MOTOROLA MPX4101A

Order this document
by MPX4101/D
SEMICONDUCTOR TECHNICAL DATA
#!# !""$! "!
"$# !""$! "!
#
!#$! INTEGRATED
PRESSURE SENSOR
15 to 102 kPa
(2.18 to 14.8 psi)
0.25 to 4.95 V Output
"#
!#
The Motorola MPX4101 series Manifold Absolute Pressure (MAP) sensor for engine
control is designed to sense absolute air pressure within the intake manifold. This
measurement can be used to compute the amount of fuel required for each cylinder. The
small form factor and high reliability of on–chip integration makes the Motorola MAP
sensor a logical and economical choice for automotive system designers.
Features
• 1.7% Maximum Error Over 0° to 85°C
• Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine
Control Systems
• Ideally Suited for Microprocessor Interfacing
BASIC CHIP CARRIER
ELEMENT
CASE 867–08, STYLE 1
• Patented Silicon Shear Stress Strain Gauge
• Temperature Compensated Over – 40°C to +125°C
• Durable Epoxy Unibody Element
• Ideal for Non–Automotive Applications
PIN NUMBER
Application Examples
• Manifold Sensing for Automotive Systems
1
Vout
4
N/C
2
Gnd
5
N/C
3
VS
6
N/C
NOTE: Pins 4, 5, and 6 are internal
device connections. Do not connect
to external circuitry or ground. Pin 1
is noted by the notch in the Lead.
VS
3
THIN FILM
TEMPERATURE
COMPENSATION
AND
GAIN STAGE #1
X–ducer
SENSING
ELEMENT
2
GAIN STAGE #2
AND
GROUND
REFERENCE
SHIFT CIRCUITRY
1
Vout
PINS 4, 5 AND 6 ARE NO CONNECTS
The MPX4101 series piezoresistive transducer is a state–
of–the–art, monolithic, signal conditioned, silicon pressure
sensor. This sensor, with its patented transducer, combines
advanced micromachining techniques, thin film metallization,
and bipolar semiconductor processing to provide an
accurate, high level analog output signal that is proportional
to applied pressure.
Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.
GND
Figure 1. Fully Integrated Pressure Sensor Schematic
Senseon and X–ducer are trademarks of Motorola, Inc.
Motorola Sensor Device Data
 Motorola, Inc. 1997
1
MAXIMUM RATINGS(1)
Symbol
Value
Unit
Overpressure(2) (P1 > P2)
Parametric
Pmax
400
kPa
Burst Pressure(2) (P1 > P2)
Pburst
1000
kPa
Tstg
– 40 to +125
°C
TA
– 40 to +125
°C
Storage Temperature
Operating Temperature
1. TC = 25°C unless otherwise noted.
2. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
OPERATING CHARACTERISTICS (VS = 5.1 Vdc, TA = 25°C unless otherwise noted, P1 > P2)
Characteristic
Symbol
Min
Typ
Max
Unit
Pressure Range(1)
POP
15
—
102
kPa
Supply Voltage(1)
VS
4.85
5.1
5.35
Vdc
Supply Current
Io
—
7.0
10
mAdc
Minimum Pressure Offset(3)
@ VS = 5.1 Volts
(0 to 85°C)
Voff
0.171
0.252
0.333
Vdc
Full Scale Output(4)
@ VS = 5.1 Volts
(0 to 85°C)
VFSO
4.870
4.951
5.032
Vdc
Full Scale Span(5)
@ VS = 5.1 Volts
(0 to 85°C)
VFSS
—
4.7
—
Vdc
Accuracy(6)
(0 to 85°C)
—
—
—
±1.72
%VFSS
mV/kPa
Sensitivity
V/P
—
54
—
Response Time(7)
tR
—
1.0
—
ms
Output Source Current at Full Scale Output
Io+
—
0.1
—
mAdc
Warm–Up Time(8)
—
—
20
—
ms
Offset Stability(9)
—
—
± 0.5
—
%VFSS
Symbol
Min
Typ
Max
Unit
Weight, Basic Element (Case 867)
—
—
4.0
—
Grams
Common Mode Line Pressure(10)
—
—
—
690
kPa
Decoupling circuit shown in Figure 3 required to meet electrical specifications.
MECHANICAL CHARACTERISTICS
Characteristic
NOTES:
1. 1.0 kPa (kiloPascal) equals 0.145 psi.
2. Device is ratiometric within this specified excitation range.
3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure.
5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the
minimum rated pressure.
6. Accuracy (error budget) consists of the following:
• Linearity:
Output deviation from a straight line relationship with pressure over the specified pressure range.
• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is
cycled to and from the minimum or maximum operating temperature points, with zero differential pressure
applied.
