PC7 VOH VDD – 0.8 — — — — — — Output low voltage (see Figure 13-4) ILoad = 1.6 mA PA7–PA0, PB7–PB0, PC6–PC0, PD4–PD1 ILoad = 20 mA, PC7 VOL — — — — 0.4 0.4 VIH 0.7 x VDD — VDD V VIL VSS — 0.2 x VDD V EPROM programming voltage VPP 14.5 14.75 15.0 V EPROM/OTPROM programming current IPP — 5 10 mA User mode current IPP — — ± 10 mA Data-retention mode (0°C to 70°C) VRM 2.0 — — V — — 5.0 1.95 7.0 3.0 mA mA — — 5.0 5.0 50 50 µµA µµA IIL — — ± 10 µA IIn — — ±1 µA COut CIn — — — — 12 8 pF Input high voltage PA7–PA0, PB7–PB0, PC7–PC0, PD5–PD0, PD7, TCAP, IRQ, RESET, OSC1 Input low voltage PA7–PA0, PB7–PB0, PC7–PC0, PD5–PD0, PD7, TCAP, IRQ, RESET, OSC1 V V (3) Supply current Run(4) Wait(5) Stop(6) 25°C –40°C to +85°C I/O ports hi-z leakage current PA7–PA0, PB7–PB0, PC7–PC0, PD4–PD1, PD7, RESET Input current, IRQ, TCAP, OSC1, PD0, PD5 Capacitance Ports (as input or output) RESET, IRQ, TCAP, PD0–PD5, PD7 IDD 1. VDD = 5 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range at 25°C. 3. IDD measured with port B pullup devices disabled. 4. Run (operating) IDD measured using external square wave clock source (fOSC = 4.2 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. CL = 20 pF on OSC2. OSC2 capacitance linearly affects run IDD. 5. Wait IDD measured using external square wave clock source (fOSC = 4.2 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. CL = 20 pF on OSC2. VIL = 0.2 V, VIH = VDD – 0.2 V. All ports configured as inputs. SPI and SCI disabled. If SPI and SCI enabled, add 10% current draw. OSC2 capacitance linearly affects wait IDD. 6. Stop IDD measured with OSC1 = V DD. All ports configured as inputs. VIL = 0.2 V, VIH = VDD – 0.2 V. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 175 Electrical Specifications 13.8 3.3-Volt DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output voltage, ILoad ≤ 10.0 µA VOL VOH — VDD – 0.1 — — 0.1 — V Output high voltage ILoad = –0.2 mA PA7–PA0, PB7–PB0, PC6–PC0, TCMP (see Figure 13-2) ILoad = –0.4 mA PD4–PD1 (see Figure 13-3) ILoad = –1.5 mA PC7 VOH VDD – 0.3 — — — — — — Output low voltage (see Figure 13-4) ILoad = 0.4 mA PA7–PA0, PB7–PB0, PC6–PC0, PD4–PD1 ILoad = 6.0 mA PC7 VOL — — 0.3 — — 0.3 Input high voltage PA7–PA0, PB7–PB0, PC7–PC0, PD5–PD0, PD7, TCAP, IRQ, RESET, OSC1 VIH 0.7 x VDD — VDD V Input low voltage PA7–PA0, PB7–PB0, PC7–PC0, PD5–PD0, PD7, TCAP, IRQ, RESET, OSCI VIL VSS — 0.2 x VDD V Data-retention mode (0°C to 70°C) VRM 2.0 — — V Supply current(3) Run(4) Wait(5) Stop(6) IDD — — — 1.53 0.711 2.0 3.0 1.0 20 mA mA µA I/O ports hi-z leakage current PA7–PA0, PB7–PB0, PC7–PC0, PD4–PD1, PD7, RESET IIL — — ± 10 µA Input current IRQ, TCAP, OSC1, PD5, PD0 IIn — — ±1 µA V V 1. VDD = 3.3 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values at midpoint of voltage range, 25°C only. 3. IDD measured with port B pullup devices disabled. 4. Run (operating) IDD measured using external square wave clock source (fOSC = 2.0 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. CL = 20 pF on OSC2. OSC2 capacitance linearly affects run IDD. 5. Wait IDD measured using external square wave clock source (fOSC = 2.0 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. C L = 20 pF on OSC2. V IL = 0.2 V, VIH = VDD – 0.2 V. All ports configured as inputs. SPI and SCI disabled. If SPI and SCI enabled, add 10% current draw. OSC2 capacitance linearly affects wait IDD. 6. Stop IDD measured with OSC1 = V DD. All ports configured as inputs. VIL = 0.2 V; VIH = VDD – 0.2 V. Technical Data 176 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 3.3-Volt DC Electrical Characteristics 5.0 4.0 V DD =5 .0 V IOH (mA) 3.0 2.0 V DD = 3. 0V SEE NOTE 1 1.0 0.8 SEE NOTE 2 0.2 0 0 0.2 0.4 0.6 0.8 VDD – VOH (VOLTS) Notes: 1. At VDD = 5.0 V, devices are specified and tested for (VDD – VOH ) ≤ 800 mV @ IOH = –0.8 mA. 2. At VDD = 3.3 V, devices are specified and tested for (VDD – VOH ) ≤ 300 mV @ IOH = –0.2 mA. (a) VOH versus IOH for Ports A, B, PC6–PC0, and TCMP 8.0 6.0 IOH (mA) V .0 =5 V DD 4.0 2.0 1.6 V DD .0 =3 SEE NOTE 1 V SEE NOTE 2 0.4 0 0 0.2 0.4 0.6 VDD – VOH (VOLTS) Notes: 1. At VDD = 5.0 V, devices are specified and tested for (V DD – VOH) ≤ 800 mV @ IOH = –1.6 mA. 2. At VDD = 3.3 V, devices are specified and tested for (V DD – VOH) ≤ 300 mV @ IOH = –0.4 mA. (b) VOH versus IOH for PD4–PD1 Figure 13-2. Typical Voltage Compared to Current MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 177 Electrical Specifications 6.0 5.0 4.0 IOL (MA) V DD =5 .0 V 3.0 V DD 2.0 .0 =3 V SEE NOTE 1 1.6 1.0 SEE NOTE 2 0.4 0 0 0.1 0.2 0.3 0.4 VOL (VOLTS) Notes: 1. At VDD = 5.0 V, devices are specified and tested for VOL ≤ 400 mV @ IOL = 1.6 mA. 2. At VDD = 3.3 V, devices are specified and tested for VOL ≤ 300 mV @ IOL = 0.4 mA. (c) VOL versus IOL for All Ports Except PC7 Figure 13-2. Typical Voltage Compared to Current (Continued) Technical Data 178 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 3.3-Volt DC Electrical Characteristics 2.0 1.8 1.6 =5 .0 V 1.4 DD V IDD (mA) 1.2 1.0 0.8 0.6 =3 0.4 .3 V V DD 0.2 0.0 0.0 0.5 1.0 1.5 INTERNAL FREQUENCY 1 tCYC (MHz) 2.0 (a) Wait Mode 5.5 5.0 4.5 =5 .0 V 4.0 V DD 3.5 IDD (mA) 3.0 2.5 2.0 1.5 1.0 V DD =3 V .3 0.5 0.0 0.0 0.5 1.0 1.5 INTERNAL FREQUENCY 1 tCYC (MHz) 2.0 (b) Run Mode Figure 13-3. Typical Current versus Internal Frequency for Run and Wait Modes MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 179 Electrical Specifications 3.0 mA T = –40°C to 85°C VDD = 3.3 V ± 10% 2.5 mA SUPPLY CURRENT (IDD) D 2.0 mA N RU 1.5 mA G TIN RA E P (O )ID 1.0 mA WAIT I DD 500 mA (20 µA) STOP IDD 0 0 250 kHz 500 kHz 750 kHz 1 MHz INTERNAL CLOCK FREQUENCY (XTAL ÷ 2) (a) Maximum Current Drain versus Frequency @ 3.3 V ± 10 % 7.0 mA T = –40°C to 85°C VDD = 5.0 V ± 10% 6.0 mA SUPPLY CURRENT (IDD) 5.0 mA 4.0 mA N RU (O PE G TIN A R )ID D 3.0 mA WA 2.0 mA IT I DD 1.0 mA STOP IDD (50 µA) 0 0 500 kHz 1 MHz 1.5 MHz 2 MHz INTERNAL CLOCK FREQUENCY (XTAL ÷ 2) (b) Maximum Current Drain versus Frequency @ 5 V ± 10% Figure 13-4. Total Current Drain versus