www.fairchildsemi.com FSCQ-Series FSCQ0565RT / FSCQ0765RT / FSCQ0965RT / FSCQ1265RT FSCQ1465RT / FSCQ1565RT / FSCQ1565RP Green Mode Fairchild Power Switch (FPSTM) Features • Optimized for Quasi-Resonant Converter (QRC) • Advanced Burst-Mode Operation for under 1W Standby Power Consumption • Pulse-by-Pulse Current Limit • Over Load Protection (OLP) - Auto Restart • Over Voltage Protection (OVP) - Auto Restart • Abnormal Over Current Protection (AOCP) - Latch • Internal Thermal Shutdown (TSD) - Latch • Under Voltage Lock Out (UVLO) with Hysteresis • Low Startup Current (typical : 25uA) • Internal High Voltage SenseFET • Built-in Soft Start (20ms) • Extended Quasi-Resonant Switching OUTPUT POWER TABLE(3) 230VAC ±15%(2) PRODUCT Open Frame (1) 85-265VAC Open Frame(1) FSCQ0565RT 70W 60 W FSCQ0765RT 100 W 85 W FSCQ0965RT 130 W 110 W FSCQ1265RT 170 W 140 W FSCQ1465RT 190 W 160 W FSCQ1565RT 210 W 170 W FSCQ1565RP 250 W 210 W Table 1. Maximum Output Power Applications • CTV • Audio Amplifier Related Application Notes • AN4146 - Design Guidelines for Quasi-Resonant Converters Using FSCQ-Series Fairchild Power Switch. • AN4140 - Transformer Design Consideration for Off-Line Flyback Converters Using Fairchild Power Switch. Notes: 1. Maximum practical continuous power in an open frame design at 50°C ambient. 2. 230 VAC or 100/115 VAC with doubler. 3. The junction temperature can limit the maximum output power. Typical Circuit Description In general, a Quasi-Resonant Converter (QRC) shows lower EMI and higher power conversion efficiency compared to conventional hard-switched converter with a fixed switching frequency. Therefore, a QRC is well suited for noisesensitive applications, such as color TV and audio. Each product in the FSCQ-Series contains an integrated Pulse Width Modulation (PWM) controller and a SenseFET, and is specifically designed for quasi-resonant off-line Switch Mode Power Supplies (SMPS) with minimal external components. The PWM controller includes an integrated fixed frequency oscillator, under voltage lockout, leading edge blanking (LEB), optimized gate driver, internal soft start, temperature-compensated precise current sources for a loop compensation, and self protection circuitry. Compared with a discrete MOSFET and PWM controller solution, the FSCQSeries can reduce total cost, component count, size, and weight, while simultaneously increasing efficiency, productivity, and system reliability. These devices provide a basic platform that is well suited for cost-effective designs of quasi-resonant switching flyback converters. FPSTM is a trademark of Fairchild Semiconductor Corporation. ©2005 Fairchild Semiconductor Corporation Vo AC IN Drain FSCQ-Series PWM Sync GND VFB Vcc Figure 1. Typical Flyback Application Rev.1.1.0 FSCQ-SERIES Internal Block Diagram Sync 5 Vcc 3 Drain 1 + Threshold Quasi-Resonant (QR) Switching Controller - + fs 9V/15V - Soft Start 4.6V/2.6V : Normal QR 3.0V/1.8V : Extended QR Burst Mode Controller VBurst Normal Operation Vcc Auxiliary Vref OSC Burst Switching Vref Vref IBFB IFB Main Bias Normal Operation Vref Internal Bias IB Idelay VFB Vcc good PWM 4 2.5R S Q R Q Gate Driver R LEB 600ns VSD Sync Vovp S Vcc good (Vcc = 9V) R Q AOCP Q S Q R 2 GND Q TSD Vocp Power Off Reset (Vcc = 6V) Figure 2. Functional Block Diagram of FSCQ-Series 2 FSCQ-SERIES Pin Definitions Pin Number Pin Name 1 Drain 2 GND This pin is the control ground and the SenseFET source. Vcc This pin is the positive supply input. This pin provides internal operating current for both start-up and steady-state operation. Vfb This pin is internally connected to the inverting input of the PWM comparator. The collector of an opto-coupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and GND. If the voltage of this pin reaches 7.5V, the over load protection triggers, which results in the FPS shutting down. Sync This pin is internally connected to the sync detect comparator for quasiresonant switching. In normal quasi-resonant operation, the threshold of the sync comparator is 4.6V/2.6V. Whereas, the sync threshold is changed to 3.0V/1.8V in an extended quasi-resonant operation. 3 4 5 Pin Function Description High voltage power SenseFET drain connection. Pin Configuration TO-220F-5L 5.Sync 4.Vfb 3.Vcc 2.GND 1.Drain TO-3PF-7L 5.Sync 4.Vfb 3.Vcc 2.GND 1.Drain Figure 3. Pin Configuration (Top View) 3 FSCQ-SERIES Absolute Maximum Ratings (Ta=25°C, unless otherwise specified) Parameter Symbol Value Unit Drain Pin Voltage VDS 650 V Supply Voltage VCC 20 V Vsync -0.3 to 13V V VFB -0.3 to VCC V Analog Input Voltage Range Drain Current Pulsed (1) IDM Continuous Drain Current(Tc=25°C) (Tc : Case Back Surface Temperature) Continuous Drain Current * (TDL=25°C) (TDL :Drain Lead Temperature) Continuous Drain Current (TC=100°C) Single-Pulsed Avalanche Energy 4 (2) ID ID * ID EAS FSCQ0565RT 11.2 FSCQ0765RT 15.2 FSCQ0965RT 16.4 FSCQ1265RT 21.2 FSCQ1465RT 22 FSCQ1565RT 26.4 FSCQ1565RP 33.2 FSCQ0565RT 2.8 FSCQ0765RT 3.8 FSCQ0965RT 4.1 FSCQ1265RT 5.3 FSCQ1465RT 5.5 FSCQ1565RT 6.6 FSCQ1565RP 8.3 FSCQ0565RT 5 FSCQ0765RT 7 FSCQ0965RT 7.6 FSCQ1265RT 11 FSCQ1465RT 12 FSCQ1565RT 13.3 FSCQ1565RP 15 FSCQ0565RT 1.7 FSCQ0765RT 2.4 FSCQ0965RT 2.6 FSCQ1265RT 3.4 FSCQ1465RT 3.5 FSCQ1565RT 4.4 FSCQ1565RP 5.5 FSCQ0565RT 400 FSCQ0765RT 570 FSCQ0965RT 630 FSCQ1265RT 950 FSCQ1465RT 1000 FSCQ1565RT 1050 FSCQ1565RP 1050 A A (rms) A (rms) A (rms) mJ FSCQ-SERIES Total Power Dissipation (Tc=25°C with Infinite Heat Sink) PD FSCQ0565RT 38 FSCQ0765RT 45 FSCQ0965RT 49 FSCQ1265RT 50 FSCQ1465RT 60 FSCQ1565RT 75 FSCQ1565RP 98 W Operating Junction Temperature TJ +150 °C Operating Ambient Temperature TA -25 to +85 °C TSTG -55 to +150 °C ESD Capability, HBM Model (All pins except Vfb) - 2.0 (GND-Vfb=1.7kV) kV ESD Capability, Machine Model (All pins except Vfb) - 300 (GND-Vfb=170V) V Storage Temperature Range Notes: 1. Repetitive rating: Pulse width limited by maximum junction temperature 2. L = 15mH, starting Tj = 25°C, These parameters, although guaranteed at the design, are not tested in mass production. Thermal Impedance (Ta=25°C unless otherwise specified) Parameter Junction to Case Thermal Impedance Symbol θJC Value FSCQ0565RT 3.29 FSCQ0765RT 2.60 FSCQ0965RT 2.55 FSCQ1265RT 2.50 FSCQ1465RT 2.10 FSCQ1565RT 2.00 FSCQ1565RP 1.28 Unit °C/W 5 FSCQ-SERIES Electrical Characteristics (SenseFET Part) (Ta=25°C unless otherwise specified) Parameter Symbol Condition Min. Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250μA 650 - - V Zero Gate Voltage Drain Current IDSS VDS = 650V,VGS = 0V - - 250 μA FSCQ0565RT VGS = 10V, ID = 1A - 1.76 2.2 Ω FSCQ0765RT VGS = 10V, ID = 1A - 1.4 1.6 Ω FSCQ0965RT VGS = 10V, ID = 1A - 1.0 1.2 Ω RDS(ON) FSCQ1265RT VGS = 10V, ID = 1A - 0.75 0.9 Ω FSCQ1465RT VGS = 10V, ID = 1A - 0.7 0.8 Ω FSCQ1565RT VGS = 10V, ID = 1A - 0.53 0.7 Ω FSCQ1565RP VGS = 10V, ID = 1A - 0.53 0.7 Ω FSCQ0565RT - 1080 - FSCQ0765RT - 1415 - FSCQ0965RT - 1750 - VGS = 0V, VDS = 25V, FSCQ1265RT f = 1MHz - 2400 - FSCQ1465RT - 2400 - FSCQ1565RT - 3050 - FSCQ1565RP - 3050 - FSCQ0565RT - 90 - FSCQ0765RT - 100 - FSCQ0965RT - 130 - VGS = 0V, VDS = 25V, FSCQ1265RT f = 1MHz - 175 - FSCQ1465RT - 185 - FSCQ1565RT - 220 - FSCQ1565RP - 220 - Drain-Source ON-State Resistance Input Capacitance Output Capacitance 6 CISS COSS Typ. Max. Unit pF pF FSCQ-SERIES Electrical Characteristics (Continued) (Ta=25°C unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Unit CONTROL SECTION Switching Frequency FOSC (1) Switching Frequency Variation ΔFOSC VFB = 5V, VCC = 18V 18 20 22 kHz -25°C ≤ Ta ≤ 85°C 0 ±5 ±10 % VFB = 0.8V, VCC = 18V 0.5 0.65 0.8 mA Maximum Duty Cycle DMAX VFB = 5V, VCC = 18V 92 95 98 % Minimum Duty Cycle DMIN VFB = 0V, VCC = 18V - 0 - % Feedback Source Current IFB UVLO Threshold Voltage (1) VSTART VFB=1V 14 15 16 V VSTOP VFB=1V 8 9 10 V TSS - 18 20 22 ms Burst Mode Enable Feedback Voltage VBEN - 0.25 0.40 0.55 V Burst Mode Feedback Source Current IBFB VFB = 0V 60 100 140 uA Burst Mode Switching Time TBS VFB = 0.9V, Duty =50% 1.2 1.4 1.6 ms Burst Mode Hold Time TBH VFB = 0.9V -> 0V 1.2 1.4 1.6 ms VSD VCC = 18V 7.0 7.5 8.0 V Soft Start Time BURST MODE SECTION PROTECTION SECTION Shutdown Feedback Voltage Shutdown Delay Current Over Voltage Protection Over Current Latch Voltage (1) Thermal Shutdown Temp (2) IDELAY VFB = 5V, VCC = 18V 4 5 6 μA VOVP VFB = 3V 11 12 13 V VOCL VCC = 18V 0.9 1.0 1.1 V 140 - - °C TSD - Note: 1. These parameters, although guaranteed, are tested only in EDS (wafer test) process. 2. These parameters, although guaranteed at the design, are not tested in mass production. 7 FSCQ-SERIES Electrical Characteristics (Continued) (Ta=25°C unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Unit Sync SECTION Sync Threshold in Normal QR (H) VSH1 4.2 4.6 5.0 V Sync Threshold in Normal QR (L) VSL1 2.3 2.6 2.9 V Sync Threshold in Extended QR (H) VSH2 2.7 3.0 3.3 V Sync Threshold in Extended QR (L) VSL2 1.6 1.8 2.0 V Extended QR Enable Frequency FSYH - 90 - kHz Extended QR Disable Frequency FSYL - 45 - kHz FSCQ0565RT - 4 6 FSCQ0765RT - 4 6 FSCQ0965RT - 6 8 - 6 8 FSCQ1465RT - 7 9 FSCQ1565RT - 7 9 FSCQ1565RP - 7 9 VFB = GND - 0.25 0.50 mA ISTART VCC = VSTART-0.1V - 25 50 uA ISN VCC = VSTOP-0.1V - 50 100 uA FSCQ0565RT 3.08 3.5 3.92 FSCQ0765RT 4.4 5 5.6 FSCQ0965RT 5.28 6.0 6.72 VCC = 18V, VFB = 5V TOTAL DEVICE SECTION Operating Supply Current (1) - In Normal Operation IOP - In Burst Mode (Non-switching) FSCQ1265RT IOB Startup Current (3) Sustain Latch Current VFB = 5V mA CURRENT SENSE SECTION Maximum Current Limit (2) ILIM 6.16 7 7.84 FSCQ1465RT 7.04 8.0 8.96 FSCQ1565RT 7.04 8 8.96 FSCQ1265RT VCC = 18V, VFB = 5V FSCQ1565RP Burst Peak Current 8 10.12 11.5 12.88 FSCQ0565RT 0.45 0.65 0.85 FSCQ0765RT FSCQ0965RT 0.65 0.9 1.15 0.6 0.9 1.2 IBUR(pk) FSCQ1265RT VCC = 18V, VFB = Pulse 0.8 1.2 1.6 FSCQ1465RT 0.6 0.9 1.2 FSCQ1565RT - 1 - FSCQ1565RP - 1 - Note: 1. This parameter is the current flowing in the control IC. 2. These parameters indicate inductor current. 3. These parameters, although guaranteed, are tested only in EDS (wafer test) process. A A FSCQ-SERIES Electrical Characteristics Burst-mode Supply Current( Non-Switching) Operating Supply Current 1.4 Normalized to 25℃ Normalized to 25℃ 1.2 1.0 0.8 -50 0 50 100 1.2 1.0 0.8 0.6 -50 150 0 50 Temp[℃ ] Start-Up Current Normalized to 25℃ Normalized to 25℃ 1.10 1.2 1.0 0.8 0 50 Temp[℃] 100 1.05 1.00 0.95 0.90 -50 0.6 150 0 100 150 100 150 Initial Frequency Stop Threshold Voltage 1.10 Normalized to 25℃ Normalized to 25℃ 50 Temp[℃] 1.10 1.05 1.00 0.95 0.90 -50 150 Start Threshold Voltage 1.4 -50 100 Temp[℃ ] 0 50 Temp[℃] 100 150 1.05 1.00 0.95 0.90 -50 0 50 Temp[℃] 9 FSCQ-SERIES Electrical Characteristics Maximum Duty Cycle Over Voltage Protection 1.10 Normalized to 25℃ Normalized to 25℃ 1.10 1.05 1.00 0.95 0.90 -50 0 50 100 1.05 1.00 0.95 0.90 -50 150 0 Normalized to 25℃ Normalized to 25℃ 1.0 0.9 0 50 100 1.05 1.00 0.95 0.90 -50 150 0 Feedback Source Current 100 150 Burst_mode Feedback Source Current 1.2 Normalized to 25℃ 1.2 Normalized to 25℃ 50 Temp[℃] Temp[℃] 10 150 1.10 1.1 1.1 1.0 0.9 0.8 -50 100 Shutdown Feedback Voltage Shutdown Delay Current 1.2 0.8 -50 50 Temp[℃] Temp[℃] 0 50 Temp[℃ ] 100 150 1.1 1.0 0.9 0.8 -50 0 50 Temp[℃] 100 150 FSCQ-SERIES Electrical Characteristics Feedback Offset Voltage Burst_Mode Enable Feedback Voltage 1.4 1.2 Normalized to 25℃ Normalized to 25℃ 1.4 1.0 0.8 0.6 -50 0 50 Temp[ ℃ ] 100 1.2 1.0 0.8 0.6 -50 150 Sync. Threshold in Normal QR(H) Normalized to 25℃ Normalized to 25℃ 150 Sync. Threshold in Normal QR(L) 1.00 0.95 0 50 100 1.05 1.00 0.95 0.90 -50 150 0 Temp[℃] 50 100 150 Temp[℃] Sync. Threshold in Extended QR(L) Sync. Threshold in Extended QR(H) 1.10 1.10 Normalized to 25℃ Normalized to 25℃ 100 1.10 1.05 1.05 1.00 0.95 0.90 -50 50 Temp[℃] 1.10 0.90 -50 0 0 50 Temp[℃] 100 150 1.05 1.00 0.95 0.90 -50 0 50 100 150 Temp[℃ ] 11 FSCQ-SERIES Electrical Characteristics E x ten d ed Q R D isa b le F req u en c y 1 .1 0 1.05 1 .0 5 Normalized to 25℃ Normalized to 25℃ Extended QR Enable Freqency 1.10 1.00 0.95 0.90 -50 0 50 100 150 Normalized to 25℃ P u lse-b y-p u lse C u rren t L im it 1 .0 5 1 .0 0 0 .9 5 0 .9 0 -5 0 0 50 T em p [℃ ] 12 0 .9 5 0 .9 0 -5 0 0 50 T em p [℃ ] Temp[℃] 1 .1 0 1 .0 0 100 150 100 150 FSCQ-SERIES Functional Description 1. Startup: Figure 4 shows the typical startup circuit and the transformer auxiliary winding for the FSCQ-Series. Before the FSCQ-Series begins switching, it consumes only startup current (typically 25uA). The current supplied from the AC line charges the external capacitor (Ca1) that is connected to the Vcc pin. When Vcc reaches the start voltage of 15V (VSTART), the FSCQ-Series begins switching, and its current consumption increases to IOP. Then, the FSCQSeries continues its normal switching operation and the power required for the FSCQ-Series is supplied from the transformer auxiliary winding, unless Vcc drops below the stop voltage of 9V (VSTOP). To guarantee the stable operation of the control IC, Vcc has under voltage lockout (UVLO) with 6V hysteresis. Figure 5 shows the relationship between the operating supply current of the FSCQ-Series and the supply voltage (Vcc). The minimum average of the current supplied from the AC is given by min I sup avg V start⎞ 1 ⎛ 2 ⋅ V ac = ⎜ ------------------------------ – --------------⎟ ⋅ ---------2 ⎠ R str π ⎝ where Vacmin is the minimum input voltage, Vstart is the FSCQ-Series start voltage (15V), and Rstr is the startup resistor. The startup resistor should be chosen so that Isupavg is larger than the maximum startup current (50uA). Once the resistor value is determined, the maximum loss in the startup resistor is obtained as max 2 max 2 ) + V start 2 2 ⋅ V start ⋅ V ac ⎞ 1 ⎛ ( V ac Loss = ---------- ⋅ ⎜ --------------------------------------------------- – ------------------------------------------------------⎟ R str ⎝ 2 π ⎠ where Vacmax is the maximum input voltage. The startup resistor should have properly-rated dissipation wattage. 