FAIRCHILD FSCQ1565RPSYDTU

www.fairchildsemi.com
FSCQ-Series
FSCQ0565RT / FSCQ0765RT / FSCQ0965RT / FSCQ1265RT
FSCQ1465RT / FSCQ1565RT / FSCQ1565RP
Green Mode Fairchild Power Switch (FPSTM)
Features
• Optimized for Quasi-Resonant Converter (QRC)
• Advanced Burst-Mode Operation for under 1W Standby
Power Consumption
• Pulse-by-Pulse Current Limit
• Over Load Protection (OLP) - Auto Restart
• Over Voltage Protection (OVP) - Auto Restart
• Abnormal Over Current Protection (AOCP) - Latch
• Internal Thermal Shutdown (TSD) - Latch
• Under Voltage Lock Out (UVLO) with Hysteresis
• Low Startup Current (typical : 25uA)
• Internal High Voltage SenseFET
• Built-in Soft Start (20ms)
• Extended Quasi-Resonant Switching
OUTPUT POWER TABLE(3)
230VAC ±15%(2)
PRODUCT
Open Frame
(1)
85-265VAC
Open Frame(1)
FSCQ0565RT
70W
60 W
FSCQ0765RT
100 W
85 W
FSCQ0965RT
130 W
110 W
FSCQ1265RT
170 W
140 W
FSCQ1465RT
190 W
160 W
FSCQ1565RT
210 W
170 W
FSCQ1565RP
250 W
210 W
Table 1. Maximum Output Power
Applications
• CTV
• Audio Amplifier
Related Application Notes
• AN4146 - Design Guidelines for Quasi-Resonant
Converters Using FSCQ-Series Fairchild Power Switch.
• AN4140 - Transformer Design Consideration for Off-Line
Flyback Converters Using Fairchild Power Switch.
Notes:
1. Maximum practical continuous power in an open frame
design at 50°C ambient.
2. 230 VAC or 100/115 VAC with doubler.
3. The junction temperature can limit the maximum output
power.
Typical Circuit
Description
In general, a Quasi-Resonant Converter (QRC) shows lower
EMI and higher power conversion efficiency compared to
conventional hard-switched converter with a fixed switching
frequency. Therefore, a QRC is well suited for noisesensitive applications, such as color TV and audio. Each
product in the FSCQ-Series contains an integrated Pulse
Width Modulation (PWM) controller and a SenseFET, and
is specifically designed for quasi-resonant off-line Switch
Mode Power Supplies (SMPS) with minimal external
components. The PWM controller includes an integrated fixed
frequency oscillator, under voltage lockout, leading edge
blanking (LEB), optimized gate driver, internal soft start,
temperature-compensated precise current sources for a loop
compensation, and self protection circuitry. Compared with a
discrete MOSFET and PWM controller solution, the FSCQSeries can reduce total cost, component count, size, and weight,
while simultaneously increasing efficiency, productivity, and
system reliability. These devices provide a basic platform
that is well suited for cost-effective designs of quasi-resonant
switching flyback converters.
FPSTM is a trademark of Fairchild Semiconductor Corporation.
©2005 Fairchild Semiconductor Corporation
Vo
AC
IN
Drain
FSCQ-Series
PWM
Sync
GND
VFB
Vcc
Figure 1. Typical Flyback Application
Rev.1.1.0
FSCQ-SERIES
Internal Block Diagram
Sync
5
Vcc
3
Drain
1
+
Threshold
Quasi-Resonant
(QR) Switching
Controller
-
+
fs
9V/15V
-
Soft Start
4.6V/2.6V : Normal QR
3.0V/1.8V : Extended QR
Burst Mode
Controller
VBurst
Normal Operation
Vcc
Auxiliary
Vref
OSC
Burst Switching
Vref
Vref
IBFB
IFB
Main Bias
Normal
Operation
Vref
Internal
Bias
IB
Idelay
VFB
Vcc good
PWM
4
2.5R
S
Q
R
Q
Gate
Driver
R
LEB
600ns
VSD
Sync
Vovp
S
Vcc good
(Vcc = 9V)
R
Q
AOCP
Q
S
Q
R
2 GND
Q
TSD
Vocp
Power Off Reset (Vcc = 6V)
Figure 2. Functional Block Diagram of FSCQ-Series
2
FSCQ-SERIES
Pin Definitions
Pin Number
Pin Name
1
Drain
2
GND
This pin is the control ground and the SenseFET source.
Vcc
This pin is the positive supply input. This pin provides internal operating
current for both start-up and steady-state operation.
Vfb
This pin is internally connected to the inverting input of the PWM comparator.
The collector of an opto-coupler is typically tied to this pin. For stable
operation, a capacitor should be placed between this pin and GND. If the
voltage of this pin reaches 7.5V, the over load protection triggers, which
results in the FPS shutting down.
Sync
This pin is internally connected to the sync detect comparator for quasiresonant switching. In normal quasi-resonant operation, the threshold of the
sync comparator is 4.6V/2.6V. Whereas, the sync threshold is changed to
3.0V/1.8V in an extended quasi-resonant operation.
3
4
5
Pin Function Description
High voltage power SenseFET drain connection.