Frequency Technical Data 180 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 5.0-Volt Control Timing 13.9 5.0-Volt Control Timing Characteristic(1) Symbol Min Max Unit Frequency of operation Crystal option External clock option fOSC — dc 4.2 4.2 MHz Internal operating frequency Crystal (fOSC ÷ 2) External clock (fOSC ÷ 2) fOP — dc 2.1 2.1 MHz Cycle time (see Figure 13-7) tCYC 480 — ns Crystal oscillator startup time (see Figure 13-7) tOXOV — 100 ms Stop recovery startup time (crystal oscillator) (see Figure 13-6) tILCH — 100 ms tRL 8 — tCYC Timer Resolution(2) Input capture pulse width (see Figure 13-5) Input capture pulse period (see Figure 13-5) tRESL tTH, tTL tTLTL 4.0 125 (3) — — — tCYC ns tCYC Interrupt pulse width low (edge-triggered) (see Figure 4-2. External Interrupt Timing) tILIH 125 — ns Interrupt pulse period (see Figure 4-2. External Interrupt Timing) tILIL (4) — tCYC tOH, tOL 90 — ns RESET pulse width (see Figure 13-7) OSC1 pulse width 1. V DD = 5.0 Vdc ± 10%, V SS = 0 Vdc; TA = TL to TH 2. Since a 2-bit prescaler in the timer must count four internal cycles (tCYC), this is the limiting minimum factor in determining the timer resolution. 3. The minimum period, tTLTL, should not be less than the number of cycle times it takes to execute the capture interrupt service routine plus 24 tCYC. 4. The minimum period, tILIL, should not be less than the number of cycle times it takes to execute the interrupt service routine plus 19 tCYC. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 181 Electrical Specifications 13.10 3.3-Volt Control Timing Characteristic(1) Symbol Min Max Unit Frequency of operation Crystal option External clock option fOSC — dc 2.0 2.0 MHz Internal operating frequency Crystal (fOSC ÷ 2) External clock (fOSC ÷ 2) fOP — dc 1.0 1.0 MHz Cycle time (see Figure 13-7) tCYC 1000 — ns Crystal oscillator startup time (see Figure 13-7) tOXOV — 100 ms Stop recovery startup time (crystal oscillator) (see Figure 13-6) tILCH — 100 ms tRL 8 — tCYC Timer Resolution(2) Input capture pulse width (see Figure 13-5) Input capture pulse period (see Figure 13-5) tRESL tTH, tTL tTLTL 4.0 250 (3) — — — tCYC ns tCYC Interrupt pulse width low (edge-triggered) (see Figure 4-2. External Interrupt Timing) tILIH 250 — ns Interrupt pulse period (see Figure 4-2. External Interrupt Timing) tILIL (4) — tCYC tOH, tOL 200 — ns RESET pulse width, excluding power-up (see Figure 13-7) OSC1 pulse width 1. V DD = 3.3 Vdc ± 0.3 Vdc, VSS = 0 Vdc; TA = TL to TH 2. Since a 2-bit prescaler in the timer must count four internal cycles (tCYC), this is the limiting minimum factor in determining the timer resolution. 3. The minimum period, tTLTL, should not be less than the number of cycle times it takes to execute the capture interrupt service routine plus 24 tCYC. 4. The minimum period, tILIL, should not be less than the number of cycle times it takes to execute the interrupt service routine plus 19 tCYC. tTLTL* tTH* tTL* EXTERNAL SIGNAL (TCAP PIN 37) * Refer to timer resolution data in Figure 13-6 and Figure 13-7. Figure 13-5. Timer Relationships Technical Data 182 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 3.3-Volt Control Timing (1) OSC1 RESET IRQ(2) IRQ (3) tRL tILIH tILCH 4064 tCYC INTERNAL CLOCK INTERNAL ADDRESS BUS 1FFE 1FFE 1FFE 1FFE 1FFF(4) RESET OR INTERRUPT VECTOR FETCH Notes: 1. Represents the internal gating of the OSC1 pin 2. IRQ pin edge-sensitive option 3. IRQ pin level and edge-sensitive option 4. RESET vector address shown for timing example Figure 13-6. Stop Recovery Timing Diagram MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 183 Electrical Specifications Technical Data 184 tVDDR VDD VDD THRESHOLD (1-2 V TYPICAL) OSC1* tOXOV tCYC Electrical Specifications INTERNAL PROCESSOR CLOCK INTERNAL ADDRESS BUS ** 1FFE 1FFF NEW PC INTERNAL DATA BUS *** NEW PCH NEW PCL OP CODE 1FFE 1FFE 1FFE 1FFE 1FFF NEW PC PCH PCL OP CODE tRL RESET * * * MOTOROLA MC68HC705C8A — Rev. 3 * OSC1 line is not meant to represent frequency. It is only used to represent time. ** Internal timing signal and bus information are not available externally. *** The next rising edge of the internal processor clock following the rising edge of RESET initiates the reset sequence. Figure 13-7. Power-On Reset and External Reset Timing Diagram Electrical Specifications 5.0-Volt Serial Peripheral Interface (SPI) Timing 13.11 5.0-Volt Serial Peripheral Interface (SPI) Timing Number(1) Characteristic(2) Symbol Min Max Unit Operating frequency Master Slave fOP(M) fOP(S) dc dc 0.5 2.1 fOP MHz 1 Cycle time Master Slave tCYC(M) tCYC(S) 2.0 480 — — tCYC ns 2 Enable lead time Master Slave tLead(M) tLead(S) (3) ns 240 — — Enable lag time Master Slave tLag(M) tLag(S) — — ns 720 3 (2) 4 Clock (SCK) high time Master Slave tW(SCKH)M tW(SCKH)S 340 190 — — ns 5 Clock (SCK) low time Master Slave tW(SCKL)M tW(SCKL)S 340 190 — — ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 100 100 — — ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 100 100 — — ns 8 Access time(4) Slave tA 0 120 ns 9 Disable time(5) Slave tDIS — 240 ns 10 Data valid time Master (before capture edge) Slave (after enable edge)(6) tV(M) tV(S) 0.25 — — 240 tCYC(M) ns Continued MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 185 Electrical Specifications Number(1) Characteristic(2) Symbol Min Max Unit tHO(M) tHO(S) 0.25 0 — — tCYC(M) ns 11 Data hold time (outputs) Master (after capture edge) Slave (after enable edge) 12 Rise time(7) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tR(M) tR(S) — — 100 2.0 ns µs 13 Fall time(8) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tF(M) tF(S) — — 100 2.0 ns µs 1. Numbers refer to dimensions in Figure 13-8 and Figure 13-9. 2. V DD = 5.0 Vdc ± 10% 3. Signal production depends on software. 4. Time to data active from high-impedance state 5. Hold time to high-impedance state 6. With 200 pF on all SPI pins 7. 20% of V DD to 70% of VDD; CL = 200 pF 8. 