2. Synchronization: The FSCQ-Series employs a quasiresonant switching technique to minimize the switching noise and loss. In this technique, a capacitor (Cr) is added between the MOSFET drain and the source as shown in Figure 6. The basic waveforms of the quasi-resonant converter are shown in Figure 7. The external capacitor lowers the rising slope of the drain voltage to reduce the EMI caused when the MOSFET turns off. To minimize the MOSFET’s switching loss, the MOSFET should be turned on when the drain voltage reaches its minimum value as shown in Figure 7. C DC 1N4007 AC line (V acmin - V acmax ) Isup Rstr Da Vcc FSCQ-Series C a2 C a1 C DC + V DC - Np Ns Lm Vo Figure 4. Startup circuit Drain Icc Cr Ids Sync IOP Value FSCQ0565RT : 4mA (Typ.) FSCQ0765RT : 4mA (Typ.) FSCQ0965RT : 6mA (Typ.) FSCQ1265RT : 6mA (Typ.) FSCQ1465RT : 7mA (Typ.) FSCQ1565RT : 7mA (Typ.) FSCQ1565RP : 7mA (Typ.) + V ds - GND V co V cc Da R cc C a1 C a2 Na D SY IOP R SY1 Power Down Power Up C SY ISTART R SY2 Vcc Vstop=9V Vstart=15V Vz Figure 6. Synchronization Circuit Figure 5. Relationship Between Operating Supply Current and Vcc Voltage 13 FSCQ-SERIES Vds MOSFET Off MOSFET On 2V R O Vgs TQ VRO VRO Vd Vs ync V sypk s VDC Vrh (4.6V) Vrf (2.6V) TR Ids Ipk Figure 7. Quasi-resonant Operation Waveforms MOS FET Gate ON ON Figure 8. Normal Quasi-Resonant Operation Waveforms The minimum drain voltage is indirectly detected by monitoring the Vcc winding voltage as shown in Figure 6 and 8. Choose voltage dividers, RSY1 and RSY2, so that the peak voltage of the sync signal (Vsypk) is lower than the OVP voltage (12V) to avoid triggering OVP in normal operation. It is typical to set Vsypk to be lower than OVP voltage by 3-4 V. To detect the optimum time to turn on MOSFET, the sync capacitor (CSY) should be determined so that TR is the same with TQ as shown in Figure 8. The TR and TQ are given as, respectively Switching frequency Extended QR operation 90kHz Normal QR operation 45kHz TR R SY2 V co = R SY2 ⋅ C SY ⋅ ln ⎛ --------- ⋅ -----------------------------------⎞ ⎝ 2.6 R SY1 + R SY2⎠ T Q = π ⋅ L m ⋅ C eo N a ⋅ ( V o + V FO ) V co = ----------------------------------------- – V Fa Ns where Lm is the primary side inductance of the transformer, and Ns and Na are the number of turns for the output winding and Vcc winding, respectively, VFo and VFa are the diode forward voltage drops of the output winding and Vcc winding, respectively, and Ceo is the sum of the output capacitance of the MOSFET and the external capacitor, Cr. 14 Output power Figure 9. Extended Quasi-Resonant Operation In general, the QRC has a limitation in a wide load range application, since the switching frequency increases as the output load decreases, resulting in a severe switching loss in the light load condition. To overcome this limitation, the FSCQ-Series employs an extended quasi-resonant switching operation. Figure 9 shows the mode change between normal and extended quasi-resonant operations. In the normal quasiresonant operation, the FSCQ-Series enters into the extended quasi-resonant operation when the switching frequency exceeds 90kHz as the load reduces. To reduce the switching frequency, the MOSFET is turned on when the drain voltage reaches the second minimum level, as shown in Figure 10. FSCQ-SERIES Once the FSCQ-Series enters into the extended quasiresonant operation, the first sync signal is ignored. After the first sync signal is applied, the sync threshold levels are changed from 4.6V and 2.6V to 3V and 1.8V, respectively, and the MOSFET turn-on time is synchronized to the second sync signal. The FSCQ-Series returns to its normal quasiresonant operation when the switching frequency reaches 45kHz as the load increases. Vds 3.2 Leading Edge Blanking (LEB) : At the instant the internal Sense FET is turned on, there is usually a high current spike through the Sense FET, caused by the external resonant capacitor across the MOSFET and secondary-side rectifier reverse recovery. Excessive voltage across the Rsense resistor can lead to incorrect feedback operation in the current mode PWM control. To counter this effect, the FSCQ-Series employs a leading edge blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (TLEB) after the Sense FET is turned on. 2VRO Vcc Vref Idelay IFB Vfb Vo 4 H11A817A SenseFET OSC D1 CB D2 2.5R Vsync + Vfb* KA431 Gate driver R - 4.6V 3V 2.6V 1.8V VSD OLP Rsense MOSFET Gate Figure 11. Pulse Width Modulation (PWM) Circuit ON ON Figure 10. Extended Quasi-Resonant Operation Waveforms 3. Feedback Control: The FSCQ-Series employs current mode control, as shown in Figure 11. An opto-coupler (such as Fairchild’s H11A817A) and shunt regulator (such as Fairchild’s KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor plus an offset voltage makes it possible to control the switching duty cycle. When the reference pin voltage of the KA431 exceeds the internal reference voltage of 2.5V, the H11A817A LED current increases, pulling down the feedback voltage and reducing the duty cycle. This event typically happens when the input voltage is increased or the output load is decreased. 3.1 Pulse-by-Pulse Current Limit: Because current mode control is employed, the peak current through the SenseFET is limited by the inverting input of the PWM comparator (Vfb*) as shown in Figure 11. The feedback current (IFB) and internal resistors are designed so that the maximum cathode voltage of diode D2 is about 2.8V, which occurs when all IFB flows through the internal resistors. Since D1 is blocked when the feedback voltage (Vfb) exceeds 2.8V, the maximum voltage of the cathode of D2 is clamped at this voltage, thus clamping Vfb*. Therefore, the peak value of the current through the SenseFET is limited. 