Pin Configuration
TO-220F-5L
5.Sync
4.Vfb
3.Vcc
2.GND
1.Drain
TO-3PF-7L
5.Sync
4.Vfb
3.Vcc
2.GND
1.Drain
Figure 3. Pin Configuration (Top View)
3
FSCQ-SERIES
Absolute Maximum Ratings
(Ta=25°C, unless otherwise specified)
Parameter
Symbol
Value
Unit
Drain Pin Voltage
VDS
650
V
Supply Voltage
VCC
20
V
Vsync
-0.3 to 13V
V
VFB
-0.3 to VCC
V
Analog Input Voltage Range
Drain Current Pulsed
(1)
IDM
Continuous Drain Current(Tc=25°C)
(Tc : Case Back Surface Temperature)
Continuous Drain Current * (TDL=25°C)
(TDL :Drain Lead Temperature)
Continuous Drain Current (TC=100°C)
Single-Pulsed Avalanche Energy
4
(2)
ID
ID *
ID
EAS
FSCQ0565RT
11.2
FSCQ0765RT
15.2
FSCQ0965RT
16.4
FSCQ1265RT
21.2
FSCQ1465RT
22
FSCQ1565RT
26.4
FSCQ1565RP
33.2
FSCQ0565RT
2.8
FSCQ0765RT
3.8
FSCQ0965RT
4.1
FSCQ1265RT
5.3
FSCQ1465RT
5.5
FSCQ1565RT
6.6
FSCQ1565RP
8.3
FSCQ0565RT
5
FSCQ0765RT
7
FSCQ0965RT
7.6
FSCQ1265RT
11
FSCQ1465RT
12
FSCQ1565RT
13.3
FSCQ1565RP
15
FSCQ0565RT
1.7
FSCQ0765RT
2.4
FSCQ0965RT
2.6
FSCQ1265RT
3.4
FSCQ1465RT
3.5
FSCQ1565RT
4.4
FSCQ1565RP
5.5
FSCQ0565RT
400
FSCQ0765RT
570
FSCQ0965RT
630
FSCQ1265RT
950
FSCQ1465RT
1000
FSCQ1565RT
1050
FSCQ1565RP
1050
A
A (rms)
A (rms)
A (rms)
mJ
FSCQ-SERIES
Total Power Dissipation
(Tc=25°C with Infinite Heat Sink)
PD
FSCQ0565RT
38
FSCQ0765RT
45
FSCQ0965RT
49
FSCQ1265RT
50
FSCQ1465RT
60
FSCQ1565RT
75
FSCQ1565RP
98
W
Operating Junction Temperature
TJ
+150
°C
Operating Ambient Temperature
TA
-25 to +85
°C
TSTG
-55 to +150
°C
ESD Capability, HBM Model (All pins
except Vfb)
-
2.0
(GND-Vfb=1.7kV)
kV
ESD Capability, Machine Model (All
pins except Vfb)
-
300
(GND-Vfb=170V)
V
Storage Temperature Range
Notes:
1. Repetitive rating: Pulse width limited by maximum junction temperature
2. L = 15mH, starting Tj = 25°C, These parameters, although guaranteed at the design, are not tested in mass production.
Thermal Impedance
(Ta=25°C unless otherwise specified)
Parameter
Junction to Case Thermal Impedance
Symbol
θJC
Value
FSCQ0565RT
3.29
FSCQ0765RT
2.60
FSCQ0965RT
2.55
FSCQ1265RT
2.50
FSCQ1465RT
2.10
FSCQ1565RT
2.00
FSCQ1565RP
1.28
Unit
°C/W
5
FSCQ-SERIES
Electrical Characteristics (SenseFET Part)
(Ta=25°C unless otherwise specified)
Parameter
Symbol
Condition
Min.
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250μA
650
-
-
V
Zero Gate Voltage Drain Current
IDSS
VDS = 650V,VGS = 0V
-
-
250
μA
FSCQ0565RT
VGS = 10V, ID = 1A
-
1.76
2.2
Ω
FSCQ0765RT
VGS = 10V, ID = 1A
-
1.4
1.6
Ω
FSCQ0965RT
VGS = 10V, ID = 1A
-
1.0
1.2
Ω
RDS(ON) FSCQ1265RT VGS = 10V, ID = 1A
-
0.75
0.9
Ω
FSCQ1465RT
VGS = 10V, ID = 1A
-
0.7
0.8
Ω
FSCQ1565RT
VGS = 10V, ID = 1A
-
0.53
0.7
Ω
FSCQ1565RP VGS = 10V, ID = 1A
-
0.53
0.7
Ω
FSCQ0565RT
-
1080
-
FSCQ0765RT
-
1415
-
FSCQ0965RT
-
1750
-
VGS = 0V, VDS = 25V,
FSCQ1265RT
f = 1MHz
-
2400
-
FSCQ1465RT
-
2400
-
FSCQ1565RT
-
3050
-
FSCQ1565RP
-
3050
-
FSCQ0565RT
-
90
-
FSCQ0765RT
-
100
-
FSCQ0965RT
-
130
-
VGS = 0V, VDS = 25V,
FSCQ1265RT
f = 1MHz
-
175
-
FSCQ1465RT
-
185
-
FSCQ1565RT
-
220
-
FSCQ1565RP
-
220
-
Drain-Source ON-State
Resistance
Input Capacitance
Output Capacitance
6
CISS
COSS
Typ. Max.
Unit
pF
pF
FSCQ-SERIES
Electrical Characteristics (Continued)
(Ta=25°C unless otherwise specified)
Parameter
Symbol
Condition
Min. Typ. Max. Unit
CONTROL SECTION
Switching Frequency
FOSC
(1)
Switching Frequency Variation
ΔFOSC
VFB = 5V, VCC = 18V
18
20
22
kHz
-25°C ≤ Ta ≤ 85°C
0
±5
±10
%
VFB = 0.8V, VCC = 18V
0.5
0.65
0.8
mA
Maximum Duty Cycle
DMAX
VFB = 5V, VCC = 18V
92
95
98
%
Minimum Duty Cycle
DMIN
VFB = 0V, VCC = 18V
-
0
-
%
Feedback Source Current
IFB
UVLO Threshold Voltage
(1)
VSTART
VFB=1V
14
15
16
V
VSTOP
VFB=1V
8
9
10
V
TSS
-
18
20
22
ms
Burst Mode Enable Feedback Voltage
VBEN
-
0.25
0.40
0.55
V
Burst Mode Feedback Source Current
IBFB
VFB = 0V
60
100
140
uA
Burst Mode Switching Time
TBS
VFB = 0.9V, Duty =50%
1.2
1.4
1.6
ms
Burst Mode Hold Time
TBH
VFB = 0.9V -> 0V
1.2
1.4
1.6
ms
VSD
VCC = 18V
7.0
7.5
8.0
V
Soft Start Time
BURST MODE SECTION
PROTECTION SECTION
Shutdown Feedback Voltage
Shutdown Delay Current
Over Voltage Protection
Over Current Latch Voltage
(1)
Thermal Shutdown Temp (2)
IDELAY
VFB = 5V, VCC = 18V
4
5
6
μA
VOVP
VFB = 3V
11
12
13
V
VOCL
VCC = 18V
0.9
1.0
1.1
V
140
-
-
°C
TSD
-
Note:
1. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
2. These parameters, although guaranteed at the design, are not tested in mass production.
7
FSCQ-SERIES
Electrical Characteristics (Continued)
(Ta=25°C unless otherwise specified)
Parameter
Symbol
Condition
Min. Typ. Max.
