SAMSUNG S6C0641

S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
November. 1999.
Ver. 0.1
Prepared by:
Sangho Park
[email protected]
Contents in this document are subject to change without notice. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of LCD Driver IC Team.
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641 Specification Revision History
Version
2
Content
Date
0.0
Original
Aug.1999
0.1
The content of page 21 has been modified
Nov.1999
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
CONTENTS
INTRODUCTION ................................................................................................................................................. 4
FEATURES ......................................................................................................................................................... 4
BLOCK DIAGRAM .............................................................................................................................................. 5
PIN ASSINGMENTS............................................................................................................................................ 6
PIN DESCRIPTIONS ........................................................................................................................................... 7
OPERATION DESCRIPTION............................................................................................................................... 8
DISPLAY DATA TRANSFER ............................................................................................................................ 8
EXTENSION OF OUTPUT ............................................................................................................................... 8
RELATIONSHIP BETWEEN INPUT DATA VALUE AND OUTPUT VOLTAGE .................................................. 9
ABSOLUTE MAXIMUM RATINGS .................................................................................................................... 18
RECOMMENDED OPERATION CONDITIONS.................................................................................................. 18
DC CHARACTERISTICS................................................................................................................................... 19
AC CHARACTERISTICS................................................................................................................................... 20
WAVEFORMS ................................................................................................................................................... 21
RELATIONSHIPS BETWEEN CLK1, START PULSE (DIO1, DIO2) AND BLANKING PERIOD ........................ 22
3
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
INTRODUCTION
The S6C0641 is a 300 channel or 309 channel output, TFT-LCD source driver for 64 gray scale displays. Data
input is based on digital input consisting of 6 bits by 3 dots, which can realize a full-color display of 260,000 colors
by output of 64 values gamma-corrected.
This device has an internal D/A (Digital-to-Analog) converter for each output and 9 or 11 external power supplies.
S6C0641 can be adopted to larger panel, and SHL (Shift Direction Selection) pin makes use of the LCD panel
connection conveniently. Maximum operation clock frequency is 55 MHz at a 3.3 V logic operation. It can be
applied to the TFT-LCD panel of SVGA, XGA standards.
FEATURES
•
TFT active matrix LCD source driver LSI
•
64 gray scale is possible through 9 or 11 external power supply and D/A converter
•
Line inversion display is possible
•
CMOS level input
•
Compatible with gamma-correction
•
Logic supply voltage: 3.0 - 5.5 V
•
LCD driver supply voltage: 3.0 - 5.5 V
•
Output dynamic range: 2.6 - 5.1 Vp-p
•
Maximum operating frequency: fMAX = 55 MHz (internal data transmission rate at 3.3 V operation)
•
Output: 300 / 309 outputs
•
TCP available
4
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
Y001
Y002
Y003
Y307
Y308
Y309
BLOCK DIAGRAM
Output Buffer
VGMA1 VGMA11
11
D/A Converter
6
6
6
6
6
6
6
6
6
Data Latch
CLK1
6
6
6
D00 - D05
6
D10 - D15
6
D20 - D25
6
CLK2
Data Control
Data Register
18
100 / 103 bit Shift Register
DIO2
SELT
SHL
TESTB
DIO1
Figure 1. S6C0641 Block Diagram
5
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
PIN ASSIGNMENTS
Y001
Y002
Y003
(Top View)
S6C0641
Y004
Y306
Y307
Y308
Y309
Figure 2. S6C0641 Pin Assignments
6
VSS2
VDD2
VGMA10
VGMA8
VGMA6
VGMA4
VGMA2
D05
D04
D03
D02
D01
D00
D15
D14
D13
D12
D11
D10
DIO1
VSS1
SELT
CLK2
VDD1
DIO2
CLK1
D25
D24
D23
D22
D21
D20
SHL
VGMA1
VGMA3
VGMA5
VGMA7
VGMA9
VGMA11
VDD2
VSS2
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
PIN DESCRIPTIONS
Symbol
Pin Name
VDD1
Logic power supply
3.0- 5.5 V
VDD2
Driver power supply
3.0 - 5.5 V
VSS1
Logic ground
Ground (0 V)
VSS2
Driver ground
Ground (0 V)
Y1 – Y309
Driver outputs
The D/A converted 64 gray scale analog voltage is output.
D0<0:5>
- D2<0:5>
Display data input
SHL
Description
The display data is input with a width of 18 bits,
gray-scale data (6 bits) by 3 dots (R,G,B) DX0: LSB, DX5: MSB
This pin controls the direction of shift register in cascade connection.
The shift direction of the shift registers is as follows.
Shift direction control input
SHL = H: DIO1 input, Y1 → Y309, DIO2 output
SHL = L: DIO2 input, Y309 → Y1, DIO1 output
DIO1
Start pulse input / output
SHL = H: Used as the start pulse input pin.
SHL = L: Used as the start pulse output pin.
DIO2
Start pulse input / output
SHL = H: Used as the start pulse output pin.
SHL = L: Used as the start pulse input pin.
CLK2
Shift clock input
CLK1
Latch input
SELT
300 / 309CH output
control input
VGMA1
–
VGMA11
Gamma corrected power
supplies
TESTB
Test input
Refer to the shift register's shift clock input. the display data is loaded
to the data register at the rising edge of CLK2.