• Pressure Hysteresis:
Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
minimum or maximum rated pressure, at 25°C.
• TcSpan:
Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
• TcOffset:
Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative
to 25°C.
• Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C.
7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to
a specified step change in pressure.
8. Warm–up is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
9. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
10. Common mode pressures beyond specified may result in leakage at the case–to–lead interface.
2
Motorola Sensor Device Data
FLUORO SILICONE
GEL DIE COAT
DIE
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
P1
WIRE BOND
LEAD
FRAME
SENSOR
OUTPUT
(PIN 1)
STAINLESS
STEEL CAP
EPOXY
PLASTIC
CASE
A/D
50 pF
51 k
µ PROCESSOR
DIE
BOND
ABSOLUTE ELEMENT
P2
SEALED VACUUM REFERENCE
Figure 2. Cross Sectional Diagram
(Not to Scale)
Figure 3. Decoupling Filter for Sensor to
Microprocessor Interface
Figure 2 illustrates an absolute sensing chip in the basic
chip carrier (Case 867). A fluorosilicone gel isolates the die
surface and wire bonds from the environment, while allowing
the pressure signal to be transmitted to the sensor diaphragm. The MPX4101A series pressure sensor operating
characteristics, and internal reliability and qualification tests
are based on use of dry air as the pressure media. Media,
other than dry air, may have adverse effects on sensor
performance and long–term reliability. Contact the factory for
information regarding media compatibility in your application.
Figure 3 shows a typical decoupling circuit for interfacing
the integrated MAP sensor to the A/D input of a microprocessor. Proper decoupilng of the power supply is recommended.
Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves
are shown for operation over a temperature range of 0° to
85°C. (The output will saturate outside of the specified pressure range.)
6.0
OUTPUT (Volts)
5.0
4.0
TRANSFER FUNCTION:
Vout = Vs* (.01059*P–.109) ± Error
VS = 5.1 Vdc
TEMP = 0 to 85°C
15 kPa TO 102 kPa
MPX4101A
MAX
3.0
TYP
2.0
1.0
MIN
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
0.0
Pressure (ref: to sealed vacuum) in kPa
Figure 4. Output versus Absolute Pressure
Motorola Sensor Device Data
3
Transfer Function (MPX4101A)
Nominal Transfer Value: Vout = VS (P x 0.01059 – 0.10941)
+/– (Pressure Error x Temp. Factor x 0.01059 x VS)
VS = 5.1 V ± 0.25 Vdc
Temperature Error Band
MPX4101A Series
4.0
3.0
Temperature
Error
Factor
2.0
Temp
Multiplier
– 40
0 to 85
+125
3
1
3
1.0
0.0
–40
–20
0
20
40
60
80
100
120
140
Temperature in °C
NOTE: The Temperature Multiplier is a linear response from 0° to – 40°C and from 85° to 125°C.
Pressure Error Band
Error Limits for Pressure
Pressure Error (kPa)
3.0
2.0
1.0
0.0
Pressure (in kPa)
0
15
30
45
60
75
90
105
120
–1.0
– 2.0
– 3.0
4
Pressure
Error (Max)
15 to 102 (kPa)
± 1.5 (kPa)
Motorola Sensor Device Data
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Motorola designates the two sides of the pressure sensor
as the Pressure (P1) side and the Vacuum (P2) side. The
Pressure (P1) side is the side containing fluorosilicone gel
which protects the die from harsh media. The Motorola MPX
Part Number
pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.
The Pressure (P1) side may be identified by using the table
below:
Pressure (P1)
Side Identifier
Case Type
MPX4101A
867–08
Stainless Steel Cap
MPX4101AP
867B–04
Side with Port Marking
MPX4101AS
867E–03
Side with Port Attached
MPX4101ASX
867F–03
Side with Port Attached
ORDERING INFORMATION
The MPX4101A series MAP silicon pressure sensors are available in the Basic Element, or with pressure port fittings that
provide mounting ease and barbed hose connections.
MPX Series
D i T
Device
Type
O i
Options
C
Case
Type
T
Order Number
Device Marking
Basic Element
Absolute, Element Only
867–08
MPX4101A
MPX4101A
Ported Elements
Absolute, Ported
867B–04
MPX4101AP
MPX4101AP
Absolute, Stove Pipe Port
867E–03
MPX4101AS
MPX4101A
Absolute, Axial Port
867F–03
MPX4101ASX
MPX4101A
Motorola Sensor Device Data
5
PACKAGE DIMENSIONS
C
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION –A– IS INCLUSIVE OF THE MOLD
STOP RING. MOLD STOP RING NOT TO EXCEED
16.00 (0.630).