Unit
Sync SECTION
Sync Threshold in Normal QR (H)
VSH1
4.2
4.6
5.0
V
Sync Threshold in Normal QR (L)
VSL1
2.3
2.6
2.9
V
Sync Threshold in Extended QR (H)
VSH2
2.7
3.0
3.3
V
Sync Threshold in Extended QR (L)
VSL2
1.6
1.8
2.0
V
Extended QR Enable Frequency
FSYH
-
90
-
kHz
Extended QR Disable Frequency
FSYL
-
45
-
kHz
FSCQ0565RT
-
4
6
FSCQ0765RT
-
4
6
FSCQ0965RT
-
6
8
-
6
8
FSCQ1465RT
-
7
9
FSCQ1565RT
-
7
9
FSCQ1565RP
-
7
9
VFB = GND
-
0.25
0.50
mA
ISTART
VCC = VSTART-0.1V
-
25
50
uA
ISN
VCC = VSTOP-0.1V
-
50
100
uA
FSCQ0565RT
3.08
3.5
3.92
FSCQ0765RT
4.4
5
5.6
FSCQ0965RT
5.28
6.0
6.72
VCC = 18V, VFB = 5V
TOTAL DEVICE SECTION
Operating Supply Current (1)
- In Normal Operation
IOP
- In Burst Mode (Non-switching)
FSCQ1265RT
IOB
Startup Current
(3)
Sustain Latch Current
VFB = 5V
mA
CURRENT SENSE SECTION
Maximum Current Limit
(2)
ILIM
6.16
7
7.84
FSCQ1465RT
7.04
8.0
8.96
FSCQ1565RT
7.04
8
8.96
FSCQ1265RT
VCC = 18V, VFB = 5V
FSCQ1565RP
Burst Peak Current
8
10.12 11.5 12.88
FSCQ0565RT
0.45
0.65
0.85
FSCQ0765RT
FSCQ0965RT
0.65
0.9
1.15
0.6
0.9
1.2
IBUR(pk) FSCQ1265RT VCC = 18V, VFB = Pulse 0.8
1.2
1.6
FSCQ1465RT
0.6
0.9
1.2
FSCQ1565RT
-
1
-
FSCQ1565RP
-
1
-
Note:
1. This parameter is the current flowing in the control IC.
2. These parameters indicate inductor current.
3. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
A
A
FSCQ-SERIES
Electrical Characteristics
Burst-mode Supply Current( Non-Switching)
Operating Supply Current
1.4
Normalized to 25℃
Normalized to 25℃
1.2
1.0
0.8
-50
0
50
100
1.2
1.0
0.8
0.6
-50
150
0
50
Temp[℃ ]
Start-Up Current
Normalized to 25℃
Normalized to 25℃
1.10
1.2
1.0
0.8
0
50
Temp[℃]
100
1.05
1.00
0.95
0.90
-50
0.6
150
0
100
150
100
150
Initial Frequency
Stop Threshold Voltage
1.10
Normalized to 25℃
Normalized to 25℃
50
Temp[℃]
1.10
1.05
1.00
0.95
0.90
-50
150
Start Threshold Voltage
1.4
-50
100
Temp[℃ ]
0
50
Temp[℃]
100
150
1.05
1.00
0.95
0.90
-50
0
50
Temp[℃]
9
FSCQ-SERIES
Electrical Characteristics
Maximum Duty Cycle
Over Voltage Protection
1.10
Normalized to 25℃
Normalized to 25℃
1.10
1.05
1.00
0.95
0.90
-50
0
50
100
1.05
1.00
0.95
0.90
-50
150
0
Normalized to 25℃
Normalized to 25℃
1.0
0.9
0
50
100
1.05
1.00
0.95
0.90
-50
150
0
Feedback Source Current
100
150
Burst_mode Feedback Source Current
1.2
Normalized to 25℃
1.2
Normalized to 25℃
50
Temp[℃]
Temp[℃]
10
150
1.10
1.1
1.1
1.0
0.9
0.8
-50
100
Shutdown Feedback Voltage
Shutdown Delay Current
1.2
0.8
-50
50
Temp[℃]
Temp[℃]
0
50
Temp[℃ ]
100
150
1.1
1.0
0.9
0.8
-50
0
50
Temp[℃]
100
150
FSCQ-SERIES
Electrical Characteristics
Feedback Offset Voltage
Burst_Mode Enable Feedback Voltage
1.4
1.2
Normalized to 25℃
Normalized to 25℃
1.4
1.0
0.8
0.6
-50
0
50
Temp[ ℃ ]
100
1.2
1.0
0.8
0.6
-50
150
Sync. Threshold in Normal QR(H)
Normalized to 25℃
Normalized to 25℃
150
Sync. Threshold in Normal QR(L)
1.00
0.95
0
50
100
1.05
1.00
0.95
0.90
-50
150
0
Temp[℃]
50
100
150
Temp[℃]
Sync. Threshold in Extended QR(L)
Sync. Threshold in Extended QR(H)
1.10
1.10
Normalized to 25℃
Normalized to 25℃
100
1.10
1.05
1.05
1.00
0.95
0.90
-50
50
Temp[℃]
1.10
0.90
-50
0
0
50
Temp[℃]
100
150
1.05
1.00
0.95
0.90
-50
0
50
100
150
Temp[℃ ]
11
FSCQ-SERIES
Electrical Characteristics
E x ten d ed Q R D isa b le F req u en c y
1 .1 0
1.05
1 .0 5
Normalized to 25℃
Normalized to 25℃
Extended QR Enable Freqency
1.10
1.00
0.95
0.90
-50
0
50
100
150
Normalized to 25℃
P u lse-b y-p u lse C u rren t L im it
1 .0 5
1 .0 0
0 .9 5
0 .9 0
-5 0
0
50
T em p [℃ ]
12
0 .9 5
0 .9 0
-5 0
0
50
T em p [℃ ]
Temp[℃]
1 .1 0
1 .0 0
100
150
100
150
FSCQ-SERIES
Functional Description
1. Startup: Figure 4 shows the typical startup circuit and
the transformer auxiliary winding for the FSCQ-Series.