4. Protection Circuits: The FSCQ-Series has several selfprotective functions such as over load protection (OLP), abnormal over current protection (AOCP), over voltage protection (OVP), and thermal shutdown (TSD). OLP and OVP are auto-restart mode protections, while TSD and AOCP are latch mode protections. Because these protection circuits are fully integrated into the IC without external components, the reliability can be improved without increasing cost. -Auto-restart mode protection: Once the fault condition is detected, switching is terminated and the SenseFET remains off. This causes Vcc to fall. When Vcc falls to the under voltage lockout (UVLO) stop voltage of 9V, the protection is reset and the FSCQ-Series consumes only startup current (25uA). Then, the Vcc capacitor is charged up, since the current supplied through the startup resistor is larger than the current that the FPS consumes. When Vcc reaches the start voltage of 15V, the FSCQ-Series resumes its normal operation. If the fault condition is not removed, the SenseFET remains off and Vcc drops to stop voltage again. In this manner, the auto-restart can alternately enable and disable the switching of the power SenseFET until the fault condition is eliminated (see Figure 12). -Latch mode protection: Once this protection is triggered, switching is terminated and the Sense FET remains off until the AC power line is un-plugged. Then, Vcc continues charging and discharging between 9V and 15V. The latch is reset only when Vcc is discharged to 6V by un-plugging the 15 FSCQ-SERIES AC power line. V FB Vds Fault occurs Power on Over load protection 7.5V Fault removed 2.8V Vcc T12= CB*(7.5-2.8)/Idelay 15V T1 9V t Figure 13. Over Load Protection ISTART t Normal operation Fault situation Normal operation Figure 12. Auto Restart Mode Protection 4.1 Over Load Protection (OLP): Overload is defined as the load current exceeding its normal level due to an unexpected abnormal event. In this situation, the protection circuit should trigger to protect the SMPS. However, even when the SMPS is in the normal operation, the over load protection circuit can be triggered during the load transition. To avoid this undesired operation, the over load protection circuit is designed to trigger after a specified time to determine whether it is a transient situation or an overload situation. Because of the pulse-by-pulse current limit capability, the maximum peak current through the SenseFET is limited, and therefore the maximum input power is restricted with a given input voltage. If the output consumes more than this maximum power, the output voltage (Vo) decreases below the set voltage. This reduces the current through the opto-coupler LED, which also reduces the optocoupler transistor current, thus increasing the feedback voltage (Vfb). If Vfb exceeds 2.8V, D1 is blocked, and the 5uA current source starts to charge CB slowly up to Vcc. In this condition, Vfb continues increasing until it reaches 7.5V, then the switching operation is terminated as shown in Figure 13. The delay time for shutdown is the time required to charge CB from 2.8V to 7.5V with 5uA. In general, a 20 ~ 50 ms delay time is typical for most applications. OLP is implemented in auto restart mode. 2.5R OSC PWM R S Q R Q Gate Driver LEB Rsense 2 AOCP - IOP 4.2 Abnormal Over Current Protection (AOCP): When the secondary rectifier diodes or the transformer pins are shorted, a steep current with extremely high di/dt can flow through the SenseFET during the LEB time. Even though the FSCQ-Series has OLP (Over Load Protection), it is not enough to protect the FSCQ-Series in that abnormal case, since severe current stress will be imposed on the SenseFET until the OLP triggers. The FSCQ-Series has an internal AOCP (Abnormal Over Current Protection) circuit as shown in Figure 14. When the gate turn-on signal is applied to the power SenseFET, the AOCP block is enabled and monitors the current through the sensing resistor. The voltage across the resistor is then compared with a preset AOCP level. If the sensing resistor voltage is greater than the AOCP level, the set signal is applied to the latch, resulting in the shutdown of SMPS. This protection is implemented in the latch mode. + ICC 16 T2 Vaocp GND Figure 14. AOCP Block 4.3 Over Voltage Protection (OVP) : If the secondary side feedback circuit malfunctions or a solder defect causes an open in the feedback path, the current through the optocoupler transistor becomes almost zero. Then, Vfb climbs up in a similar manner to the over load situation, forcing the FSCQ-SERIES preset maximum current to be supplied to the SMPS until the over load protection triggers. Because more energy than required is provided to the output, the output voltage may exceed the rated voltage before the over load protection triggers, resulting in the breakdown of the devices in the secondary side. In order to prevent this situation, an over voltage protection (OVP) circuit is employed. In general, the peak voltage of the sync signal is proportional to the output voltage and the FSCQ-Series uses a sync signal instead of directly monitoring the output voltage. If the sync signal exceeds 12V, an OVP is triggered resulting in a shutdown of SMPS. In order to avoid undesired triggering of OVP during normal operation, the peak voltage of the sync signal should be designed to be below 12V. This protection is implemented in the auto restart mode. In the standby mode, the picture ON signal is disabled and the transistor Q1 is turned off, which couples R3, Dz, and D1 to the reference pin of KA431. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming that the forward voltage drop of D1 is 0.7V, Vo2 in standby mode is approximately given by V o2 stby = V Z + 0.7 + 2.5 VO2 Linear Regulator VO1 (B+) RD 4.4 Thermal Shutdown (TSD) : The SenseFET and the control IC are built in one package. This makes it easy for the control IC to detect abnormal over temperature of the SenseFET. When the temperature exceeds approximately 150°C, the thermal shutdown triggers. This protection is implemented in the latch mode. 5. Soft Start : The FSCQ-Series has an internal soft-start circuit that increases PWM comparator’s inverting input voltage together with the SenseFET current slowly after it starts up. The typical soft start time is 20msec. The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, inductors, and capacitors. Increasing the pulse width to the power switching device also helps prevent transformer saturation and reduces the stress on the secondary diode during startup. For a fast build up of the output voltage, an offset is introduced in the soft-start reference current. 