Latches the contents of the data register at rising edge and transfers
them to the D/A converter. Also, after CLK1 input, clears the internal
shift register contents. After 1 pulse input on start, operates normally.
CLK1 input timing refers to the "Relationships between CLK1 start
pulse (DIO1, DIO2) and blanking period" of the switching
characteristic waveform.
This pin controls 300CH or 309CH output.
SELT = H: 309CH output → Y151 to Y159 are useless.
SELT = L: 300CH output.
→ Y151 to Y159 are useless.
This pin is internally pulled-up.(Rpu = 30 kΩ)
Input the gamma corrected power supplies from external source.
VDD2 ≥ VGMA1 > VGMA2 > ……… > VGMA10 > VGMA11 ≥ VSS2
Keep gray-scale power supply unchanged during the gray-scale
voltage output.
TESTB = H: Normal operation mode
TESTB = L: Test mode (OP AMP CUT-OFF)
This pin is internally pulled-up.(Rpu = 30kΩ)
7
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
OPERATION DESCRIPTION
DISPLAY DATA TRANSFER
When DIO1 (or DIO2) pulse is loaded into internal latch on the rising edge of CLK2, DIO1 (or DIO2) pulse
enables the operation of data transfer, so display data is valid on the next rising edge of CLK2. Once all the
data of 300 / 309 channels are loaded into internal latch, it goes into stand-by state automatically, and any
new data is not accepted even though CLK2 is provided until next DIO1 (or DIO2) input. When next DIO1 (or
DIO2) is provided, new display data is valid on the next rising edge of CLK2 after the falling edge of DIO1 (or
DIO2).
EXTENSION OF OUTPUT
Output pin can be adjusted to an extended screen by cascade connection.
(1) SHL = "L"
Connect DIO1 pin of previous stage to the DIO2 pin of next stage and all the input pins
except DIO1 and DIO2 are connected together in each device.
(2) SHL = "H"
Connect DIO2 pin of previous stage to the DIO1 pin of next stage and all the input pins
except DIO2 and DIO1 are connected together in each device.
8
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
RELATIONSHIP BETWEEN INPUT DATA VALUE AND OUTPUT VOLTAGE
The LCD drive output voltages are determined by the input data and 11 gamma corrected power supplies
(VGMA1 - VGMA11).
SHL = H
OUTPUT
Y1
Y3
Y2
......
-
First
DATA
D00 - D05 D10 - D15 D20 - D25
Y307
Y308
Y309
Last
......
D00 - D05 D10 - D15 D20 - D25
SHL = L
OUTPUT
Y1
Y3
Y2
......
-
Last
DATA
D00 - D05 D10 - D15 D20 - D25
Y307
Y308
Y309
First
......
D00 - D05 D10 - D15 D20 - D25
Figure 3. Relationship between Shift Direction and Output Data
VDD2
VGMA1
VGMA2
VGMA3
VGMA4
VGMA5
VGMA6
VGMA7
VGMA8
VGMA9
VGMA10
VGMA11
VSS2
00H
07H
0FH
17H
1FH
27H
2FH
37H
3FH
Figure 4. Gamma Correction Curve
9
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
Table 2. Relationship between Input Data and Output Voltage Value:
In case of using 11 levels of Gamma-corrected power supplies (VGMA1 to VGMA11)
G/S
Output voltage
Input data DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
0
VGMA1
00H
VH0
0
0
0
0
0
1
VGMA3
+
(VGMA2
– VGMA3) × 6/7
01H
VH1
0
0
0
0
1