70% of V DD to 20% of VDD; CL = 200 pF Technical Data 186 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 3.3-Volt Serial Peripheral Interface (SPI) Timing 13.12 3.3-Volt Serial Peripheral Interface (SPI) Timing Number(1) Characteristic(2) Symbol Min Max Unit Operating frequency Master Slave fOP(M) fOP(S) dc 0.5 2.1 fOP MHz 1 Cycle time Master Slave tCYC(M) tCYC(S) 2.0 1 — — tCYC ns 2 Enable lead time Master Slave tLead(M) tLead(S) (3) ns 500 — — Enable lag time Master Slave tLag(M) tLag(S) — — ns 1500 3 (2) 4 Clock (SCK) high time Master Slave tW(SCKH)M tW(SCKH)S 720 400 — — ns 5 Clock (SCK) low time Master Slave tW(SCKL)M tW(SCKL)S 720 400 — — ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 200 200 — — ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 200 200 — — ns 8 Access time(4) Slave tA 0 250 ns 9 Disable time(5) Slave tDIS — 500 ns 10 Data valid time Master (before capture edge) Slave (after enable edge)(6) tV(M) tV(S) 0.25 — — 500 tCYC(M) ns Continued MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 187 Electrical Specifications Number(1) Characteristic(2) Symbol Min Max Unit tHO(M) tHO(S) 0.25 0 — — tCYC(M) ns 11 Data hold time (outputs) Master (after capture edge) Slave (after enable edge) 12 Rise time(7) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tR(M) tR(S) — — 200 2.0 ns µs 13 Fall time(8) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tF(M) tF(S) — — 200 2.0 ns µs 1. Numbers refer to dimensions in Figure 13-8 and Figure 13-9. 2. V DD = 3.3 Vdc ± 10% 3. Signal production depends on software. 4. Time to data active from high-impedance state 5. Hold time to high-impedance state 6. With 200 pF on all SPI pins 7. 20% of V DD to 70% of VDD; CL = 200 pF 8. 70% of V DD to 20% of VDD; CL = 200 pF Technical Data 188 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Electrical Specifications 3.3-Volt Serial Peripheral Interface (SPI) Timing SS INPUT SS pin of master held high. 12 1 SCK (CPOL = 0) OUTPUT 13 12 5 NOTE 4 12 SCK (CPOL = 1) OUTPUT 13 5 NOTE 4 6 MISO INPUT MSB IN BITS 6–1 10 11 MOSI OUTPUT 7 LSB IN 10 MASTER MSB OUT 11 BITS 6–1 MASTER LSB OUT 13 12 Note: This first clock edge is generated internally, but is not seen at the SCK pin. a) SPI Master Timing (CPHA = 0) SS INPUT SS pin of master held high. 1 SCK (CPOL = 0) OUTPUT 13 12 5 NOTE 4 12 SCK (CPOL = 1) OUTPUT 13 5 NOTE 4 6 MISO INPUT MSB IN 10 BITS 6–1 11 MOSI OUTPUT MASTER MSB OUT 7 LSB IN 10 BITS 6–1 13 11 MASTER LSB OUT 12 Note: This last clock edge is generated internally, but is not seen at the SCK pin. b) SPI Master Timing (CPHA = 1) Figure 13-8. SPI Master Timing MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Electrical Specifications 189 Electrical Specifications SS INPUT 1 SCK (CPOL = 0) (INPUT 13 12 12 13 3 11 5 4 2 SCK (CPOL = 1) INPUT 5 4 8 MISO INPUT SLAVE MSB OUT 6 MOSI OUTPUT BITS 6–1 7 SLAVE LSB OUT NOTE 11 10 MSB IN 9 BITS 6–1 LSB IN Note: Not defined, but normally MSB of character just received a) SPI Slave Timing (CPHA = 0) SS INPUT 13 1 SCK (CPOL = 0) INPUT 12 5 4 2 3 SCK (CPOL = 1) INPUT 8 MISO OUTPUT MOSI INPUT 5 4 10 NOTE 12 SLAVE MSB OUT 6 7 13 BITS 6–1 10 MSB IN 9 SLAVE LSB OUT 11 BITS 6–1 LSB IN Note: Not defined, but normally LSB of character previously transmitted b) SPI Slave Timing (CPHA = 1) Figure 13-9. SPI Slave Timing Technical Data 190 MC68HC705C8A — Rev. 3 Electrical Specifications MOTOROLA Technical Data — MC68HC705C8A Section 14. Mechanical Specifications 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14.3 40-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . .192 14.4 40-Pin Ceramic Dual In-Line Package (Cerdip) . . . . . . . . . . . 193 14.5 44-Lead Plastic-Leaded Chip Carrier (PLCC) . . . . . . . . . . . . 194 14.6 44-Lead Ceramic-Leaded Chip Carrier (CLCC) . . . . . . . . . . . 195 14.7 44-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 196 14.8 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . .197 14.2 Introduction Package dimensions available at the time of this publication for the MC68HC705C8A are provided in this section. The packages are: • 40-pin plastic dual in-line package (PDIP) • 40-pin ceramic dual-in-line package (cerdip) • 44-lead plastic-leaded chip carrier (PLCC) • 44-lead ceramic-leaded chip carrier (CLCC) • 44-pin quad flat pack (QFP) • 42-pin shrink dual in-line package (SDIP) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Mechanical Specifications 191 Mechanical Specifications 14.3 40-Pin Plastic Dual In-Line Package (PDIP) 40 21 B 1 20 L A C N J H G F D K DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 51.69 52.45 13.72 14.22 3.94 5.08 0.36 0.56 1.02 1.52 2.54 BSC 1.65 2.16 0.20 0.38 2.92 3.43 15.24 BSC 0° 1° 0.51 1.02 INCHES MIN MAX 2.035 2.065 0.540 0.560 0.155 0.200 0.014 0.022 0.040 0.060 0.100 BSC 0.065 0.085 0.008 0.015 0.115 0.135 0.600 BSC 0° 1° 0.020 0.040 M SEATING PLANE NOTES: 1.POSITION TOLERANCE OF LEADS (D), SHALL BEWITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITIONS, IN RELATION TO SEATING PLANE AND EACH OTHER. 2.DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.DIMENSION B DOES NOT INCLUDE MOLD FLASH. Figure 14-1. MC68HC705C8AP Package Dimensions (Case #711) Technical Data 192 MC68HC705C8A — Rev. 3 Mechanical Specifications MOTOROLA Mechanical Specifications 40-Pin Ceramic Dual In-Line Package (Cerdip) 14.4 40-Pin Ceramic Dual In-Line Package (Cerdip) 40 21 B 1 20 A L N C T K SEATING PLANE DATUM PLANE G DIM J M F D 40 PL φ 0.25(0.010) M T A M A B C D F G J K L M N INCHES MILLIMETERS MIN MAX MIN MAX 2.020 2.096 51.31 53.23 0.500 0.610 12.70 15.94 0.160 0.240 4.06 6.09 0.015 0.022 0.38 0.55 0.050 0.065 1.27 1.65 0.100 BSC 2.54 BSC 0.008 0.012 0.20 0.30 0.125 0.160 3.17 4.06 0.600 BSC 15.24 BSC 0° 15° 0° 15° 0.020 0.050 0.51 1.27 Figure 14-2. MC68HC705C8AS Package Dimensions (Case #734A) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Mechanical Specifications 193 Mechanical Specifications 14.5 44-Lead Plastic-Leaded Chip Carrier (PLCC) -N- Y BRK 0.007(0.180) M T B D L-M S 0.007(0.180) M T U N S L-M S N S Z -M- -L- V 44 X D W 1 G1 0.010 (0.25) S T VIEW D-D A 0.007(0.180) M T L-M S N S R 0.007(0.180) M T L-M S N S 0.007(0.180) M T H L-M S L-M S N S N S Z J K1 E 0.004 (0.10) G C -TG1 0.010 (0.25) S T L-M S N S K SEATING PLANE F VIEW S 0.007(0.180) M T L-M S N S VIEW S NOTES: 1. DATUMS -L-, -M-, AND -N- ARE DETERMINED WHERE TOP OF LEAD SHOLDERS EXITS PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE. 3. DIMENSION R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.25) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF THE MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMINSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTUSION(S) SHALL NOT CAUSE THE H DIMINSION TO BE GREATER THAN 0.037 (0.940198). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMINISION TO SMALLER THAN 0.025 (0.635). INCHES DIM A B C E F G H J K R U V W X Y Z G1 K1 MIN MAX 0.685 0.695 0.685 0.695 0.165 0.180 0.090 0.110 0.013 0.019 0.050 BSC 0.026 0.032 0.020 0.025 0.650 0.656 0.650 0.656 0.042 0.048 0.042 0.048 0.042 0.056 0.020 2° 10° 0.610 0.630 0.040 MILLIMETERS MIN MAX 17.40 17.65 17.40 17.65 4.20 4.57 2.29 2.79 0.33 0.48 1.27 BSC 0.66 0.81 0.51 0.64 16.51 16.66 16.51 16.66 1.07 1.21 1.07 1.21 1.07 1.42 0.50 2° 10° 15.50 16.00 1.02 Figure 14-3. MC68HC705C8AFN Package Dimensions (Case #777) Technical Data 194 MC68HC705C8A — Rev. 3 Mechanical Specifications MOTOROLA Mechanical Specifications 44-Lead Ceramic-Leaded Chip Carrier (CLCC) 14.6 44-Lead Ceramic-Leaded Chip Carrier (CLCC) 0.18 (0.007) M T N S -P S B -N- Y BRK U L S 0.18 (0.007) M T N S -P S L S D -L- W 44 D 1 DETAIL D-D S -P- G1 0.25 (0.010) M T N S -P S L S 0.20 (0.008) M T L M N M -P M V A 0.18 (0.007) M T L S N S -P S R 0.18 (0.007) M T L S N S -P S C NOTES: 1. DATUMS -L-, -N-, AND -P- DETERMINED WHERE TOP OF LEAD SHOULDER EXIT BODY. 2. DIMINSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE. 3. DIMINSIONS R AND U DO NOT INCLUDE GLASS MENISCUS. ALLOWABLE GLASS RUNOUT IS 0.25 (0.010) PER SIDE. 4. DIMINSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. E 0.10 (0.004) J G -T- DETAIL S G1 SEATING PLANE 0.25 (0.010) S T L S N S -P S 0.18 (0.007) M T L S N S -P S H 0.18 (0.007) M T N S -P S L S K1 DIM A B C E F G H J K R S U V W Y G1 K1 MILLIMETERS MIN MAX 17.40 17.65 17.40 17.65 4.20 4.57 2.79 2.29 0.33 0.48 1.27 BSC 0.66 0.81 0.51 --0.64 --16.51 16.66 6.94 7.26 16.51 16.66 1.07 1.21 1.07 1.21 --0.50 14.99 16.00 1.02 --- INCHES MIN MAX 0.685 0.695 0.685 0.695 0.165 0.180 0.090 0.110 0.013 0.019 0.050 BSC 0.026 0.032 0.020 --0.025 --0.650 0.656 0.273 0.286 0.650 0.656 0.042 0.048 0.042 0.048 --0.020 0.590 0.630 0.040 --- K F 0.18 (0.007) M T L S N S -P S 0.18 (0.007) M T N S -P S L S DETAIL S Figure 14-4. MC68HC705C8AFS Package Dimensions (Case #777B) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Mechanical Specifications 195 Mechanical Specifications 14.7 44-Pin Quad Flat Pack (QFP) B L B 33 23 44 S D S 0.20 V (0.008) M H A-B S S DETAIL A 0.05 (0.002) A-B L -B- B 0.20 (0.008) M C A-B -A- D 22 34 11 S D S S D S 0.05 (0.002) A-B S 0.20 (0.008) M H A-B M DETAIL C C E -H- -CSEATING PLANE DATUM PLANE 0.01 (0.004) H G M M T DATUM PLANE -H- R K W X DETAIL C Q F BASE METAL J N S D S SECTION B-B -DA 0.20 (0.008) M C A-B DETAIL A D 0.20 (0.008) M C A-B 12 1 -A-, -B-, -D- MILLIMETERS DIM MIN MAX A 9.90 10.10 B 9.90 10.10 C 2.10 2.45 D 0.30 0.45 E 2.00 2.10 F 0.30 0.40 G 0.80 BSC H --0.25 J 0.013 0.23 K 0.65 0.95 L 8.00 REF M 5° 10 ° N 0.13 0.17 Q 0° 7° R 0.13 0.30 S 12.95 13.45 T 0.13 --U 0° --V 12.95 13.45 W 0.40 --X 1.6 REF NOTES: 1. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. 2. CONTROLLING DIMENSION: MILLIMETER. 3. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. INCHES MIN MAX 0.390 0.398 0.390 0.398 0.083 0.096 0.012 0.018 0.079 0.083 0.012 0.016 0.031 BSC --- 0.010 0.005 0.009 0.026 0.037 0.315 REF 5° 10 ° 0.005 0.007 0° 7° 0.005 0.012 0.510 0.530 0.005 --0° --0.510 0.530 0.016 --0.063 REF Figure 14-5. MC68HC705C8AFB Package Dimensions (Case #824A) Technical Data 196 MC68HC705C8A — Rev. 3 Mechanical Specifications MOTOROLA Mechanical Specifications 42-Pin Shrink Dual In-Line Package (SDIP) 14.8 42-Pin Shrink Dual In-Line Package (SDIP) -A42 NOTES: 1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010). 22 -B1 21 L DIM A B C D F G H J K L M N H C -TSEATING PLANE 0.25 (0.010) N G F D 42 PL K M T A S M J 42 PL 0.25 (0.010) M T B INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.032 0.046 0.070 BSC 0.300 BSC 0.008 0.015 0.115 0.135 0.600 BSC 0° 15° 0.020 0.040 MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 0.81 1.17 1.778 BSC 7.62 BSC 0.20 0.38 2.92 3.43 15.24 BSC 0° 15° 0.51 1.02 S Figure 14-6. MC68HC705C8AB Package Dimensions (Case #858) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Mechanical Specifications 197 Mechanical Specifications Technical Data 198 MC68HC705C8A — Rev. 3 Mechanical Specifications MOTOROLA Technical Data — MC68HC705C8A Section 15. Ordering Information 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.3 MCU Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.2 Introduction This section contains ordering information for the available package types. 15.3 MCU Order Numbers Table 15-1 lists the MC order numbers. Table 15-1. MC68HC705C8A Order Numbers Package Type Temperature Range Order Number 40-pin plastic dual in-line package (PDIP) –40°C to +85°C MC68HC705C8AC (1)P(2) 44-lead plastic-leaded chip carrier (PLCC) –40°C to +85°C MC68HC705C8ACFN(3) 44-lead ceramic-leaded chip carrier (CLCC) –40°C to +85°C MC68HC705C8ACFS(4) 40-pin windowed ceramic DIP (Cerdip) –40°C to +85°C MC68HC705C8ACS(5) 44-pin quad flat pack (QFP) –40°C to +85°C MC68HC705C8ACFB(6) 42-pin shrink dual in-line package (SDIP) –40°C to +85°C MC68HC705C8ACB(7) 1. C = Extended temperature range (–40°C to +85°C) 2. P = Plastic dual in-line package (PDIP) 3. FN = Plastic-leaded chip carrier (PLCC) 4. FS = Ceramic-leaded chip carrier (CLCC) 5. S = Windowed ceramic dual in-line package (Cerdip) 6. FB = Quad flat pack (QFP) 7. B = Shrink dual in-line package (SDIP) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Ordering Information 199 Ordering Information Technical Data 200 MC68HC705C8A — Rev. 3 Ordering Information MOTOROLA Technical Data — MC68HC705C8A Appendix A. MC68HSC705C8A A.1 Contents A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.3 5.0-Volt High-Speed DC Electrical Characteristics. . . . . . . . .202 A.4 3.3-Volt High-Speed DC Electrical Characteristics . . . . . . . . 