6. Burst Operation : In order to minimize the power consumption in the standby mode, the FSCQ-Series employs burst operation. Once FSCQ-Series enters into the burst mode, FSCQ-Series allows all output voltages and effective switching frequency to be reduced. Figure 15 shows the typical feedback circuit for C-TV applications. In normal operation, the picture on signal is applied and the transistor Q1 is turned on, which de-couples R3, Dz and D1 from the feedback network. Therefore, only Vo1 is regulated by the feedback circuit in normal operation and determined by R1 and R2 as V o1 norm R1 + R2 = 2.5 ⋅ ⎛ ---------------------⎞ ⎝ R2 ⎠ Dz Rbias R1 CF C KA431 A Micom RF D1 R3 Q1 Picture ON R R2 Figure 15. Typical Feedback Circuit to Drop Output Voltage in Standby Mode Figure 17 shows the burst mode operation waveforms. When the picture ON signal is disabled, Q1 is turned off and R3 and Dz are connected to the reference pin of KA431 through D1. Before Vo2 drops to Vo2stby, the voltage on the reference pin of KA431 is higher than 2.5V, which increases the current through the opto LED. This pulls down the feedback voltage (VFB) of FSCQ-Series and forces FSCQ-Series to stop switching. If the switching is disabled longer than 1.4ms, FSCQ-Series enters into burst operation and the operating current is reduced from IOP to 0.25mA (IOB). Since there is no switching, Vo2 decreases until it reaches Vo2stby. As Vo2 reaches Vo2stby, the current through the opto LED decreases allowing the feedback voltage to rise. When the feedback voltage reaches 0.4V, FSCQ-Series resumes switching with a predetermined peak drain current of 0.9A. After burst switching for 1.4ms, FSCQ-Series stops switching and checks the feedback voltage. If the feedback voltage is below 0.4V, FSCQ-Series stops switching until the feedback voltage increases to 0.4V. If the feedback voltage is above 0.4V, FSCQ-Series goes back to the normal operation. The output voltage drop circuit can be implemented alternatively as shown in Figure 16. In the circuit of Figure 16, the FSCQ-Series goes into burst mode, when picture off signal is applied to Q1. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming that the forward 17 FSCQ-SERIES voltage drop of opto LED is 1V, the approcimate value of Vo2 in standby mode is given by V o2 stby = VZ + 1 VO2 Linear Regulator RD VO1 (B+) Rbias CF C Micom RF R1 R KA431 R2 A Dz Q1 Picture OFF Figure 16. Feedback Circuit to Drop Output Voltage in Standby Mode 18 FSCQ-SERIES (a) (b) (c) V o2 norm V o2 stby V FB 0.4V Iop I OP I OB Vds Picture On Picture On Picture Off Burst Mode 0.4V 0.4V 0.3V V FB 0.4V V ds 1.4ms Ids 1.4ms 0.9A 1.4ms 0.9A (a) Mode Change to Burst Operation (b) Burst Operation (c) Mode Change to Normal Operation Figure 17. Burst Operation Waveforms 19 FSCQ-SERIES FSCQ0565RT Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 12V (0.5A) C-TV 59W Universal Input 18V (0.3A) (90-270Vac) 125V (0.3A) 24V (0.4A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER3540 RT101 5D-9 C102 220uF 400V BD101 1 3 ZD101 18V 1W 11 R106 C104 1.5kΩ 10uF 1W 50V 1 Drain SYNC 3 Vcc IC101 FSCQ0565RT GND 2 C103 10uF 50V D102 1N4937 C107 680pF 1kV C106 47nF 50V C210 470pF 1kV 18V, 0.3A 13 12 D103 1N4148 R105 470Ω 0.25W R104 D101 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 14 15 16 C105 3.9nF 50V 125V, 0.3A L201 C201 BEAD 100uF 160V C207 470pF 1kV C202 47uF 160V D203 EGP20D 7 LF101 24V, 0.4A 17 18 OPTO101 FOD817A C203 1000uF 35V C208 470pF 1kV VR201 30kΩ R205 220kΩ 0.25W R201 1kΩ 0.25W FUSE 250V 2.0A R208 1kΩ 0.25W ZD201 C206 22nF 50V C301 2.2nF Q201 KA431 Normal ZD202 5.1V 0.5W R202 1kΩ 0.25W C101 330nF 275VAC 20 C205 1000uF 35V C209 470pF 1kV D202 EGP20J 5 FB 4 C204 1000uF 35V D204 EGP20D 4 D104 UF4007 12V, 0.5A 10 BEAD101 R102 150kΩ 0.25W R101 100kΩ 0.25W D205 EGP20D R203 39kΩ 0.25W R204 4.7kΩ 0.25W D201 Q202 KSC945 SW201 R207 5.1kΩ 0.25W R206 5.1kΩ 0.25W Standby FSCQ-SERIES 2. Transformer Schematic Diagram EER3540 N p1 1 18 2 17 Na 3 16 N18V 4 15 5 14 N 24V N p2 N 125V/2 N125V/2 Np2 N 125V/2 N12V 13 6 N24V N 12V Na 7 12 N125V/2 8 11 Np1 9 10 N 18V 3.Winding Specification No Np1 N125V/2 Pin (s→f) 1-3 16 - 15 Wire Turns Winding Method 0.5 × 1 32 Center Winding 0.5φ ×1 32 Center Winding φ φ N24V 18 - 17 0.4 × 2 13 Center Winding N12V 12 - 13 0.5φ × 2 7 Center Winding 0.5φ ×1 32 Center Winding 0.5 × 1 32 Center Winding 0.4 × 2 10 Center Winding 0.3φ 20 Center Winding Np2 N125V/2 N18V Na 3-4 15 - 14 11 - 10 7-6 φ φ ×1 4.Electrical Characteristics Inductance Leakage Inductance Pin Specification 1-3 740uH ± 5% 1-3 10uH Max Remarks 1kHz, 1V 2 nd all short 5. Core & Bobbin Core : EER3540 Bobbin : EER3540 Ae : 107 mm2 21 FSCQ-SERIES 6.Demo Circuit Part List Part Value Note Fuse FUSE 250V / 2A Part Value Note C210 470pF / 1kV Ceramic Capacitor C301 2.2nF / 1kV AC Ceramic Capacitor NTC RT101 Inductor 5D-9 Resistor R101 100kΩ BEAD101 BEAD BEAD201 5uH 3A 0.25 W Diode R102 150kΩ 0.25 W D101 1N4937 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1.5kΩ 1W D105 Open R107 Open ZD101 1N4746 R201 1kΩ 0.25 W ZD102 Open R202 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W R203 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP20J 2A, 600V R205 220kΩ 0.25 W, 1% D203 EGP20D 2A, 200V R206 5.1kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ C101 330n/275VAC Box Capacitor C102 220uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 3.9nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 680pF / 1kV Film Capacitor C108 Open C201 100uF / 160V Bridge Diode Capacitor 22 18V, 1W BD101 Electrolytic GSIB660 6A, 600V Line Filter LF101 14mH Transformer T101 EER3540 SW201 ON/OFF Switch For MCU Signal IC IC101 FSCQ0565RT OPT101 FOD817A C202 47uF / 160V Electrolytic Q201 KA431LZ C203 1000uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 22nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 FSCQ-SERIES FSCQ0765RT Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 12V (1A) C-TV 83W Universal input 18V (0.5A) (90-270Vac) 125V (0.4A) 24V (0.5A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER3540 RT101 5D-9 C102 220uF 400V BD101 1 3 ZD101 18V 1W 11 R106 C104 1.5kΩ 10uF 1W 50V 1 Drain SYNC 3 Vcc IC101 FSCQ0765RT GND 2 C103 10uF 50V D102 1N4937 C107 1nF 1kV C106 