Before the FSCQ-Series begins switching, it consumes only
startup current (typically 25uA). The current supplied from
the AC line charges the external capacitor (Ca1) that is
connected to the Vcc pin. When Vcc reaches the start voltage
of 15V (VSTART), the FSCQ-Series begins switching, and its
current consumption increases to IOP. Then, the FSCQSeries continues its normal switching operation and the
power required for the FSCQ-Series is supplied from the
transformer auxiliary winding, unless Vcc drops below the
stop voltage of 9V (VSTOP). To guarantee the stable operation
of the control IC, Vcc has under voltage lockout (UVLO)
with 6V hysteresis. Figure 5 shows the relationship between
the operating supply current of the FSCQ-Series and the
supply voltage (Vcc).
The minimum average of the current supplied from the AC is
given by
min
I sup
avg
V start⎞ 1
⎛ 2 ⋅ V ac
= ⎜ ------------------------------ – --------------⎟ ⋅ ---------2 ⎠ R str
π
⎝
where Vacmin is the minimum input voltage, Vstart is the
FSCQ-Series start voltage (15V), and Rstr is the startup
resistor. The startup resistor should be chosen so that Isupavg
is larger than the maximum startup current (50uA).
Once the resistor value is determined, the maximum loss in
the startup resistor is obtained as
max 2
max
2
) + V start
2 2 ⋅ V start ⋅ V ac
⎞
1 ⎛ ( V ac
Loss = ---------- ⋅ ⎜ --------------------------------------------------- – ------------------------------------------------------⎟
R str ⎝
2
π
⎠
where Vacmax is the maximum input voltage. The startup
resistor should have properly-rated dissipation wattage.
2. Synchronization: The FSCQ-Series employs a quasiresonant switching technique to minimize the switching noise
and loss. In this technique, a capacitor (Cr) is added between
the MOSFET drain and the source as shown in Figure 6. The
basic waveforms of the quasi-resonant converter are shown in
Figure 7. The external capacitor lowers the rising slope of the
drain voltage to reduce the EMI caused when the MOSFET
turns off. To minimize the MOSFET’s switching loss, the
MOSFET should be turned on when the drain voltage reaches
its minimum value as shown in Figure 7.
C DC
1N4007
AC line
(V acmin - V acmax )
Isup
Rstr
Da
Vcc
FSCQ-Series
C a2
C a1
C DC
+
V DC
-
Np
Ns
Lm
Vo
Figure 4. Startup circuit
Drain
Icc
Cr
Ids
Sync
IOP Value
FSCQ0565RT : 4mA (Typ.)
FSCQ0765RT : 4mA (Typ.)
FSCQ0965RT : 6mA (Typ.)
FSCQ1265RT : 6mA (Typ.)
FSCQ1465RT : 7mA (Typ.)
FSCQ1565RT : 7mA (Typ.)
FSCQ1565RP : 7mA (Typ.)
+
V ds
-
GND
V co
V cc
Da
R cc
C a1
C a2
Na
D SY
IOP
R SY1
Power Down
Power Up
C SY
ISTART
R SY2
Vcc
Vstop=9V
Vstart=15V
Vz
Figure 6. Synchronization Circuit
Figure 5. Relationship Between Operating Supply Current
and Vcc Voltage
13
FSCQ-SERIES
Vds
MOSFET
Off
MOSFET
On
2V R O
Vgs
TQ
VRO
VRO
Vd
Vs ync
V sypk
s
VDC
Vrh (4.6V)
Vrf (2.6V)
TR
Ids
Ipk
Figure 7. Quasi-resonant Operation Waveforms
MOS FET Gate
ON
ON
Figure 8. Normal Quasi-Resonant Operation Waveforms
The minimum drain voltage is indirectly detected by
monitoring the Vcc winding voltage as shown in Figure 6
and 8. Choose voltage dividers, RSY1 and RSY2, so that the
peak voltage of the sync signal (Vsypk) is lower than the
OVP voltage (12V) to avoid triggering OVP in normal
operation. It is typical to set Vsypk to be lower than OVP
voltage by 3-4 V. To detect the optimum time to turn on
MOSFET, the sync capacitor (CSY) should be determined so
that TR is the same with TQ as shown in Figure 8. The TR and
TQ are given as, respectively
Switching
frequency
Extended QR operation
90kHz
Normal QR operation
45kHz
TR
R SY2
V co
= R SY2 ⋅ C SY ⋅ ln ⎛ --------- ⋅ -----------------------------------⎞
⎝ 2.6 R SY1 + R SY2⎠
T Q = π ⋅ L m ⋅ C eo
N a ⋅ ( V o + V FO )
V co = ----------------------------------------- – V Fa
Ns
where Lm is the primary side inductance of the transformer,
and Ns and Na are the number of turns for the output
winding and Vcc winding, respectively, VFo and VFa are the
diode forward voltage drops of the output winding and Vcc
winding, respectively, and Ceo is the sum of the output
capacitance of the MOSFET and the external capacitor, Cr.