203 A.5 5.0-Volt High-Speed Control Timing . . . . . . . . . . . . . . . . . . . . 204 A.6 3.3-Volt High-Speed Control Timing . . . . . . . . . . . . . . . . . . . . 204 A.7 5.0-Volt High-Speed SPI Timing . . . . . . . . . . . . . . . . . . . . . . 205 A.8 3.3-Volt High-Speed SPI Timing. . . . . . . . . . . . . . . . . . . . . . .207 A.9 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 A.2 Introduction The MC68HSC705C8A is an enhanced, high-speed version of the MC68HC705C8A, featuring a 4-MHz bus speed. The data in this document, MC68HC705C8A Technical Data Rev. 3, applies to the MC68HSC705C8A with the exceptions given in this appendix. The computer operating properly (COP) mode bits (CM1 and CM0 in the COP control register) select the timeout period of the programmable COP watchdog, as shown in Table A-1. See Figure 5-3. Programmable COP Control Register (COPCR). MC68HC705C8A — Rev. 3 MOTOROLA Technical Data MC68HSC705C8A 201 MC68HSC705C8A Table A-1. Programmable COP Timeout Period Selection CM1:CM0 COP Timeout Rate 00 Programmable COP Timeout Period fOSC = 8.0 MHz fOP = 4.0 MHz fOSC = 4.0 MHz fOP = 2.0 MHz fOSC = 3.5795 MHz fOP = 1.7897 MHz fOSC = 2.0 MHz fOP = 1.0 MHz fOP ÷ 215 8.192 ms 16.38 ms 18.31 ms 32.77 ms 01 fOP ÷ 217 32.77 ms 65.54 ms 73.24 ms 131.07 ms 10 fOP ÷ 219 131.07 ms 262.14 ms 292.95 ms 524.29 ms 11 fOP ÷ ÷221 524.29 ms 1.048 s 1.172 s 2.097 s A.3 5.0-Volt High-Speed DC Electrical Characteristics Characteristic(1) Typ(2) Max — — — — — — — — 0.4 — — 0.4 — — 5.92 2.27 14 7.0 mA mA — — 5 2.0 50 50 µA µA Symbol Min Output high voltage ILoad = –0.8 mA PA7–PA0, PB7–PB0, PC6–PC0, TCMP ILoad = –1.6 mA PD4–PD1 ILoad = –5.0 mA PC7 VOH VDD – 0.8 Output low voltage ILoad = 1.6 mA PA7–PA0, PB7–PB0, PC6–PC0, PD4–PD1 ILoad = 20 mA PC7 VOL Supply current(3) Run(4) Wait(5) Stop(6) 25°C –40°C to +85°C IDD Unit V V 1. VDD = 5 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range at 25°C. 3. IDD measured with port B pullup devices disabled. 4. Run (operating) IDD measured using external square wave clock source (fOSC = 8.0 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. CL = 20 pF on OSC2. OSC2 capacitance linearly affects run IDD. 5. Wait IDD measured using external square wave clock source (fOSC = 8.0 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. CL = 20 pF on OSC2. VIL = 0.2 V, VIH = VDD – 0.2 V. All ports configured as inputs. SPI and SCI disabled. If SPI and SCI enabled, add 10% current draw. OSC2 capacitance linearly affects wait IDD. 6. Stop IDD measured with OSC1 = V DD. All ports configured as inputs. VIL = 0.2 V, VIH = VDD – 0.2 V. Technical Data 202 MC68HC705C8A — Rev. 3 MC68HSC705C8A MOTOROLA MC68HSC705C8A A.4 3.3-Volt High-Speed DC Electrical Characteristics Characteristic(1) Typ(2) Max — — — — — — — — 0.3 — — 0.3 — — — 1.91 0.915 2.0 6.0 2.0 20 Symbol Min Output high voltage ILoad = –0.2 mA PA7–PA0, PB7–PB0, PC6–PC0, TCMP ILoad = –0.4 mA PD4–PD1 ILoad = –1.5 mA PC7 VOH VDD – 0.3 Output low voltage ILoad = 0.4 mA PA7–PA0, PB7–PB0, PC6–PC0, PD4–PD1 ILoad = 6.0 mA PC7 VOL Supply current(3) Run(4) Wait(5) Stop(6) IDD Unit V V mA mA µA 1. VDD = 3.3 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range at 25°C. 3. IDD measured with port B pullup devices disabled. 4. Run (operating) IDD measured using external square wave clock source (fOSC = 4.2 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. CL = 20 pF on OSC2. OSC2 capacitance linearly affects run IDD. 5. Wait IDD measured using external square wave clock source (fOSC = 4.2 MHz). All inputs 0.2 V from rail. No dc loads. Less than 50 pF on all outputs. C L = 20 pF on OSC2. V IL = 0.2 V, VIH = VDD – 0.2 V. All ports configured as inputs. SPI and SCI disabled. If SPI and SCI enabled, add 10% current draw. OSC2 capacitance linearly affects wait IDD. 6. Stop IDD measured with OSC1 = V DD. All ports configured as inputs. VIL = 0.2 V; VIH = VDD – 0.2 V. MC68HC705C8A — Rev. 3 MOTOROLA Technical Data MC68HSC705C8A 203 MC68HSC705C8A A.5 5.0-Volt High-Speed Control Timing Characteristic(1) Symbol Min Max Unit Oscillator frequency Crystal oscillator External clock fOSC — dc 8.0 8.0 MHz Internal operating frequency (fOSC ÷ 2) Crystal oscillator External clock fOP — dc 4.0 4.0 MHz Cycle time tCYC 250 — ns tTH, tTL 65 — ns tILIH 65 — ns tOH, tOL 45 — ns Symbol Min Max Unit Oscillator frequency Crystal oscillator External clock fOSC — dc 4.0 4.0 MHz Internal operating frequency (fOSC ÷ 2) Crystal oscillator External clock fOP — dc 2.0 2.0 MHz Cycle time tCYC 476 — ns tTH, tTL 125 — ns tILIH 125 — ns tOH, tOL 90 — ns Input capture pulse width Interrupt pulse width low (edge-triggered) OSC1 pulse width 1. VDD = 5 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted A.6 3.3-Volt High-Speed Control Timing Characteristic(1) Input capture pulse width Interrupt pulse width low (edge-triggered) OSC1 pulse width 1. VDD = 3.3 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted Technical Data 204 MC68HC705C8A — Rev. 3 MC68HSC705C8A MOTOROLA MC68HSC705C8A A.7 5.0-Volt High-Speed SPI Timing Diagram Number(1) Characteristic(2) Operating frequency Master Slave Symbol Min Max Unit fOP(S) fOP(S) dc dc 0.5 4.0 fOP MHz 1 Cycle time Master Slave tCYC(M) tCYC(S) 2.0 250 — — tCYC ns 2 Enable lead time Master Slave tLead(M) tLead(S) Note (3) 125 — — ns 3 Enable lag time Master Slave tLag(M) tLag(S) Note(2) 375 — — ns 4 Clock (SCK) high time Master Slave tW(SCKH)M tW(SCKH)S 170 95 — — ns 5 Clock (SCK) low time Master Slave tW(SCKL)M tW(SCKL)S 170 95 — — ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 50 50 — — ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 50 50 — — ns 8 Access time(4) Slave tA 0 60 ns 9 Disable time(5) Slave tDIS — 120 ns tV(M) tV(S) 0.25 — — 120 tCYC(M) ns 10 Data valid time Master (before capture edge) (6) Slave (after enable edge) Continued MC68HC705C8A — Rev. 3 MOTOROLA Technical Data MC68HSC705C8A 205 MC68HSC705C8A Diagram Number(1) Characteristic(2) Symbol Min Max Unit tHO(M) tHO(S) 0.25 0 — — tCYC(M) ns 11 Data hold time (outputs) Master (after capture edge) Slave (after enable edge) 12 Rise time(7) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tRM tRS — — 50 2.0 ns µs 13 Fall time(8) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tFM tFS — — 50 2.0 ns µs 1. Diagram numbers refer to dimensions in Figure 13-8. SPI Master Timing and Figure 13-9. SPI Slave Timing. 