47nF 50V C210 470pF 1kV 18V, 0.5A 13 12 C205 1000uF 35V C209 470pF 1kV D202 EGP20J 5 FB 4 C204 1000uF 35V D204 EGP20D 4 D104 UF4007 12V, 1.0A 10 BEAD101 R102 150kΩ 0.25W R101 100kΩ 0.25W D205 EGP20D D103 1N4148 R105 470Ω 0.25W R104 D101 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 14 15 16 C105 3.9nF 50V 125V, 0.4A L201 C201 BEAD 100uF 160V C207 470pF 1kV C202 47uF 160V D203 EGP20D 7 LF101 18 OPTO101 FOD817A 24V, 0.5A 17 C203 1000uF 35V C208 470pF 1kV VR201 30kΩ R205 220kΩ 0.25W R201 1kΩ 0.25W FUSE 250V 2.0A R208 1kΩ 0.25W ZD201 C206 22nF 50V C301 2.2nF Q201 KA431 Normal ZD202 5.1V 0.5W R202 1kΩ 0.25W C101 330nF 275VAC R203 39kΩ 0.25W R204 4.7kΩ 0.25W D201 Q202 KSC945 SW201 R207 5.1kΩ 0.25W Standby R206 5.1kΩ 0.25W 23 FSCQ-SERIES 2. Transformer Schematic Diagram EER3540 N p1 1 18 2 17 Na 3 16 N18V 4 15 5 14 N 24V N p2 N 125V/2 N125V/2 Np2 N 125V/2 N12V 13 6 N24V N 12V Na 7 12 N125V/2 8 11 Np1 9 10 N 18V 3.Winding Specification No Np1 N125V/2 Pin (s→f) 1-3 16 - 15 Wire Turns Winding Method 0.5 × 1 32 Center Winding 0.5φ ×1 32 Center Winding φ φ N24V 18 - 17 0.4 × 2 13 Center Winding N12V 12 - 13 0.5φ × 2 7 Center Winding 0.5φ ×1 32 Center Winding 0.5 × 1 32 Center Winding 0.4 × 2 10 Center Winding 0.3φ 20 Center Winding Np2 N125V/2 N18V Na 3-4 15 - 14 11 - 10 7-6 φ φ ×1 4.Electrical Characteristics Inductance Leakage Inductance 5. Core & Bobbin Core : EER3540 Bobbin : EER3540 Ae : 107 mm2 24 Pin Specification 1-3 515uH ± 5% 1-3 10uH Max Remarks 1kHz, 1V 2 nd all short FSCQ-SERIES 6.Demo Circuit Part List Part Value Note Fuse FUSE 250V / 2A Part Value Note C210 470pF / 1kV Ceramic Capacitor C301 2.2nF / 1kV AC Ceramic Capacitor NTC RT101 Inductor 5D-9 Resistor R101 100kΩ BEAD101 BEAD BEAD201 5uH 3A 0.25 W Diode R102 150kΩ 0.25 W D101 1N4937 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1.5kΩ 1W D105 Open R107 Open ZD101 1N4746 R201 1kΩ 0.25 W ZD102 Open R202 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W R203 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP20J 2A, 600V R205 220kΩ 0.25 W, 1% D203 EGP20D 2A, 200V R206 5.1kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ C101 330n/275VAC Box Capacitor C102 220uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 3.9nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 1nF / 1kV Film Capacitor C108 Open C201 100uF / 160V 18V, 1W Bridge Diode Capacitor BD101 Electrolytic GSIB660 6A, 600V Line Filter LF101 14mH Transformer T101 EER3540 SW201 ON/OFF Switch For MCU Signal IC IC101 FSCQ0765RT OPT101 FOD817A C202 47uF / 160V Electrolytic Q201 KA431LZ C203 1000uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 22nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 25 FSCQ-SERIES FSCQ0965RT Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 12V (0.5A) C-TV 102W Universal input 18V (0.5A) (90-270Vac) 125V (0.5A) 24V (1.0A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER3540 RT101 5D-9 C102 220uF 400V BD101 1 3 ZD101 18V 1W 11 R106 C104 1.5kΩ 10uF 1W 50V 1 Drain SYNC 3 Vcc IC101 FSCQ0965RT GND 2 C103 10uF 50V D102 1N4937 C107 1nF 1kV C106 47nF 50V C210 470pF 1kV 18V, 0.5A 13 12 D103 1N4148 R105 470Ω 0.25W R104 D101 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 14 15 16 C105 3.9nF 50V 125V, 0.5A L201 C201 BEAD 100uF 160V C207 470pF 1kV C202 47uF 160V D203 EGP30D 7 LF101 24V, 1.0A 17 18 OPTO101 FOD817A C203 1000uF 35V C208 470pF 1kV VR201 30kΩ R205 220kΩ 0.25W R201 1kΩ 0.25W FUSE 250V 3.0A R208 1kΩ 0.25W ZD201 C206 22nF 50V C301 2.2nF Q201 KA431 Normal ZD202 5.1V 0.5W R202 1kΩ 0.25W C101 330nF 275VAC 26 C205 1000uF 35V C209 470pF 1kV D202 EGP30J 5 FB 4 C204 1000uF 35V D204 EGP20D 4 D104 UF4007 12V, 0.5A 10 BEAD101 R102 150kΩ 0.25W R101 100kΩ 0.25W D205 EGP20D R203 39kΩ 0.25W R204 4.7kΩ 0.25W D201 Q202 KSC945 SW201 R207 5.1kΩ 0.25W R206 5.1kΩ 0.25W Standby FSCQ-SERIES 2. Transformer Schematic Diagram EER3540 N p1 1 18 2 17 Na 3 16 N18V 4 15 5 14 N 24V N p2 N 125V/2 N125V/2 Np2 N 125V/2 N12V 13 6 N24V N 12V Na 7 12 N125V/2 8 11 Np1 9 10 N 18V 3.Winding Specification No Np1 N125V/2 Pin (s→f) 1-3 16 - 15 Wire Turns Winding Method 0.6 × 1 32 Center Winding 0.6φ ×1 32 Center Winding φ φ N24V 18 - 17 0.4 × 2 13 Center Winding N12V 12 - 13 0.5φ × 2 7 Center Winding 0.6φ ×1 32 Center Winding 0.6 × 1 32 Center Winding 0.4 × 2 10 Center Winding 0.3φ 20 Center Winding Np2 N125V/2 N18V Na 3-4 15 - 14 11 - 10 7-6 φ φ ×1 4.Electrical Characteristics Inductance Leakage Inductance Pin Specification 1-3 410uH ± 5% 1-3 10uH Max Remarks 1kHz, 1V 2 nd all short 5. Core & Bobbin Core : EER3540 Bobbin : EER3540 Ae : 107 mm2 27 FSCQ-SERIES 6.Demo Circuit Part List Part Value Note FUSE 250V / 3A Fuse Part Value C210 470pF / 1kV Ceramic Capacitor C301 3.3nF / 1kV AC Ceramic Capacitor NTC RT101 Note Inductor 5D-9 Resistor BEAD101 BEAD BEAD201 5uH 3A R101 100kΩ 0.25 W R102 150kΩ 0.25 W D101 1N4937 Diode 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1.5kΩ 1W R107 Open R201 1kΩ R202 R203 D105 Open ZD101 1N4746 0.25 W ZD102 Open 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP30J 3A, 600V R205 220kΩ 0.25 W, 1% D203 EGP30D 3A, 200V R206 5.1kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ BD101 GSIB660 Bridge Diode Capacitor 28 18V, 1W C101 330n/275VAC Box Capacitor C102 220uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 3.9nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 1nF / 1kV Film Capacitor C108 Open C201 100uF / 160V C202 47uF / 160V C203 6A, 600V Line Filter LF101 14mH Transformer T101 EER3540 Switch SW201 ON/OFF For MCU Signal IC IC101 FSCQ0965RT Electrolytic OPT101 FOD817A Electrolytic Q201 KA431LZ 1000uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 22nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 FSCQ-SERIES FSCQ1265RT Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 8.5V (0.5A) C-TV 132W Universal input 15V (0.5A) (90-270Vac) 140V (0.6A) 24V (1.5A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER4042 RT101 5D-11 3 R101 100kΩ 0.25W BD101 Drain SYNC 3 Vcc IC101 5 FSCQ1265RT GND 2 C103 10uF 50V FB 4 C106 47nF 50V C210 470pF 1kV R106 C104 1kΩ 10uF 1W 50V D105 1N4937 8.5V, 0.5A 13 C107 1nF 1kV 12 C209 470pF 1kV C205 1000uF 35V D202 EGP30J D106 1N4148 R105 470Ω 0.25W R104 D103 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 14 15 16 C105 3.3nF 50V C207 470pF 1kV L202 C201 BEAD 150uF 160V 140V, 0.6A C202 68uF 160V D203 EGP30D 24V, 1.5A 17 7 LF101 18 OPTO101 FOD817A C208 470pF 1kV R202 1kΩ 0.25W C301 3.3nF C203 1000uF 35V VR201 30kΩ R201 1kΩ 0.25W C101 330nF 275VAC FUSE 250V 5.0A C204 1000uF 