14
Output power
Figure 9. Extended Quasi-Resonant Operation
In general, the QRC has a limitation in a wide load range
application, since the switching frequency increases as the
output load decreases, resulting in a severe switching loss in
the light load condition. To overcome this limitation, the
FSCQ-Series employs an extended quasi-resonant switching
operation. Figure 9 shows the mode change between normal
and extended quasi-resonant operations. In the normal quasiresonant operation, the FSCQ-Series enters into the extended
quasi-resonant operation when the switching frequency
exceeds 90kHz as the load reduces. To reduce the switching
frequency, the MOSFET is turned on when the drain voltage
reaches the second minimum level, as shown in Figure 10.
FSCQ-SERIES
Once the FSCQ-Series enters into the extended quasiresonant operation, the first sync signal is ignored. After the
first sync signal is applied, the sync threshold levels are
changed from 4.6V and 2.6V to 3V and 1.8V, respectively,
and the MOSFET turn-on time is synchronized to the second
sync signal. The FSCQ-Series returns to its normal quasiresonant operation when the switching frequency reaches
45kHz as the load increases.
Vds
3.2 Leading Edge Blanking (LEB) : At the instant the
internal Sense FET is turned on, there is usually a high
current spike through the Sense FET, caused by the external
resonant capacitor across the MOSFET and secondary-side
rectifier reverse recovery. Excessive voltage across the
Rsense resistor can lead to incorrect feedback operation in
the current mode PWM control. To counter this effect, the
FSCQ-Series employs a leading edge blanking (LEB)
circuit. This circuit inhibits the PWM comparator for a short
time (TLEB) after the Sense FET is turned on.
2VRO
Vcc
Vref
Idelay
IFB
Vfb
Vo
4
H11A817A
SenseFET
OSC
D1
CB
D2
2.5R
Vsync
+
Vfb*
KA431
Gate
driver
R
-
4.6V
3V
2.6V
1.8V
VSD
OLP
Rsense
MOSFET Gate
Figure 11. Pulse Width Modulation (PWM) Circuit
ON
ON
Figure 10. Extended Quasi-Resonant Operation Waveforms
3. Feedback Control: The FSCQ-Series employs current
mode control, as shown in Figure 11. An opto-coupler (such
as Fairchild’s H11A817A) and shunt regulator (such as
Fairchild’s KA431) are typically used to implement the
feedback network. Comparing the feedback voltage with the
voltage across the Rsense resistor plus an offset voltage
makes it possible to control the switching duty cycle. When
the reference pin voltage of the KA431 exceeds the internal
reference voltage of 2.5V, the H11A817A LED current
increases, pulling down the feedback voltage and reducing
the duty cycle. This event typically happens when the input
voltage is increased or the output load is decreased.
3.1 Pulse-by-Pulse Current Limit: Because current mode
control is employed, the peak current through the
SenseFET is limited by the inverting input of the PWM
comparator (Vfb*) as shown in Figure 11. The feedback
current (IFB) and internal resistors are designed so that the
maximum cathode voltage of diode D2 is about 2.8V, which
occurs when all IFB flows through the internal resistors.
Since D1 is blocked when the feedback voltage (Vfb)
exceeds 2.8V, the maximum voltage of the cathode of D2 is
clamped at this voltage, thus clamping Vfb*. Therefore, the
peak value of the current through the SenseFET is limited.
4. Protection Circuits: The FSCQ-Series has several selfprotective functions such as over load protection (OLP),
abnormal over current protection (AOCP), over voltage
protection (OVP), and thermal shutdown (TSD). OLP and
OVP are auto-restart mode protections, while TSD and
AOCP are latch mode protections. Because these protection
circuits are fully integrated into the IC without external
components, the reliability can be improved without
increasing cost.
-Auto-restart mode protection: Once the fault condition is
detected, switching is terminated and the SenseFET remains
off. This causes Vcc to fall. When Vcc falls to the under
voltage lockout (UVLO) stop voltage of 9V, the protection is
reset and the FSCQ-Series consumes only startup current
(25uA). Then, the Vcc capacitor is charged up, since the
current supplied through the startup resistor is larger than the
current that the FPS consumes. When Vcc reaches the start
voltage of 15V, the FSCQ-Series resumes its normal
operation. If the fault condition is not removed, the
SenseFET remains off and Vcc drops to stop voltage again.
In this manner, the auto-restart can alternately enable and
disable the switching of the power SenseFET until the fault
condition is eliminated (see Figure 12).
-Latch mode protection: Once this protection is triggered,
switching is terminated and the Sense FET remains off until
the AC power line is un-plugged. Then, Vcc continues
charging and discharging between 9V and 15V. The latch is
reset only when Vcc is discharged to 6V by un-plugging the
15
FSCQ-SERIES
AC power line.
V FB
Vds
Fault
occurs
Power
on
Over load protection
7.5V
Fault
removed
2.8V
Vcc
T12= CB*(7.5-2.8)/Idelay
15V
T1
9V
t
Figure 13. Over Load Protection
ISTART
t
Normal
operation
Fault
situation
Normal
operation
Figure 12. Auto Restart Mode Protection
4.1 Over Load Protection (OLP): Overload is defined as
the load current exceeding its normal level due to an
unexpected abnormal event. In this situation, the protection
circuit should trigger to protect the SMPS. However, even
when the SMPS is in the normal operation, the over load
protection circuit can be triggered during the load transition.
To avoid this undesired operation, the over load protection
circuit is designed to trigger after a specified time to
determine whether it is a transient situation or an overload
situation. Because of the pulse-by-pulse current limit
capability, the maximum peak current through the SenseFET
is limited, and therefore the maximum input power is
restricted with a given input voltage. If the output consumes
more than this maximum power, the output voltage (Vo)
decreases below the set voltage. This reduces the current
through the opto-coupler LED, which also reduces the optocoupler transistor current, thus increasing the feedback
voltage (Vfb). If Vfb exceeds 2.8V, D1 is blocked, and the
5uA current source starts to charge CB slowly up to Vcc. In
this condition, Vfb continues increasing until it reaches 7.5V,
then the switching operation is terminated as shown in
Figure 13. The delay time for shutdown is the time required
to charge CB from 2.8V to 7.5V with 5uA. In general, a 20 ~
50 ms delay time is typical for most applications. OLP is
implemented in auto restart mode.