0
VGMA3 + (VGMA2 – VGMA3) × 5/7
02H
VH2
0
0
0
0
1
1
03H
VH3
VGMA3 + (VGMA2 – VGMA3) × 4/7
04H
0
0
0
1
0
0
VH4
VGMA3 + (VGMA2 – VGMA3) × 3/7
05H
VH5
VGMA3 + (VGMA2 – VGMA3) × 2/7
0
0
0
1
0
1
06H
VH6
VGMA3 + (VGMA2 – VGMA3) × 1/7
0
0
0
1
1
0
07H
VH7
VGMA3
0
0
0
1
1
1
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VH8
VH9
VH10
VH11
VH12
VH13
VH14
VH15
VGMA4 + (VGMA3 – VGMA4) × 7/8
VGMA4 + (VGMA3 – VGMA4) × 6/8
VGMA4 + (VGMA3 – VGMA4) × 5/8
VGMA4 + (VGMA3 – VGMA4) × 4/8
VGMA4 + (VGMA3 – VGMA4) × 3/8
VGMA4 + (VGMA3 – VGMA4) × 2/8
VGMA4 + (VGMA3 – VGMA4) × 1/8
VGMA4
VH16
VH17
VH18
VH19
VH20
VH21
VH22
VH23
VGMA5 + (VGMA4 – VGMA5) × 7/8
VGMA5 + (VGMA4 – VGMA5) × 6/8
VGMA5 + (VGMA4 – VGMA5) × 5/8
VGMA5 + (VGMA4 – VGMA5) × 4/8
VGMA5 + (VGMA4 – VGMA5) × 3/8
VGMA5 + (VGMA4 – VGMA5) × 2/8
VGMA5 + (VGMA4 – VGMA5) × 1/8
VGMA5
VH24
VH25
VH26
VH27
VH28
VH29
VH30
VH31
VGMA6 + (VGMA5 – VGMA6) × 7/8
VGMA6 + (VGMA5 – VGMA6) × 6/8
VGMA6 + (VGMA5 – VGMA6) × 5/8
VGMA6 + (VGMA5 – VGMA6) × 4/8
VGMA6 + (VGMA5 – VGMA6) × 3/8
VGMA6 + (VGMA5 – VGMA6) × 2/8
VGMA6 + (VGMA5 – VGMA6) × 1/8
VGMA6
NOTE: VDD2≥VGMA1>VGMA2>VGMA3>VGMA4>VGMA5>VGMA6>VGMA7>VGMA8>VGMA9>VGMA10>VGMA11≥ VSS2
10
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
Table 2. Relationship between Input Data and Output Voltage Value (Continued)
Input data
G/S
Output voltage
DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
20H
VH32
0
0
0
0
1
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
21H
VH33
0
0
0
1
0
1
22H
VH34
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
0
1
1
1
23H
VH35
VGMA7 + (VGMA6 – VGMA7) × 7/8
24H
VH36
0
0
1
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
25H
VH37
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
0
1
1
26H
VH38
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
1
0
1
27H
VH39
VGMA7
0
0
1
1
1
1
1
0
1
0
0
0
VGMA8 + (VGMA7 – VGMA8) × 7/8
28H
VH40
1
0
1
0
0
1
VGMA8
+ (VGMA7 – VGMA8) × 6/8
29H
VH41
1
0
1
0
1
0
VGMA8 + (VGMA7 – VGMA8) × 5/8
2AH
VH42
1
0
1
0
1
1
2BH
VH43
VGMA8 + (VGMA7 – VGMA8) × 4/8
2CH
VH44
VGMA8 + (VGMA7 – VGMA8) × 3/8
1
0
1
1
0
0
2DH
VH45
VGMA8 + (VGMA7 – VGMA8) × 2/8
1
0
1
1
0
1
2EH
VH46
VGMA8 + (VGMA7 – VGMA8) × 1/8
1
0
1
1
1
0
2FH
VH47
VGMA8
1
0
1
1
1
1
1
1
0
0
0
0
VGMA9 + (VGMA8 – VGMA9) × 7/8
30H
VH48
1
1
0
0
0
1
VGMA9 + (VGMA8 – VGMA9) × 6/8
31H
VH49
1
1
0
0
1
0
VGMA9 + (VGMA8 – VGMA9) × 5/8
32H
VH50
1
1
0
0
1
1
33H
VH51
VGMA9 + (VGMA8 – VGMA9) × 4/8
34H
VH52
VGMA9 + (VGMA8 – VGMA9) × 3/8
1
1
0
1
0
0
35H
VH53
VGMA9 + (VGMA8 – VGMA9) × 2/8
1
1
0
1
0
1
36H
VH54
VGMA9 + (VGMA8 – VGMA9) × 1/8
1
1
0
1
1
0
37H
VH55
VGMA9
1
1
0
1
1
1
1
1
1
0
0
0
VGMA10 + (VGMA9 – VGMA10) × 6/7
38H
VH56
1
1
1
0
0
1
VGMA10 + (VGMA9 – VGMA10) × 5/7
39H
VH57
1
1
1
0
1
0
3AH
VH58
VGMA10 + (VGMA9 – VGMA10) × 4/7
1
1
1
0
1
1
3BH
VH59
VGMA10 + (VGMA9 – VGMA10) × 3/7
3CH
VH60
1
1
1
1
0
0
VGMA10 + (VGMA9 – VGMA10) × 2/7
3DH
VH61
VGMA10 + (VGMA9 – VGMA10) × 1/7
1
1
1
1
0
1
3EH
VH62
VGMA10
1
1
1
1
1
0
3FH
VH63
VGMA11
1
1
1
1
1
1