35V D204 EGP20D 4 1 ZD102 18V 1W 11 BEAD101 R102 150kΩ 0.25W 15V, 0.5A 10 1 C102 330uF 400V D205 EGP20D Q201 KA431 LZ C206 150nF 50V R203 39kΩ 0.25W R205 240kΩ D201 0.25W 1N4148 R204 4.7kΩ 0.25W Q202 KSC945 ZD201 5.1V 0.5W R208 1kΩ 0.25W SW201 R207 5.1kΩ 0.25W R206 10kΩ 0.25W 29 FSCQ-SERIES 2. Transformer Schematic Diagram EER4042 Np1 1 18 2 17 3 16 4 15 5 14 6 13 N24V Na N15V Np2 N8.5V N140V/2 N140V/2 N140V/2 NP2 N140V/2 N8.5V Na 7 12 NP1 8 11 N24V 9 10 N15V 3.Winding Specification No N24 Np1 Pin (s→f) 18 - 17 1-3 Wire Turns Winding Method 8 Space Winding × 10 × 2 20 Center Winding φ 0.65 × 2 0.1φ φ N140V/2 16 - 15 0.1 × 10 × 2 23 Center Winding Np2 3-4 0.1φ × 10 × 2 20 Center Winding 0.1φ 22 Center Winding 3 Space Winding 0.6 × 1 6 Space Winding 0.3φ 13 Space Winding N140V/2 N8.5V N15V Na 15 - 14 12 - 13 11 - 10 7-6 × 10 × 2 φ 0.6 × 1 φ ×1 4.Electrical Characteristics Inductance Leakage Inductance 5. Core & Bobbin Core : EER4042 Bobbin : EER4042(18Pin) Ae : 153 mm2 30 Pin Specification 1-4 315uH ± 5% 1-4 10uH Max Remarks 1kHz, 1V 2 nd all short FSCQ-SERIES 6.Demo Circuit Part List Part Value Note Fuse FUSE 250V / 5A Part Value Note C210 470pF / 1kV Ceramic Capacitor C301 3.3nF / 1kV AC Ceramic Capacitor NTC RT101 Inductor 5D-11 Resistor R101 100kΩ BEAD101 BEAD BEAD201 5uH 3A 0.25 W Diode R102 150kΩ 0.25 W D101 1N4937 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1kΩ 1W D105 Open R107 Open ZD101 1N4746 R201 1kΩ 0.25 W ZD102 Open R202 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W R203 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP30J 3A, 600V R205 240kΩ 0.25 W, 1% D203 EGP30D 3A, 200V R206 10kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ C101 330n/275Vac Box Capacitor C102 330uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 3.3nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 1nF / 1kV Film Capacitor C108 Open C201 150uF / 160V 18V, 1W Bridge Diode Capacitor BD101 Electrolytic GSIB660 6A, 600V Line Filter LF101 14mH Transformer T101 EER4042 SW201 ON/OFF Switch For MCU Signal IC IC101 FSCQ1265RT OPT101 FOD817A C202 68uF / 160V Electrolytic Q201 KA431LZ C203 1000uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 150nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 31 FSCQ-SERIES FSCQ1465RT Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 8.5V (0.5A) C-TV 146W Universal input 15V (0.5A) (90-270Vac) 140V (0.7A) 24V (1.5A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER4245 RT101 6D-22 3 R101 100kΩ 0.25W BD101 R106 C104 1kΩ 10uF 1W 50V Drain SYNC 3 Vcc IC101 FSCQ1465RT GND 2 C103 10uF 50V C106 47nF 50V D105 1N4937 8.5V, 0.5A 12 C209 470pF 1kV D106 1N4148 R105 470Ω 0.25W 14 15 16 C105 2.7nF 50V C207 470pF 1kV L202 C201 BEAD 150uF 160V 140V, 0.7A C202 68uF 160V D203 EGP30D 24V, 1.5A 17 LF101 18 OPTO101 FOD817A C208 470pF 1kV R202 1kΩ 0.25W C301 3.3nF C203 1000uF 35V VR201 30kΩ R201 1kΩ 0.25W C101 330nF 275VAC 32 C205 1000uF 35V D202 EGP30J R104 D103 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 7 FUSE 250V 5.0A C204 1000uF 35V 13 C107 1nF 1kV 5 FB 4 C210 470pF 1kV D204 EGP20D 4 1 ZD102 18V 1W 11 BEAD101 R102 150kΩ 0.25W 15V, 0.5A 10 1 C102 330uF 400V D205 EGP20D Q201 KA431 LZ C206 150nF 50V R203 39kΩ 0.25W R205 240kΩ D201 0.25W 1N4148 R204 4.7kΩ 0.25W Q202 KSC945 ZD201 5.1V 0.5W R208 1kΩ 0.25W SW201 R207 5.1kΩ 0.25W R206 10kΩ 0.25W FSCQ-SERIES 2. Transformer Schematic Diagram EER4245 Np1 1 18 2 17 3 16 4 15 5 14 6 13 N24V Na N15V Np2 N8.5V N140V/2 N140V/2 N140V/2 NP2 N140V/2 N8.5V Na 7 12 NP1 8 11 N24V 9 10 N15V 3.Winding Specification No N24 Np1 Pin (s→f) 18 - 17 1-3 Wire Turns Winding Method 5 Space Winding × 20 × 2 13 Center Winding φ 0.65 × 2 0.08φ φ N140V/2 16 - 15 0.08 × 20 × 2 15 Center Winding Np2 3-4 0.08φ × 20 × 2 13 Center Winding 0.08φ 14 Center Winding 2 Space Winding 0.6 × 1 3 Space Winding 0.3φ 8 Space Winding N140V/2 N8.5V N15V Na 15 - 14 12 - 13 11 - 10 7-6 × 20 × 2 φ 0.6 × 1 φ ×1 4.Electrical Characteristics Inductance Leakage Inductance Pin Specification 1-4 260uH ± 5% 1-4 10uH Max Remarks 1kHz, 1V 2 nd all short 5. Core & Bobbin Core : EER4245 Bobbin : EER4245(18Pin) Ae : 201.8 mm2 33 FSCQ-SERIES 6.Demo Circuit Part List Part Value Note Fuse FUSE 250V / 5A Part Value Note C210 470pF / 1kV Ceramic Capacitor C301 3.3nF / 1kV AC Ceramic Capacitor NTC RT101 Inductor 6D-22 Resistor R101 100kΩ BEAD101 BEAD BEAD201 5uH 3A 0.25 W Diode R102 150kΩ 0.25 W D101 1N4937 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1kΩ 1W D105 Open R107 Open ZD101 1N4746 R201 1kΩ 0.25 W ZD102 Open R202 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W R203 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP30J 3A, 600V R205 240kΩ 0.25 W, 1% D203 EGP30D 3A, 200V R206 10kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ C101 330n/275VAC Box Capacitor C102 330uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 2.7nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 1nF / 1kV Film Capacitor C108 Open C201 150uF / 160V Bridge Diode Capacitor 34 18V, 1W BD101 Electrolytic GSIB660 6A, 600V Line Filter LF101 14mH Transformer T101 EER3540 SW201 ON/OFF Switch For MCU Signal IC IC101 FSCQ1465RT OPT101 FOD817A C202 68uF / 160V Electrolytic Q201 KA431LZ C203 1000uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 150nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 FSCQ-SERIES FSCQ1565RT Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 8.5V (0.5A) C-TV 160W Universal input 15V (0.5A) (90-270Vac) 140V (0.8A) 24V (1.5A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER4245 RT101 6D-22 3 R101 100kΩ 0.25W BD101 Drain SYNC 3 Vcc IC101 5 FSCQ1565RT GND 2 C103 10uF 50V FB 4 C106 47nF 50V C210 470pF 1kV R106 C104 1kΩ 10uF 1W 50V D105 1N4937 8.5V, 0.5A 13 C107 1nF 1kV 12 C209 470pF 1kV C205 1000uF 35V D202 EGP30J D106 1N4148 R105 470Ω 0.25W R104 D103 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 14 15 16 C105 2.7nF 50V C207 470pF 1kV L202 C201 BEAD 220uF 160V 140V, 0.8A C202 68uF 160V D203 EGP30D 24V, 1.5A 17 7 LF101 18 OPTO101 FOD817A C208 470pF 1kV R202 1kΩ 0.25W C301 3.3nF C203 1000uF 35V VR201 30kΩ R201 1kΩ 0.25W C101 330nF 275VAC FUSE 250V 5.0A C204 1000uF 35V D204 EGP20D 4 1 ZD102 18V 1W 11 BEAD101 R102 150kΩ 0.25W 15V, 0.5A 10 1 C102 470uF 400V D205 EGP20D Q201 KA431 LZ C206 150nF 50V R203 39kΩ 0.25W R205 240kΩ D201 0.25W 1N4148 R204 4.7kΩ 0.25W ZD201 5.1V 0.5W R208 1kΩ 0.25W Q202 KSC945 SW201 R207 5.1kΩ 0.25W R206 10kΩ 0.25W 35 FSCQ-SERIES 2. Transformer Schematic Diagram EER4245 Np1 1 18 2 17 3 16 4 15 5 14 6 13 N24V Na N15V Np2 