R
POSITIVE PRESSURE
(P1)
M
B
–A–
N
PIN 1
SEATING
PLANE
1
2
3
4
5
DIM
A
B
C
D
F
G
J
L
M
N
R
S
L
6
–T–
G
J
S
F
D 6 PL
0.136 (0.005)
T A
M
M
INCHES
MIN
MAX
0.595
0.630
0.514
0.534
0.200
0.220
0.027
0.033
0.048
0.064
0.100 BSC
0.014
0.016
0.695
0.725
30 _NOM
0.475
0.495
0.430
0.450
0.090
0.105
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
CASE 867–08
ISSUE N
MILLIMETERS
MIN
MAX
15.11
16.00
13.06
13.56
5.08
5.59
0.68
0.84
1.22
1.63
2.54 BSC
0.36
0.40
17.65
18.42
30 _NOM
12.07
12.57
10.92
11.43
2.29
2.66
VOUT
GROUND
VCC
V1
V2
VEX
BASIC ELEMENT (A, D)
–T–
A
U
L
SEATING
PLANE
R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
PORT #1
POSITIVE
PRESSURE (P1)
V
DIM
A
B
C
D
F
G
J
K
L
N
P
Q
R
S
U
V
–Q–
N
B
K
1
PIN 1
–P–
C
J
0.25 (0.010)
M
T Q
3
4
5
6
S
G
M
2
F
D 6 PL
0.13 (0.005)
M
T P
CASE 867B–04
ISSUE E
S
Q
S
INCHES
MIN
MAX
1.145
1.175
0.685
0.715
0.305
0.325
0.027
0.033
0.048
0.064
0.100 BSC
0.014
0.016
0.695
0.725
0.290
0.300
0.420
0.440
0.153
0.159
0.153
0.159
0.230
0.250
0.220
0.240
0.910 BSC
0.182
0.194
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
29.08
29.85
17.40
18.16
7.75
8.26
0.68
0.84
1.22
1.63
2.54 BSC
0.36
0.41
17.65
18.42
7.37
7.62
10.67
11.18
3.89
4.04
3.89
4.04
5.84
6.35
5.59
6.10
23.11 BSC
4.62
4.93
VOUT
GROUND
VCC
V1
V2
VEX
PRESSURE SIDE PORTED (AP, GP)
6
Motorola Sensor Device Data
PACKAGE DIMENSIONS—CONTINUED
C
–B–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
DIM
A
B
C
D
E
F
G
J
K
N
S
V
V
PIN 1
PORT #1
POSITIVE
PRESSURE
(P1)
6
K
4
3
2
1
S
J
N
5
G
F
E
D
–T–
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
6 PL
0.13 (0.005)
M
T B
INCHES
MIN
MAX
0.690
0.720
0.245
0.255
0.780
0.820
0.027
0.033
0.178
0.186
0.048
0.064
0.100 BSC
0.014
0.016
0.345
0.375
0.300
0.310
0.220
0.240
0.182
0.194
M
MILLIMETERS
MIN
MAX
17.53
18.28
6.22
6.48
19.81
20.82
0.69
0.84
4.52
4.72
1.22
1.63
2.54 BSC
0.36
0.41
8.76
9.53
7.62
7.87
5.59
6.10
4.62
4.93
VOUT
GROUND
VCC
V1
V2
VEX
CASE 867E–03
ISSUE D
PRESSURE SIDE PORTED (AS, GS)
–T–
C
A
E
–Q–
U
N
V
B
R
PIN 1
PORT #1
POSITIVE
PRESSURE
(P1)
–P–
0.25 (0.010)
T Q
M
6
M
5
4
3
2
1
S
K
J
0.13 (0.005)
M
T P
S
D 6 PL
Q S
G
F
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM
A
B
C
D
E
F
G
J
K
N
P
Q
R
S
U
V
INCHES
MIN
MAX
1.080
1.120
0.740
0.760
0.630
0.650
0.027
0.033
0.160
0.180
0.048
0.064
0.100 BSC
0.014
0.016
0.220
0.240
0.070
0.080
0.150
0.160
0.150
0.160
0.440
0.460
0.695
0.725
0.840
0.860
0.182
0.194
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
27.43
28.45
18.80
19.30
16.00
16.51
0.68
0.84
4.06
4.57
1.22
1.63
2.54 BSC
0.36
0.41
5.59
6.10
1.78
2.03
3.81
4.06
3.81
4.06
11.18
11.68
17.65
18.42
21.34
21.84
4.62
4.93
VOUT
GROUND
VCC
V1
V2
VEX
CASE 867F–03
ISSUE D
PRESSURE SIDE PORTED (ASX, GSX)
Motorola Sensor Device Data
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315
Mfax: [email protected] – TOUCHTONE 602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
8
◊
Motorola Sensor DeviceMPX4101/D
Data