2. VDD = 5 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 3. Signal production depends on software. 4. Time to data active from high-impedance state 5. Hold time to high-impedance state 6. With 200 pF on all SPI pins. 7. 20% of VDD to 70% of VDD; CL = 200 pF 8. 70% of VDD to 20% of VDD; CL = 200 pF Technical Data 206 MC68HC705C8A — Rev. 3 MC68HSC705C8A MOTOROLA MC68HSC705C8A A.8 3.3-Volt High-Speed SPI Timing Diagram Number(1) Characteristic(2) Operating frequency Master Slave Symbol Min Max Unit fOP(S) fOP(S) dc dc 0.5 2.1 fOP MHz 1 Cycle time Master Slave tCYC(M) tCYC(S) 2.0 480 — — tCYC ns 2 Enable lead time Master Slave tLead(M) tLead(S) Note (3) 240 — — ns 3 Enable lag time Master Slave tLag(M) tLag(S) Note(2) 720 — — ns 4 Clock (SCK) high time Master Slave tW(SCKH)M tW(SCKH)S 340 190 — — ns 5 Clock (SCK) low time Master Slave tW(SCKL)M tW(SCKL)S 340 190 — — ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 100 100 — — ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 100 100 — — ns 8 Access time(4) Slave tA 0 120 9 Disable time(5) Slave tDIS — 240 10 Data valid time Master (before capture edge) Slave (after enable edge)(6) tV(M) tV(S) 0.25 — — 240 ns ns tCYC(M) ns Continued MC68HC705C8A — Rev. 3 MOTOROLA Technical Data MC68HSC705C8A 207 MC68HSC705C8A Diagram Number(1) Characteristic(2) Symbol Min Max Unit tHO(M) tHO(S) 0.25 0 — — tCYC(M) ns 11 Data hold time (outputs) Master (after capture edge) Slave (after enable edge) 12 Rise time(7) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tRM tRS — — 100 2.0 ns µs 13 Fall time(8) SPI outputs (SCK, MOSI, MISO) SPI inputs (SCK, MOSI, MISO, SS) tFM tFS — — 100 2.0 ns µs 1. Diagram numbers refer to dimensions in Figure 13-8. SPI Master Timing and Figure 13-9. SPI Slave Timing. 2. VDD = 3.3 V ± 10%; VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 3. Signal production depends on software. 4. Time to data active from high-impedance state 5. Hold time to high-impedance state 6. With 200 pF on all SPI pins 7. 20% of VDD to 70% of VDD; CL = 200 pF 8. 70% of VDD to 20% of VDD; CL = 200 pF Technical Data 208 MC68HC705C8A — Rev. 3 MC68HSC705C8A MOTOROLA MC68HSC705C8A A.9 Ordering Information Table A-2 provides ordering information for the MC68HSC705C8A. Table A-2. MC68HSC705C8A Order Numbers Package Type Temperature Range Order Number 40-pin plastic dual in-line package (PDIP) –40°C to +85°C MC68HSC705C8AC(1)P(2) 44-lead plastic-leaded chip carrier (PLCC) –40°C to +85°C MC68HSC705C8ACFN (3) 44-lead ceramic-leaded chip carrier (CLCC) –40°C to +85°C MC68HSC705C8ACFS (4) 40-pin ceramic DIP (cerdip) –40°C to +85°C MC68HSC705C8ACS(5) 44-pin quad flat pack (QFP) –40°C to +85°C MC68HSC705C8ACFB (6) 42-pin shrink dual in-line package (SDIP) –40°C to +85°C MC68HSC705C8ACB(7) 1. C = Extended temperature range (–40°C to +85°C) 2. P = Plastic dual in-line package (PDIP) 3. FN = Plastic-leaded chip carrier (PLCC) 4. FS = Ceramic-leaded chip carrier (CLCC) 5. S = Windowed ceramic dual in-line package (cerdip) 6. FB = Quad flat pack (QFP) 7. B = Shrink dual in-line package (SDIP) MC68HC705C8A — Rev. 3 MOTOROLA Technical Data MC68HSC705C8A 209 MC68HSC705C8A Technical Data 210 MC68HC705C8A — Rev. 3 MC68HSC705C8A MOTOROLA Technical Data — MC68HC705C8A Index A accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 154, 155, 158 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 arithmetic/logic unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 bootloader ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 C C bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 condition code register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 160 COP watchdog (non-programmable) diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . timeout period formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . when clock monitor enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 73 73 66 66 73 COP watchdog (programmable) COP control register (COPCR) . . . . . . . . . . . . . . . . . . . . . . . . . . COP reset register (COPRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . timeout period selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 64 63 71 71 63 66 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Index 211 Index CPU instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 instruction types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155, 158, 163 accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 155, 158 condition code register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 160 index register (X) . . . . . . . . . . . . . . . . . . . . . . . . 154, 155, 156, 158 program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157, 160 D data-retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 E electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 181 176 174 electrical specifications (high-speed part) control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 202 209 205 EPROM/OTPROM (PROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 103 control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 EPROM erasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 mask option register 1 (MOR1) . . . . . . . . . . . . . . . . . . . . . . . . . 