RGMA (Gamma-Corrected Resistance) Ratio. (if the RGMA1 equals 1)
RGMA1
1.00
RGMA6
0.84
RGMA2
2.00
RGMA7
0.66
RGMA3
2.77
RGMA8
0.84
RGMA4
1.50
RGMA9
1.42
0.90
RGMA10
1.05
RGMA5
RGMA1 = 2.31 kΩ
11
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
Table 3. Relationship between Input Data and Output Voltage Value:
In case of using 10 levels of Gamma-corrected power supplies (VGMA1 = OPEN)
G/S
Output voltage
Input data DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
0
VGMA2
00H
VH0
0
0
0
0
0
1
VGMA3
+
(VGMA2
– VGMA3) × 6/7
01H
VH1
0
0
0
0
1
0
VGMA3 + (VGMA2 – VGMA3) × 5/7
02H
VH2
0
0
0
0
1
1
03H
VH3
VGMA3 + (VGMA2 – VGMA3) × 4/7
04H
0
0
0
1
0
0
VH4
VGMA3 + (VGMA2 – VGMA3) × 3/7
05H
VH5
VGMA3 + (VGMA2 – VGMA3) × 2/7
0
0
0
1
0
1
06H
VH6
VGMA3 + (VGMA2 – VGMA3) × 1/7
0
0
0
1
1
0
07H
VH7
VGMA3
0
0
0
1
1
1
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VH8
VH9
VH10
VH11
VH12
VH13
VH14
VH15
VGMA4 + (VGMA3 – VGMA4) × 7/8
VGMA4 + (VGMA3 – VGMA4) × 6/8
VGMA4 + (VGMA3 – VGMA4) × 5/8
VGMA4 + (VGMA3 – VGMA4) × 4/8
VGMA4 + (VGMA3 – VGMA4) × 3/8
VGMA4 + (VGMA3 – VGMA4) × 2/8
VGMA4 + (VGMA3 – VGMA4) × 1/8
VGMA4
VH16
VH17
VH18
VH19
VH20
VH21
VH22
VH23
VGMA5 + (VGMA4 – VGMA5) × 7/8
VGMA5 + (VGMA4 – VGMA5) × 6/8
VGMA5 + (VGMA4 – VGMA5) × 5/8
VGMA5 + (VGMA4 – VGMA5) × 4/8
VGMA5 + (VGMA4 – VGMA5) × 3/8
VGMA5 + (VGMA4 – VGMA5) × 2/8
VGMA5 + (VGMA4 – VGMA5) × 1/8
VGMA5
VH24
VH25
VH26
VH27
VH28
VH29
VH30
VH31
VGMA6 + (VGMA5 – VGMA6) × 7/8
VGMA6 + (VGMA5 – VGMA6) × 6/8
VGMA6 + (VGMA5 – VGMA6) × 5/8
VGMA6 + (VGMA5 – VGMA6) × 4/8
VGMA6 + (VGMA5 – VGMA6) × 3/8
VGMA6 + (VGMA5 – VGMA6) × 2/8
VGMA6 + (VGMA5 – VGMA6) × 1/8
VGMA6
NOTE: VDD2≥VGMA1>VGMA2>VGMA3>VGMA4>VGMA5>VGMA6>VGMA7>VGMA8>VGMA9>VGMA10>VGMA11≥ VSS2
12
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
Table 3. Relationship between Input Data and Output Voltage Value (Continued)
Input data
G/S
Output voltage
DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
20H
VH32
0
0
0
0
1
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
21H
VH33
0
0
0
1
0
1
22H
VH34
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
0
1
1
1
23H
VH35
VGMA7 + (VGMA6 – VGMA7) × 7/8
24H
VH36
0
0
1
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
25H
VH37
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
0
1
1
26H
VH38
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
1
0
1
27H
VH39
VGMA7
0
0
1
1
1
1
1
0
1
0
0
0
VGMA8 + (VGMA7 – VGMA8) × 7/8
28H
VH40
1
0
1
0
0
1
VGMA8
+ (VGMA7 – VGMA8) × 6/8
29H
VH41
1
0
1
0
1
0
VGMA8 + (VGMA7 – VGMA8) × 5/8
2AH
VH42
1
0
1
0
1
1
2BH
VH43
VGMA8 + (VGMA7 – VGMA8) × 4/8
2CH
VH44
VGMA8 + (VGMA7 – VGMA8) × 3/8
1
0
1
1
0
0
2DH
VH45
VGMA8 + (VGMA7 – VGMA8) × 2/8
1
0
1
1
0
1
2EH
VH46
VGMA8 + (VGMA7 – VGMA8) × 1/8
1
0
1
1
1
0
2FH
VH47
VGMA8
1
0
1
1
1
1
1
1
0
0
0
0
VGMA9 + (VGMA8 – VGMA9) × 7/8
30H
VH48
1
1
0
0
0
1
VGMA9 + (VGMA8 – VGMA9) × 6/8
31H
VH49
1
1
0
0
1
0
VGMA9 + (VGMA8 – VGMA9) × 5/8
32H
VH50
1
1
0
0
1
1
33H
VH51
VGMA9 + (VGMA8 – VGMA9) × 4/8
34H
VH52
VGMA9 + (VGMA8 – VGMA9) × 3/8
1
1
0
1
0
0
35H
VH53