2.5R
OSC
PWM
R
S
Q
R
Q
Gate
Driver
LEB
Rsense
2
AOCP
-
IOP
4.2 Abnormal Over Current Protection (AOCP): When
the secondary rectifier diodes or the transformer pins are
shorted, a steep current with extremely high di/dt can flow
through the SenseFET during the LEB time. Even though the
FSCQ-Series has OLP (Over Load Protection), it is not
enough to protect the FSCQ-Series in that abnormal case,
since severe current stress will be imposed on the SenseFET
until the OLP triggers. The FSCQ-Series has an internal
AOCP (Abnormal Over Current Protection) circuit as shown
in Figure 14. When the gate turn-on signal is applied to the
power SenseFET, the AOCP block is enabled and monitors
the current through the sensing resistor. The voltage across
the resistor is then compared with a preset AOCP level. If
the sensing resistor voltage is greater than the AOCP level,
the set signal is applied to the latch, resulting in the
shutdown of SMPS. This protection is implemented in the
latch mode.
+
ICC
16
T2
Vaocp
GND
Figure 14. AOCP Block
4.3 Over Voltage Protection (OVP) : If the secondary side
feedback circuit malfunctions or a solder defect causes an
open in the feedback path, the current through the optocoupler transistor becomes almost zero. Then, Vfb climbs up
in a similar manner to the over load situation, forcing the
FSCQ-SERIES
preset maximum current to be supplied to the SMPS until the
over load protection triggers. Because more energy than
required is provided to the output, the output voltage may
exceed the rated voltage before the over load protection
triggers, resulting in the breakdown of the devices in the
secondary side. In order to prevent this situation, an over
voltage protection (OVP) circuit is employed. In general, the
peak voltage of the sync signal is proportional to the output
voltage and the FSCQ-Series uses a sync signal instead of
directly monitoring the output voltage. If the sync signal
exceeds 12V, an OVP is triggered resulting in a shutdown of
SMPS. In order to avoid undesired triggering of OVP during
normal operation, the peak voltage of the sync signal should
be designed to be below 12V. This protection is implemented
in the auto restart mode.
In the standby mode, the picture ON signal is disabled and
the transistor Q1 is turned off, which couples R3, Dz, and D1
to the reference pin of KA431. Then, Vo2 is determined by
the zener diode breakdown voltage. Assuming that the
forward voltage drop of D1 is 0.7V, Vo2 in standby mode is
approximately given by
V o2
stby
= V Z + 0.7 + 2.5
VO2
Linear
Regulator
VO1 (B+)
RD
4.4 Thermal Shutdown (TSD) : The SenseFET and the
control IC are built in one package. This makes it easy for
the control IC to detect abnormal over temperature of the
SenseFET. When the temperature exceeds approximately
150°C, the thermal shutdown triggers. This protection is
implemented in the latch mode.
5. Soft Start : The FSCQ-Series has an internal soft-start
circuit that increases PWM comparator’s inverting input
voltage together with the SenseFET current slowly after it
starts up. The typical soft start time is 20msec. The pulse
width to the power switching device is progressively
increased to establish the correct working conditions for
transformers, inductors, and capacitors. Increasing the pulse
width to the power switching device also helps prevent
transformer saturation and reduces the stress on the
secondary diode during startup. For a fast build up of the
output voltage, an offset is introduced in the soft-start
reference current.
6. Burst Operation : In order to minimize the power
consumption in the standby mode, the FSCQ-Series employs
burst operation. Once FSCQ-Series enters into the burst
mode, FSCQ-Series allows all output voltages and effective
switching frequency to be reduced. Figure 15 shows the
typical feedback circuit for C-TV applications. In normal
operation, the picture on signal is applied and the transistor
Q1 is turned on, which de-couples R3, Dz and D1 from the
feedback network. Therefore, only Vo1 is regulated by the
feedback circuit in normal operation and determined by R1
and R2 as
V o1
norm
R1 + R2
= 2.5 ⋅ ⎛ ---------------------⎞
⎝ R2 ⎠
Dz
Rbias
R1
CF
C
KA431
A
Micom
RF
D1
R3
Q1
Picture ON
R
R2
Figure 15. Typical Feedback Circuit to Drop Output Voltage in Standby Mode
Figure 17 shows the burst mode operation waveforms. When
the picture ON signal is disabled, Q1 is turned off and R3
and Dz are connected to the reference pin of KA431 through
D1. Before Vo2 drops to Vo2stby, the voltage on the reference
pin of KA431 is higher than 2.5V, which increases the
current through the opto LED. This pulls down the feedback
voltage (VFB) of FSCQ-Series and forces FSCQ-Series to
stop switching. If the switching is disabled longer than
1.4ms, FSCQ-Series enters into burst operation and the
operating current is reduced from IOP to 0.25mA (IOB). Since
there is no switching, Vo2 decreases until it reaches Vo2stby.
As Vo2 reaches Vo2stby, the current through the opto LED
decreases allowing the feedback voltage to rise. When the
feedback voltage reaches 0.4V, FSCQ-Series resumes
switching with a predetermined peak drain current of 0.9A.
After burst switching for 1.4ms, FSCQ-Series stops
switching and checks the feedback voltage. If the feedback
voltage is below 0.4V, FSCQ-Series stops switching until the
feedback voltage increases to 0.4V. If the feedback voltage is
above 0.4V, FSCQ-Series goes back to the normal operation.