N8.5V N140V/2 N140V/2 N140V/2 NP2 N140V/2 N8.5V Na 7 12 NP1 8 11 N24V 9 10 N15V 3.Winding Specification No N24 Np1 Pin (s→f) 18 - 17 1-3 Wire Turns Winding Method 5 Space Winding × 20 × 2 13 Center Winding φ 0.65 × 2 0.08φ φ N140V/2 16 - 15 0.08 × 20 × 2 15 Center Winding Np2 3-4 0.08φ × 20 × 2 13 Center Winding 0.08φ 14 Center Winding 2 Space Winding 0.6 × 1 3 Space Winding 0.3φ 8 Space Winding N140V/2 N8.5V N15V Na 15 - 14 12 - 13 11 - 10 7-6 × 20 × 2 φ 0.6 × 1 φ ×1 4.Electrical Characteristics Inductance Leakage Inductance 5. Core & Bobbin Core : EER4245 Bobbin : EER4245(18Pin) Ae : 201.8 mm2 36 Pin Specification 1-4 220uH ± 5% 1-4 10uH Max Remarks 1kHz, 1V 2 nd all short FSCQ-SERIES 6.Demo Circuit Part List Part Value Note Fuse FUSE 250V / 5A Part Value Note C210 470pF / 1kV Ceramic Capacitor C301 3.3nF / 1kV AC Ceramic Capacitor NTC RT101 Inductor 6D-22 Resistor R101 100kΩ BEAD101 BEAD BEAD201 5uH 3A 0.25 W Diode R102 150kΩ 0.25 W D101 1N4937 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1kΩ 1W D105 Open R107 Open ZD101 1N4746 R201 1kΩ 0.25 W ZD102 Open R202 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W R203 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP30J 3A, 600V R205 240kΩ 0.25 W, 1% D203 EGP30D 3A, 200V R206 10kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ C101 330n/275Vac Box Capacitor C102 470uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 2.7nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 1nF / 1kV Film Capacitor C108 Open C201 220uF / 160V 18V, 1W Bridge Diode Capacitor BD101 Electrolytic GSIB660 6A, 600V Line Filter LF101 14mH Transformer T101 EER4245 SW201 ON/OFF Switch For MCU Signal IC IC101 FSCQ1565RT OPT101 FOD817A C202 68uF / 160V Electrolytic Q201 KA431LZ C203 1000uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 150nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 37 FSCQ-SERIES FSCQ1565RP Typical Application Circuit Application Output Power Input Voltage Output Voltage (Max Current) 8.5V (1A) C-TV 198W Universal input 15V (1A) (90-270Vac) 140V (0.9A) 24V (2A) Features • • • • • • High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms) Key Design Notes • 24V output is designed to drop to around 8V in standby mode 1. Schematic T1 EER4942 RT101 6D-22 3 R101 100kΩ 0.25W BD101 Drain SYNC 3 Vcc IC101 5 FSCQ1565RP GND 2 C103 10uF 50V FB 4 C106 47nF 50V C210 470pF 1kV R106 C104 1kΩ 10uF 1W 50V D105 1N4937 8.5V, 1A 13 C107 1nF 1kV 12 C209 470pF 1kV D106 1N4148 R105 470Ω 0.25W 14 15 16 C105 2.7nF 50V C207 470pF 1kV L202 C201 BEAD 220uF 160V 140V, 0.9A C202 100uF 160V D203 EGP30D 24V, 2A 17 LF101 18 OPTO101 FOD817A C208 470pF 1kV R202 1kΩ 0.25W C301 3.3nF C203 2200uF 35V VR201 30kΩ R201 1kΩ 0.25W C101 330nF 275VAC 38 C205 1000uF 35V D202 EGP30J R104 D103 R103 6 1.5kΩ 1N4937 5.1Ω 0.25W 0.25W 7 FUSE 250V 5.0A C204 1000uF 35V D204 EGP20D 4 1 ZD102 18V 1W 11 BEAD101 R102 150kΩ 0.25W 15V, 1A 10 1 C102 470uF 400V D205 EGP20D Q201 KA431 LZ C206 22nF 50V R203 39kΩ 0.25W R205 240kΩ D201 0.25W 1N4148 R204 4.7kΩ 0.25W ZD201 5.1V 0.5W R208 1kΩ 0.25W Q202 KSC945 SW201 R207 5.1kΩ 0.25W R206 10kΩ 0.25W FSCQ-SERIES 2. Transformer Schematic Diagram EER4942 Np1 1 18 2 17 3 16 4 15 5 14 6 13 N24V Na N15V Np2 N8.5V N140V/2 N140V/2 N140V/2 NP2 N140V/2 N8.5V Na 7 12 NP1 8 11 N24V 9 10 N15V 3.Winding Specification No N24 Pin (s→f) 18 - 17 Np1 1-3 N140V/2 16 - 15 Np2 N140V/2 N8.5V 3-4 15 - 14 12 - 13 Wire Turns Winding Method 5 Space Winding × 20 × 2 13 Center Winding 0.08φ × 20 × 2 15 Center Winding 0.08 × 20 × 2 13 Center Winding 0.08φ 14 Center Winding 2 Space Winding φ 0.65 × 2 0.08φ φ × 20 × 2 0.6φ ×1 φ N15V 11 - 10 0.6 × 1 3 Space Winding Na 7-6 0.3φ × 1 8 Space Winding 4.Electrical Characteristics Inductance Leakage Inductance Pin Specification 1-4 210uH ± 5% 1-4 10uH Max Remarks 1kHz, 1V 2 nd all short 5. Core & Bobbin Core : EER4942 Bobbin : EER4942(18Pin) Ae : 231 mm2 39 FSCQ-SERIES 6.Demo Circuit Part List Part Value Note Fuse FUSE 250V / 5A Part Value Note C210 470pF / 1kV Ceramic Capacitor C301 3.3nF / 1kV AC Ceramic Capacitor NTC RT101 Inductor 6D-22 Resistor R101 100kΩ BEAD101 BEAD BEAD201 5uH 3A 0.25 W Diode R102 150kΩ 0.25 W D101 1N4937 1A, 600V R103 5.1Ω 0.25 W D102 1N4937 1A, 600V R104 1.5kΩ 0.25 W D103 1N4148 0.15A, 50V R105 470Ω 0.25 W D104 Short R106 1kΩ 1W D105 Open R107 Open ZD101 1N4746 R201 1kΩ 0.25 W ZD102 Open R202 1kΩ 0.25 W ZD201 1N5231 5.1V, 0.5W R203 39kΩ 0.25 W D201 1N4148 0.15A, 50V R204 4.7kΩ 0.25 W, 1% D202 EGP30J 3A, 600V R205 240kΩ 0.25 W, 1% D203 EGP30D 3A, 200V R206 10kΩ 0.25 W D204 EGP20D 2A, 200V R207 5.1kΩ 0.25 W D205 EGP20D 2A, 200V R208 1kΩ 0.25 W VR201 30kΩ C101 330n/275Vac Box Capacitor C102 470uF / 400V Electrolytic C103 10uF / 50V Electrolytic C104 10uF / 50V Electrolytic C105 2.7nF / 50V Film Capacitor C106 47nF / 50V Film Capacitor C107 1nF / 1kV Film Capacitor C108 Open C201 220uF / 200V Bridge Diode Capacitor 40 18V, 1W BD101 Electrolytic GSIB660 6A, 600V Line Filter LF101 14mH Transformer T101 EER4942 SW201 ON/OFF Switch For MCU Signal IC IC101 FSCQ1565RP OPT101 FOD817A C202 100uF / 200V Electrolytic Q201 KA431LZ C203 2200uF / 35V Electrolytic Q202 KSC945 C204 1000uF / 35V Electrolytic C205 1000uF / 35V Electrolytic C206 22nF / 50V Film Capacitor C207 470pF / 1kV Ceramic Capacitor C208 470pF / 1kV Ceramic Capacitor C209 470pF / 1kV Ceramic Capacitor TO-220F-5L TO-92 FSCQ-SERIES PCB Layout 41 FSCQ-SERIES Package Dimensions Dimensions in Millimeters TO-220F-5L(Forming) 42 FSCQ-SERIES Package Dimensions Dimensions in Millimeters TO-3PF-7L(Forming) 6.05 5.65 15.70 15.30 3.55 3.15 9.70 9.30 (1.65) 4.70 4.30 10.20 9.80 2.10 1.70 23.20 22.80 24.70 24.30 36.50 35.50 1.70 1.30 4.30 3.70 (1.00) 2.55 2.15 3.65 3.05 3.06 2.46 R0.90 MAX 1.00 12.00 11.00 R0.90 0.90 0.70 MAX 2.00 2.80 2.20 R0.90 5.30 4.70 2.54 0.80 0.50 3.48 2.88 1.50 4.50 NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. MKT-TO3PFC05revA 43 FSCQ-SERIES Ordering Information Product Number Package Marking Code BVdss Rds(ON) Max. FSCQ0565RTYDTU TO-220F-5L(Forming) CQ0565RT 650V 2.2 Ω FSCQ0765RTYDTU TO-220F-5L(Forming) CQ0765RT 650V 1.6 Ω FSCQ0965RTYDTU TO-220F-5L(Forming) CQ0965RT 650V 1.2 Ω FSCQ1265RTYDTU TO-220F-5L(Forming) CQ1265RT 650V 0.9 Ω FSCQ1465RTYDTU TO-220F-5L(Forming) CQ1465RT 650V 0.8 Ω FSCQ1565RTYDTU TO-220F-5L(Forming) CQ1565RT 650V 0.7Ω FSCQ1565RPSYDTU TO-3PF-7L(Forming) CQ1565RP 650V 0.7 Ω YDTU : Forming Type SYDTU : Forming Type DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 10/4/05 0.0m 001 © 2005 Fairchild Semiconductor Corporation