VGMA9 + (VGMA8 – VGMA9) × 2/8
1
1
0
1
0
1
36H
VH54
VGMA9 + (VGMA8 – VGMA9) × 1/8
1
1
0
1
1
0
37H
VH55
VGMA9
1
1
0
1
1
1
1
1
1
0
0
0
VGMA10 + (VGMA9 – VGMA10) × 6/7
38H
VH56
1
1
1
0
0
1
VGMA10 + (VGMA9 – VGMA10) × 5/7
39H
VH57
1
1
1
0
1
0
3AH
VH58
VGMA10 + (VGMA9 – VGMA10) × 4/7
1
1
1
0
1
1
3BH
VH59
VGMA10 + (VGMA9 – VGMA10) × 3/7
3CH
VH60
1
1
1
1
0
0
VGMA10 + (VGMA9 – VGMA10) × 2/7
3DH
VH61
VGMA10 + (VGMA9 – VGMA10) × 1/7
1
1
1
1
0
1
3EH
VH62
VGMA10
1
1
1
1
1
0
3FH
VH63
VGMA11
1
1
1
1
1
1
RGMA (Gamma-Corrected Resistance) Ratio. (if the RGMA2 equals 1)
RGMA1
-
RGMA6
0.42
RGMA2
1.00
RGMA7
0.33
RGMA3
1.39
RGMA8
0.42
RGMA4
0.75
RGMA9
0.71
RGMA5
RGMA1 = 4.62 kΩ
0.45
RGMA10
0.53
13
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
Table 4. Relationship between Input Data and Output Voltage Value:
In case of using 10 levels of Gamma-corrected power supplies (VGMA2 = OPEN)
G/S
Output voltage
Input data DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
0
VGMA3 + (VGMA2 – VGMA3) × 7/8
00H
VH0
0
0
0
0
0
1
VGMA3 + (VGMA2 – VGMA3) × 6/8
01H
VH1
0
0
0
0
1
0
02H
VH2
VGMA3 + (VGMA2 – VGMA3) × 5/8
0
0
0
0
1
1
03H
VH3
VGMA3 + (VGMA2 – VGMA3) × 4/8
04H
0
0
0
1
0
0
VH4
VGMA3 + (VGMA2 – VGMA3) × 3/8
05H
VH5
0
0
0
1
0
1
VGMA3 + (VGMA2 – VGMA3) × 2/8
06H
VH6
VGMA3 + (VGMA2 – VGMA3) × 1/8
0
0
0
1
1
0
07H
VH7
VGMA3
0
0
0
1
1
1
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VH8
VH9
VH10
VH11
VH12
VH13
VH14
VH15
VGMA4 + (VGMA3 – VGMA4) × 7/8
VGMA4 + (VGMA3 – VGMA4) × 6/8
VGMA4 + (VGMA3 – VGMA4) × 5/8
VGMA4 + (VGMA3 – VGMA4) × 4/8
VGMA4 + (VGMA3 – VGMA4) × 3/8
VGMA4 + (VGMA3 – VGMA4) × 2/8
VGMA4 + (VGMA3 – VGMA4) × 1/8
VGMA4
VH16
VH17
VH18
VH19
VH20
VH21
VH22
VH23
VGMA5 + (VGMA4 – VGMA5) × 7/8
VGMA5 + (VGMA4 – VGMA5) × 6/8
VGMA5 + (VGMA4 – VGMA5) × 5/8
VGMA5 + (VGMA4 – VGMA5) × 4/8
VGMA5 + (VGMA4 – VGMA5) × 3/8
VGMA5 + (VGMA4 – VGMA5) × 2/8
VGMA5 + (VGMA4 – VGMA5) × 1/8
VGMA5
VH24
VH25
VH26
VH27
VH28
VH29
VH30
VH31
VGMA6 + (VGMA5 – VGMA6) × 7/8
VGMA6 + (VGMA5 – VGMA6) × 6/8
VGMA6 + (VGMA5 – VGMA6) × 5/8
VGMA6 + (VGMA5 – VGMA6) × 4/8
VGMA6 + (VGMA5 – VGMA6) × 3/8
VGMA6 + (VGMA5 – VGMA6) × 2/8
VGMA6 + (VGMA5 – VGMA6) × 1/8
VGMA6
NOTE: VDD2≥VGMA1>VGMA2>VGMA3>VGMA4>VGMA5>VGMA6>VGMA7>VGMA8>VGMA9>VGMA10>VGMA11≥ VSS2
14
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
Table 4. Relationship between Input Data and Output Voltage Value (Continued)
Input data
G/S
Output voltage
DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
20H
VH32
0
0
0
0
1
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
21H
VH33
0
0
0
1
0
1
22H
VH34
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
0
1
1
1
23H
VH35
VGMA7 + (VGMA6 – VGMA7) × 7/8
24H
VH36
0
0
1
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
25H
VH37
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
0
1
1
26H
VH38
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
1
0
1
27H
VH39
VGMA7
0
0
1
1
1
1
1
0
1
0
0
0
VGMA8 + (VGMA7 – VGMA8) × 7/8
28H
VH40
1
0
1
0
0
1
VGMA8
+ (VGMA7 – VGMA8) × 6/8
29H
VH41