117 mask option register 2 (MOR2) . . . . . . . . . . . . . . . . . . . . . . . . . 118 option register (option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 preprogramming steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 program register (PROG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 MC68HC05PGMR programmer board . . . . . . . . . . . . . . . . . 104 programming circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Technical Data 212 MC68HC705C8A — Rev. 3 Index MOTOROLA Index programming flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 programming routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108, 111 F features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 H high-speed part (MC68HSC705C8A) . . . . . . . . . . . . . . . . . . . . . . . 201 I I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 77 data direction register A (DDRA) . . . . . . . . . . . . . . . . . . . . . . . . . 79 data direction register B (DDRB) . . . . . . . . . . . . . . . . . . . . . . . . . 82 data direction register C (DDRC) . . . . . . . . . . . . . . . . . . . . . . . . . 86 port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 port A data register (PORTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 port A I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 port A pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 port B data register (PORTB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 port B I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 port B pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 port C data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 port C I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 port C pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I/O bits C bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 I/O register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 index register (X) . . . . . . . . . . . . . . . . . . . . . . . . 45, 154, 155, 156, 158 instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . instruction types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . opcode map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC68HC705C8A — Rev. 3 MOTOROLA 153 154 164 157 170 Technical Data Index 213 Index interrupt processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reset/interrupt vector addresses. . . . . . . . . . . . . . . . . . . . . . . . . . stacking order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 59 57 58 interrupts external interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internal function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . port B interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . port B I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . software interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . timer interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 52 52 50 50 53 53 54 55 50 49 56 55 IRQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 J junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 L low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . data-retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stop mode non-programmable COP in stop mode flowchart . . . . . . . . . . non-programmable COP watchdog in stop mode. . . . . . . . . . programmable COP in stop mode flowchart. . . . . . . . . . . . . . programmable COP watchdog in stop mode . . . . . . . . . . . . . SCI during stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI during stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stop/wait mode function flowchart. . . . . . . . . . . . . . . . . . . . . . wait mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . non-programmable COP watchdog in wait mode . . . . . . . . . . programmable COP watchdog in wait mode . . . . . . . . . . . . . Technical Data 214 69 75 74 73 72 71 71 71 70 73 75 75 MC68HC705C8A — Rev. 3 Index MOTOROLA Index M mask option registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 117, 118 MC68HSC705C8A (high-speed part) . . . . . . . . . . . . . . . . . . . . . . . control timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . programmable COP timeout period selection . . . . . . . . . . . . . . SPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 204 202 209 202 205 mechanical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 memory bootloader ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I/O register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 38 PROM (EPROM/OTPROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 38 O on-chip memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 opcode map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 option register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 order numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 OSC1 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 OSC2 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 oscillator ceramic resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 external clock signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Index 215 Index P pin assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 78 data direction register A (DDRA) . . . . . . . . . . . . . . . . . . . . . . . . . 79 port A data register (PORT A) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 port A I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 port A pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 81 data direction register B (DDRB) . . . . . . . . . . . . . . . . . . . . . . . . . 82 port B data register (PORTB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 port B I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 port B pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 85 data direction register C (DDRC) . . . . . . . . . . . . . . . . . . . . . . . . . 