The output voltage drop circuit can be implemented
alternatively as shown in Figure 16. In the circuit of Figure
16, the FSCQ-Series goes into burst mode, when picture off
signal is applied to Q1. Then, Vo2 is determined by the zener
diode breakdown voltage. Assuming that the forward
17
FSCQ-SERIES
voltage drop of opto LED is 1V, the approcimate value of
Vo2 in standby mode is given by
V o2
stby
= VZ + 1
VO2
Linear
Regulator
RD
VO1 (B+)
Rbias
CF
C
Micom
RF
R1
R
KA431
R2
A
Dz
Q1
Picture OFF
Figure 16. Feedback Circuit to Drop Output Voltage in
Standby Mode
18
FSCQ-SERIES
(a)
(b)
(c)
V o2 norm
V o2 stby
V FB
0.4V
Iop
I OP
I OB
Vds
Picture On
Picture On
Picture Off
Burst Mode
0.4V
0.4V
0.3V
V FB
0.4V
V ds
1.4ms
Ids
1.4ms
0.9A
1.4ms
0.9A
(a) Mode Change to Burst Operation
(b) Burst Operation
(c) Mode Change to Normal Operation
Figure 17. Burst Operation Waveforms
19
FSCQ-SERIES
FSCQ0565RT Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
12V (0.5A)
C-TV
59W
Universal Input
18V (0.3A)
(90-270Vac)
125V (0.3A)
24V (0.4A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER3540
RT101
5D-9
C102
220uF
400V
BD101
1
3
ZD101
18V
1W
11
R106 C104
1.5kΩ 10uF
1W
50V
1
Drain
SYNC
3 Vcc IC101
FSCQ0565RT
GND
2
C103
10uF
50V
D102
1N4937
C107
680pF
1kV
C106
47nF
50V
C210
470pF
1kV
18V, 0.3A
13
12
D103
1N4148
R105
470Ω
0.25W
R104 D101 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.9nF
50V
125V, 0.3A
L201
C201 BEAD
100uF
160V
C207
470pF
1kV
C202
47uF
160V
D203
EGP20D
7
LF101
24V, 0.4A
17
18
OPTO101
FOD817A
C203
1000uF
35V
C208
470pF
1kV
VR201
30kΩ
R205
220kΩ
0.25W
R201
1kΩ
0.25W
FUSE
250V
2.0A
R208
1kΩ
0.25W
ZD201
C206
22nF
50V
C301
2.2nF
Q201
KA431
Normal
ZD202
5.1V
0.5W
R202
1kΩ
0.25W
C101
330nF
275VAC
20
C205
1000uF
35V
C209
470pF
1kV
D202
EGP20J
5
FB
4
C204
1000uF
35V
D204
EGP20D
4
D104
UF4007
12V, 0.5A
10
BEAD101
R102
150kΩ
0.25W
R101
100kΩ
0.25W
D205
EGP20D
R203
39kΩ
0.25W
R204
4.7kΩ
0.25W
D201
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
5.1kΩ
0.25W
Standby
FSCQ-SERIES
2. Transformer Schematic Diagram
EER3540
N p1
1
18
2
17
Na
3
16
N18V
4
15
5
14
N 24V
N p2
N 125V/2
N125V/2
Np2
N 125V/2
N12V
13
6
N24V
N 12V
Na
7
12
N125V/2
8
11
Np1
9
10
N 18V
3.Winding Specification
No
Np1
N125V/2
Pin (s→f)
1-3
16 - 15
Wire
Turns
Winding Method
0.5 × 1
32
Center Winding
0.5φ
×1
32
Center Winding
φ
φ
N24V
18 - 17
0.4 × 2
13
Center Winding
N12V
12 - 13
0.5φ × 2
7
Center Winding
0.5φ
×1
32
Center Winding
0.5 × 1
32
Center Winding
0.4 × 2
10
Center Winding
0.3φ
20
Center Winding
Np2
N125V/2
N18V
Na
3-4
15 - 14
11 - 10
7-6
φ
φ
×1
4.Electrical Characteristics
Inductance
Leakage Inductance
Pin
Specification
1-3
740uH ± 5%
1-3
10uH Max
Remarks
1kHz, 1V
2
nd
all short
5. Core & Bobbin
Core : EER3540
Bobbin : EER3540
Ae : 107 mm2
21
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
Fuse
FUSE
250V / 2A
Part
Value
Note
C210
470pF / 1kV
Ceramic Capacitor
C301
2.2nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Inductor
5D-9
Resistor
R101
100kΩ
BEAD101
BEAD
BEAD201
5uH
3A
0.25 W
Diode
R102
150kΩ
0.25 W
D101
1N4937
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1.5kΩ
1W
D105
Open
R107
Open
ZD101
1N4746
R201
1kΩ
0.25 W
ZD102
Open
R202
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
R203
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP20J
2A, 600V
R205
220kΩ
0.25 W, 1%
D203
EGP20D
2A, 200V
R206
5.1kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
C101
330n/275VAC
Box Capacitor
C102
220uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
3.9nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
680pF / 1kV
Film Capacitor
C108
Open
C201
100uF / 160V
Bridge Diode
Capacitor
22
18V, 1W
BD101
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ0565RT
OPT101
FOD817A
C202
47uF / 160V
Electrolytic
Q201
KA431LZ
C203
1000uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
22nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
FSCQ-SERIES
FSCQ0765RT Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
12V (1A)
C-TV
83W
Universal input
18V (0.5A)
(90-270Vac)
125V (0.4A)
24V (0.5A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER3540
RT101
5D-9
C102
220uF
400V
BD101
1
3
ZD101
18V
1W
11
R106 C104
1.5kΩ 10uF
1W
50V
1
Drain
SYNC
3 Vcc IC101
FSCQ0765RT
GND
2
C103
10uF
50V
D102
1N4937
C107
1nF
1kV
C106
47nF
50V
C210
470pF
1kV
18V, 0.5A
13
12
C205
1000uF
35V
C209
470pF
1kV
D202
EGP20J
5
FB
4
C204
1000uF
35V
D204
EGP20D
4
D104
UF4007
12V, 1.0A
10
BEAD101
R102
150kΩ
0.25W