1
0
1
0
1
0
VGMA8 + (VGMA7 – VGMA8) × 5/8
2AH
VH42
1
0
1
0
1
1
2BH
VH43
VGMA8 + (VGMA7 – VGMA8) × 4/8
2CH
VH44
VGMA8 + (VGMA7 – VGMA8) × 3/8
1
0
1
1
0
0
2DH
VH45
VGMA8 + (VGMA7 – VGMA8) × 2/8
1
0
1
1
0
1
2EH
VH46
VGMA8 + (VGMA7 – VGMA8) × 1/8
1
0
1
1
1
0
2FH
VH47
VGMA8
1
0
1
1
1
1
1
1
0
0
0
0
VGMA9 + (VGMA8 – VGMA9) × 7/8
30H
VH48
1
1
0
0
0
1
VGMA9 + (VGMA8 – VGMA9) × 6/8
31H
VH49
1
1
0
0
1
0
VGMA9 + (VGMA8 – VGMA9) × 5/8
32H
VH50
1
1
0
0
1
1
33H
VH51
VGMA9 + (VGMA8 – VGMA9) × 4/8
34H
VH52
VGMA9 + (VGMA8 – VGMA9) × 3/8
1
1
0
1
0
0
35H
VH53
VGMA9 + (VGMA8 – VGMA9) × 2/8
1
1
0
1
0
1
36H
VH54
VGMA9 + (VGMA8 – VGMA9) × 1/8
1
1
0
1
1
0
37H
VH55
VGMA9
1
1
0
1
1
1
1
1
1
0
0
0
VGMA10 + (VGMA9 – VGMA10) × 6/7
38H
VH56
1
1
1
0
0
1
VGMA10 + (VGMA9 – VGMA10) × 5/7
39H
VH57
1
1
1
0
1
0
3AH
VH58
VGMA10 + (VGMA9 – VGMA10) × 4/7
1
1
1
0
1
1
3BH
VH59
VGMA10 + (VGMA9 – VGMA10) × 3/7
3CH
VH60
1
1
1
1
0
0
VGMA10 + (VGMA9 – VGMA10) × 2/7
3DH
VH61
VGMA10 + (VGMA9 – VGMA10) × 1/7
1
1
1
1
0
1
3EH
VH62
VGMA10
1
1
1
1
1
0
3FH
VH63
VGMA11
1
1
1
1
1
1
RGMA (Gamma-Corrected Resistance) Ratio. (if the sum of RGMA1 and RGMA2 equals 1)
RGMA1
RGMA2
1.00
RGMA6
0.37
RGMA7
0.29
RGMA3
1.21
RGMA8
0.37
RGMA4
0.66
RGMA9
0.62
RGMA5
RGMA1 + RGMA2 = 5.28 kΩ
0.39
RGMA10
0.46
15
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
Table 5. Relationship between Input Data and Output Voltage Value:
In case of using 9 levels of Gamma-corrected power supplies (VGMA2, VGMA10 = OPEN)
G/S
Output voltage
Input data DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
0
VGMA3 + (VGMA2 – VGMA3) × 7/8
00H
VH0
0
0
0
0
0
1
VGMA3 + (VGMA2 – VGMA3) × 6/8
01H
VH1
0
0
0
0
1
0
02H
VH2
VGMA3 + (VGMA2 – VGMA3) × 5/8
0
0
0
0
1
1
03H
VH3
VGMA3 + (VGMA2 – VGMA3) × 4/8
04H
0
0
0
1
0
0
VH4
VGMA3 + (VGMA2 – VGMA3) × 3/8
05H
VH5
0
0
0
1
0
1
VGMA3 + (VGMA2 – VGMA3) × 2/8
06H
VH6
VGMA3 + (VGMA2 – VGMA3) × 1/8
0
0
0
1
1
0
07H
VH7
VGMA3
0
0
0
1
1
1
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VH8
VH9
VH10
VH11
VH12
VH13
VH14
VH15
VGMA4 + (VGMA3 – VGMA4) × 7/8
VGMA4 + (VGMA3 – VGMA4) × 6/8
VGMA4 + (VGMA3 – VGMA4) × 5/8
VGMA4 + (VGMA3 – VGMA4) × 4/8
VGMA4 + (VGMA3 – VGMA4) × 3/8
VGMA4 + (VGMA3 – VGMA4) × 2/8
VGMA4 + (VGMA3 – VGMA4) × 1/8
VGMA4
VH16
VH17
VH18
VH19
VH20
VH21
VH22
VH23
VGMA5 + (VGMA4 – VGMA5) × 7/8
VGMA5 + (VGMA4 – VGMA5) × 6/8
VGMA5 + (VGMA4 – VGMA5) × 5/8
VGMA5 + (VGMA4 – VGMA5) × 4/8
VGMA5 + (VGMA4 – VGMA5) × 3/8
VGMA5 + (VGMA4 – VGMA5) × 2/8
VGMA5 + (VGMA4 – VGMA5) × 1/8
VGMA5
VH24
VH25
VH26
VH27
VH28
VH29
VH30
VH31
VGMA6 + (VGMA5 – VGMA6) × 7/8
VGMA6 + (VGMA5 – VGMA6) × 6/8
VGMA6 + (VGMA5 – VGMA6) × 5/8
VGMA6 + (VGMA5 – VGMA6) × 4/8
VGMA6 + (VGMA5 – VGMA6) × 3/8
VGMA6 + (VGMA5 – VGMA6) × 2/8
VGMA6 + (VGMA5 – VGMA6) × 1/8
VGMA6
NOTE: VDD2≥VGMA1>VGMA2>VGMA3>VGMA4>VGMA5>VGMA6>VGMA7>VGMA8>VGMA9>VGMA10>VGMA11≥ VSS2
16
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
Table 5. Relationship between Input Data and Output Voltage Value (Continued)
Input data
G/S
Output voltage
DX5 DX4 DX3 DX2 DX1 DX0