86 port C data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 port C I/O logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 port C pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 88 power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 157, 160 programmable options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 programming model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 PROM (EPROM/OTPROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 R RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 registers I/O register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 reset and interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . 59 RESET pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 clock monitor reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 67 with STOP instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Technical Data 216 MC68HC705C8A — Rev. 3 Index MOTOROLA Index COP watchdog resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . non-programmable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . non-programmable COP watchdog diagram . . . . . . . . . . . . . programmable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . programmable COP watchdog diagram . . . . . . . . . . . . . . . . . enabling both programmable and non-programmable COPs . . . external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . power-on reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 66 67 63 63 65 62 62 61 ROM (bootloader) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 S serial communications interface (SCI). . . . . . . . . . . . . . . . . . . . . . . 121 baud rate generator clock prescaling . . . . . . . . . . . . . . . . . . . . . 136 baud rate register (baud) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 baud rate selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 baud rate selection examples . . . . . . . . . . . . . . . . . . . . . . . . . . 138 during stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 SCI control register 1 (SCCR1) . . . . . . . . . . . . . . . . . . . . . . . . . 130 SCI control register 2 (SCCR2) . . . . . . . . . . . . . . . . . . . . . . . . . 131 SCI data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 SCI data register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 SCI I/O registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 SCI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 SCI operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 SCI receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 SCI status register (SCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 SCI transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 serial peripheral interface (SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 during stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 master/slave connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 multiple-SPI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 pin functions in master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 pin functions in slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 serial clock polarity and phase . . . . . . . . . . . . . . . . . . . . . . . . . . 146 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Index 217 Index SPI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI clock/data timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI control register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI data register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI I/O register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI I/O registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI status register (SPSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 146 149 149 147 142 148 148 142 151 stack pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 stop mode non-programmable COP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . non-programmable COP flowchart. . . . . . . . . . . . . . . . . . . . . . . . programmable COP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . programmable COP flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . SCI during stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI during stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stop/wait mode function flowchart . . . . . . . . . . . . . . . . . . . . . . . . 73 74 71 72 71 71 69 70 T TCAP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 TCMP pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 alternate timer registers (ATRH and ATRL) . . . . . . . . . . . . . . . . . 99 I/O registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 input capture registers (ICRH and ICRL) . . . . . . . . . . . . . . . . . . 100 output compare registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 timer control register (TCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 timer I/O register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 timer interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 timer operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 timer registers (TRH and TRL). . . . . . . . . . . . . . . . . . . . . . . . . . . 97 timer status register (TSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Technical Data 218 MC68HC705C8A — Rev. 3 Index MOTOROLA Index V VDD pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VSS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VPP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 W wait mode non-programmable COP watchdog in wait mode . . . . . . . . . . . . 75 programmable COP watchdog in wait mode . . . . . . . . . . . . . . . . 75 stop/wait mode function flowchart . . . . . . . . . . . . . . . . . . . . . . . . 70 MC68HC705C8A — Rev. 3 MOTOROLA Technical Data Index 219 Index Technical Data 220 MC68HC705C8A — Rev. 3 Index MOTOROLA HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: http://www.motorola.com/semiconductors liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2002 MC68HC705C8A/D