0
0
0
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
20H
VH32
0
0
0
0
1
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
21H
VH33
0
0
0
1
0
1
22H
VH34
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
0
1
1
1
23H
VH35
VGMA7 + (VGMA6 – VGMA7) × 7/8
24H
VH36
0
0
1
0
0
1
VGMA7 + (VGMA6 – VGMA7) × 7/8
25H
VH37
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
0
1
1
26H
VH38
VGMA7 + (VGMA6 – VGMA7) × 7/8
0
0
1
1
0
1
27H
VH39
VGMA7
0
0
1
1
1
1
1
0
1
0
0
0
VGMA8 + (VGMA7 – VGMA8) × 7/8
28H
VH40
1
0
1
0
0
1
VGMA8
+ (VGMA7 – VGMA8) × 6/8
29H
VH41
1
0
1
0
1
0
VGMA8 + (VGMA7 – VGMA8) × 5/8
2AH
VH42
1
0
1
0
1
1
2BH
VH43
VGMA8 + (VGMA7 – VGMA8) × 4/8
2CH
VH44
VGMA8 + (VGMA7 – VGMA8) × 3/8
1
0
1
1
0
0
2DH
VH45
VGMA8 + (VGMA7 – VGMA8) × 2/8
1
0
1
1
0
1
2EH
VH46
VGMA8 + (VGMA7 – VGMA8) × 1/8
1
0
1
1
1
0
2FH
VH47
VGMA8
1
0
1
1
1
1
1
1
0
0
0
0
VGMA9 + (VGMA8 – VGMA9) × 7/8
30H
VH48
1
1
0
0
0
1
VGMA9 + (VGMA8 – VGMA9) × 6/8
31H
VH49
1
1
0
0
1
0
VGMA9 + (VGMA8 – VGMA9) × 5/8
32H
VH50
1
1
0
0
1
1
33H
VH51
VGMA9 + (VGMA8 – VGMA9) × 4/8
34H
VH52
VGMA9 + (VGMA8 – VGMA9) × 3/8
1
1
0
1
0
0
35H
VH53
VGMA9 + (VGMA8 – VGMA9) × 2/8
1
1
0
1
0
1
36H
VH54
VGMA9 + (VGMA8 – VGMA9) × 1/8
1
1
0
1
1
0
37H
VH55
VGMA9
1
1
0
1
1
1
1
1
1
0
0
0
VGMA11 + (VGMA9 – VGMA11) × 7/8
38H
VH56
1
1
1
0
0
1
VGMA11
+ (VGMA9 – VGMA11) × 6/8
39H
VH57
1
1
1
0
1
0
3AH
VH58
VGMA11 + (VGMA9 – VGMA11) × 5/8
1
1
1
0
1
1
3BH
VH59
VGMA11 + (VGMA9 – VGMA11) × 4/8
3CH
VH60
VGMA11 + (VGMA9 – VGMA11) × 3/8
1
1
1
1
0
0
3DH
VH61
VGMA11 + (VGMA9 – VGMA11) × 2/8
1
1
1
1
0
1
3EH
VH62
VGMA11 + (VGMA9 – VGMA11) × 1/8
1
1
1
1
1
0
3FH
VH63
VGMA11
1
1
1
1
1
1
RGMA (Gamma-Corrected Resistance) Ratio. (if the sum of RGMA1 and RGMA2 equals 1)
RGMA1
RGMA2
1.00
RGMA6
0.37
RGMA7
0.29
0.37
RGMA3
1.21
RGMA8
RGMA4
0.66
RGMA9
RGMA5
RGMA1 + RGMA2 = 5.28 kΩ
0.39
RGMA10
0.71
17
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
ABSOLUTE MAXIMUM RATINGS
Table 6. Absolute Maximum Ratings (VSS1 = VSS2 = 0 V)
Parameter
Symbol
Ratings
Logic supply voltage
VDD1
-0.3 to 6.5
Driver supply voltage
VDD2
-0.3 to 6.5
VGMA1 - 10
-0.3 to VDD2 + 0.3
Others
-0.3 to VDD1 + 0.3
DIO1, 2
-0.3 to VDD1 + 0.3
Y1 - Y309
-0.3 to VDD2 + 0.3
Operation temperature
Topr
-20 to 75
Storage temperature
Tstg
-55 to 125
Input voltage
Output voltage
Unit
V
°C
CAUTIONS:
If LSIs are stressed beyond those listed above “absolute maximum ratings” , they may be permanently
destroyed. These are stress ratings only, and functional operation of the device at these or any other
condition beyond those indicated under “recommended operating conditions” is not implied. Exposure to
absolute maximum rated conditions for extended periods may affect device reliability.
Turn on power order: VDD1 → control signal input → VDD2 → VGMA1 - VGMA11
Turn off power order: VGMA1 - VGMA11 → VDD2 → control signal input → VDD1
RECOMMENDED OPERATION CONDITIONS
Table 7. Recommended Operation Conditions (Ta = -20 to 75 °C, VSS1 = VSS2 = 0 V)
18
Parameter
Symbol
Min.
Typ.
Max.
Unit
Logic supply voltage
VDD1
3.0
3.3
5.5
V
Driver supply voltage
VDD2
3.0
5.0
5.5
V
Gamma corrected voltage
VGMA1 – VGMA11
VSS2
-
VDD2
V
Maximum clock frequency
fmax
55
MHz
Output load capacitance
CL
150
pF / PIN
VDD1 = 3.3 V
-
-
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
DC CHARACTERISTICS
Table 8. DC Characteristics (Ta = -20 to 75 °C, VDD1 = 3.0 to 5.5 V, VDD2 = 3.0 to 5.5 V, VSS1 = VSS2 = 0 V)
Parameter
Symbol
High level input voltage
VIH
Condition
SHL, CLK2, D00 – D25,
CLK1, DIO1 (DIO2)
Min.
Typ.
Max.
0.7 VDD1
-
VDD1
0
-
0.3 VDD1
-0.5
-
0.5
Low level input voltage
VIL
Input leakage current
IL
High level output voltage
VOH
DIO1 (DIO2), VDD1=3.3V
IO = -1.0 mA
VDD1 - 0.5
-
-
Low level output voltage
VOL
DIO1 (DIO2), VDD1=3.3V
IO = +1.0 mA
-
-
0.5
Resistor
R0 - R62
Unit
V
µA
V
Rn × 0.7
Rn × 1.3
Ω
IVOH
VDD2 = 5.0 V,
Vx = 3.5 V, Vyo = 4.5 V
-
-1.5
-0.5
mA
IVOL
VDD2 = 5.0 V,
Vx = 1.5 V, Vyo = 0.5 V
0.5
0.5
-
mA
Output voltage deviation
∆VO
VSS2 + 0.2 V to
VDD2 - 1.5 V
-
±10
±20
mV
Output voltage range
Vyo
Input data: 00H to 3FH
VSS2 + 0.2
-
VDD2 - 0.2
V
Logic part dynamic
current
IDD1
VDD1 = 3.0 V (2)
-
3.5
5.5
mA
IDD2
VDD1 = 3.0 V,
VDD2 = 5.0 V,
VGMA1 = 4.5 V,
VGMA11 = 0.5 V
-
5.5
7.0
Driver output current
Driver part dynamic
current
NOTES:
1. Vyo is the output voltage of analog output pins Y1 to Y309. Vx is the voltage applied to analog output pins Y1 to Y309.
2. CLK1 period is defined to be 30 µs at fCLK2 = 30 MHz, data pattern = 101010 , (checkerboard pattern), Ta = 25 °C
19
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
AC CHARACTERISTICS
Table 9. AC Characteristics (Ta = -20 to 75 °C, VDD2 = 3.0 to 5.5 V, VDD1 = 3.0 to 5.5 V, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Clock pulse width
PWCLK
-
18
-
-
Clock pulse low period
PWCLK(L)
-
4
-
-
Clock pulse high period
PWCLK(H)
-
4
-
-
tSETUP1
(1)
4
-
-
Data hold time
tHOLD1
(1)
0
-
-
Start pulse setup time
tSETUP2
(1)
4
-
-
Start pulse hold time
tHOLD2
(1)
0
-
-
Start pulse delay time
tPLH1
VDD1 = 3.3 V
CL = 35 pF
-
-
14
CLK1 setup time
tSETUP3
-
1
-
-
Driver output delay time1
tPHL1
(2)
-
-
3
Driver output delay time2
tPHL2
(3)
-
-
10
CLK1 pulse high period
PWCLK1
-
2
-
-
Data invalid period
tINV
DIO1 (2) ↑ → CLK2↑
Last data timing
tLDT
-
0
-
-
ns
CLK1-CLK2 time
tCLK1–CLK2
CLK1↑ → CLK2↑
6
-
-
ns
Data setup time
ns
CLK2
period
µs
CLK2
period
CLK2
period
1
NOTES:
1. Input condition (VIH = 0.7 VDD1, VIL = 0.3 VDD1)
2. The value is specified when the drive voltage value reaches the target output voltage level of 90%
3. The value is specified when the drive voltage value reaches the target output voltage level of 6-bit accuracy.
20
Unit
CLK1
CLK2
DXX
CLK1
CLK2
Y(1:309)
CLK1
DIO2 output
(DIO1 output)
DIO1 input
(DIO2 input)
DXX
CLK2
tSETUP3
tSETUP2
INVALID DATA
PWCLK
1st
LAST
DATA
tHOLD1
PWCLK(L)
tSETUP1
0.5VDD1
tLDT
PWCLK1
tHOLD2
tSETUP1
1st
DATA
tINV
PWCLK(H)
Target output voltage
Target output voltage 90%
tPLH1
LAST-1 LAST
INVALID DATA
tPHL2
tCLK1-CLK2
tHOLD1
tPHL1
VIH
VIL
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
S6C0641
WAVEFORMS
Figure 5. Waveforms
21
22
Figure 6. Waveforms
Y (1:309)
CLK1
CLK2
DXX
CLK1
Last data
N-1th
DATA
1CLK2(Max.)
DIO1 input
(DIO2 input)
CLK2
Nth
DATA
0.5VDD1
Hold
HI-Z
blanking time = Min. 3CLK2
INVALID DATA
1CLK2(Min.)
First data in
the next line
2nd
DATA
Analog output
1st
DATA
1CLK2
S6C0641
6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
RELATIONSHIPS BETWEEN CLK1, START PULSE (DIO1, DIO2) AND
BLANKING PERIOD