R101
100kΩ
0.25W
D205
EGP20D
D103
1N4148
R105
470Ω
0.25W
R104 D101 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.9nF
50V
125V, 0.4A
L201
C201 BEAD
100uF
160V
C207
470pF
1kV
C202
47uF
160V
D203
EGP20D
7
LF101
18
OPTO101
FOD817A
24V, 0.5A
17
C203
1000uF
35V
C208
470pF
1kV
VR201
30kΩ
R205
220kΩ
0.25W
R201
1kΩ
0.25W
FUSE
250V
2.0A
R208
1kΩ
0.25W
ZD201
C206
22nF
50V
C301
2.2nF
Q201
KA431
Normal
ZD202
5.1V
0.5W
R202
1kΩ
0.25W
C101
330nF
275VAC
R203
39kΩ
0.25W
R204
4.7kΩ
0.25W
D201
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
Standby
R206
5.1kΩ
0.25W
23
FSCQ-SERIES
2. Transformer Schematic Diagram
EER3540
N p1
1
18
2
17
Na
3
16
N18V
4
15
5
14
N 24V
N p2
N 125V/2
N125V/2
Np2
N 125V/2
N12V
13
6
N24V
N 12V
Na
7
12
N125V/2
8
11
Np1
9
10
N 18V
3.Winding Specification
No
Np1
N125V/2
Pin (s→f)
1-3
16 - 15
Wire
Turns
Winding Method
0.5 × 1
32
Center Winding
0.5φ
×1
32
Center Winding
φ
φ
N24V
18 - 17
0.4 × 2
13
Center Winding
N12V
12 - 13
0.5φ × 2
7
Center Winding
0.5φ
×1
32
Center Winding
0.5 × 1
32
Center Winding
0.4 × 2
10
Center Winding
0.3φ
20
Center Winding
Np2
N125V/2
N18V
Na
3-4
15 - 14
11 - 10
7-6
φ
φ
×1
4.Electrical Characteristics
Inductance
Leakage Inductance
5. Core & Bobbin
Core : EER3540
Bobbin : EER3540
Ae : 107 mm2
24
Pin
Specification
1-3
515uH ± 5%
1-3
10uH Max
Remarks
1kHz, 1V
2
nd
all short
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
Fuse
FUSE
250V / 2A
Part
Value
Note
C210
470pF / 1kV
Ceramic Capacitor
C301
2.2nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Inductor
5D-9
Resistor
R101
100kΩ
BEAD101
BEAD
BEAD201
5uH
3A
0.25 W
Diode
R102
150kΩ
0.25 W
D101
1N4937
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1.5kΩ
1W
D105
Open
R107
Open
ZD101
1N4746
R201
1kΩ
0.25 W
ZD102
Open
R202
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
R203
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP20J
2A, 600V
R205
220kΩ
0.25 W, 1%
D203
EGP20D
2A, 200V
R206
5.1kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
C101
330n/275VAC
Box Capacitor
C102
220uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
3.9nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
1nF / 1kV
Film Capacitor
C108
Open
C201
100uF / 160V
18V, 1W
Bridge Diode
Capacitor
BD101
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ0765RT
OPT101
FOD817A
C202
47uF / 160V
Electrolytic
Q201
KA431LZ
C203
1000uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
22nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
25
FSCQ-SERIES
FSCQ0965RT Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
12V (0.5A)
C-TV
102W
Universal input
18V (0.5A)
(90-270Vac)
125V (0.5A)
24V (1.0A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER3540
RT101
5D-9
C102
220uF
400V
BD101
1
3
ZD101
18V
1W
11
R106 C104
1.5kΩ 10uF
1W
50V
1
Drain
SYNC
3 Vcc IC101
FSCQ0965RT
GND
2
C103
10uF
50V
D102
1N4937
C107
1nF
1kV
C106
47nF
50V
C210
470pF
1kV
18V, 0.5A
13
12
D103
1N4148
R105
470Ω
0.25W
R104 D101 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.9nF
50V
125V, 0.5A
L201
C201 BEAD
100uF
160V
C207
470pF
1kV
C202
47uF
160V
D203
EGP30D
7
LF101
24V, 1.0A
17
18
OPTO101
FOD817A
C203
1000uF
35V
C208
470pF
1kV
VR201
30kΩ
R205
220kΩ
0.25W
R201
1kΩ
0.25W
FUSE
250V
3.0A
R208
1kΩ
0.25W
ZD201
C206
22nF
50V
C301
2.2nF
Q201
KA431
Normal
ZD202
5.1V
0.5W
R202
1kΩ
0.25W
C101
330nF
275VAC
26
C205
1000uF
35V
C209
470pF
1kV
D202
EGP30J
5
FB
4
C204
1000uF
35V
D204
EGP20D
4
D104
UF4007
12V, 0.5A
10
BEAD101
R102
150kΩ
0.25W
R101
100kΩ
0.25W
D205
EGP20D
R203
39kΩ
0.25W
R204
4.7kΩ
0.25W
D201
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
5.1kΩ
0.25W
Standby
FSCQ-SERIES
2. Transformer Schematic Diagram
EER3540
N p1
1
18
2
17
Na
3
16
N18V
4
15
5
14
N 24V
N p2
N 125V/2
N125V/2
Np2
N 125V/2
N12V
13
6
N24V
N 12V
Na
7
12
N125V/2
8
11
Np1
9
10
N 18V
3.Winding Specification
No
Np1
N125V/2
Pin (s→f)
1-3
16 - 15
Wire
Turns
Winding Method
0.6 × 1
32
Center Winding
0.6φ
×1
32
Center Winding
φ
φ
N24V
18 - 17
0.4 × 2
13
Center Winding
N12V
12 - 13
0.5φ × 2
7
Center Winding
0.6φ
×1
32
Center Winding
0.6 × 1
32
Center Winding
0.4 × 2
10
Center Winding
0.3φ
20
Center Winding
Np2
N125V/2
N18V
Na
3-4
15 - 14
11 - 10
7-6
φ
φ
×1
4.Electrical Characteristics
Inductance
Leakage Inductance
Pin
Specification
1-3
410uH ± 5%
1-3
10uH Max
Remarks
1kHz, 1V
2
nd
all short
5. Core & Bobbin
Core : EER3540
Bobbin : EER3540
Ae : 107 mm2
27
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
FUSE
250V / 3A
Fuse
Part
Value
C210
470pF / 1kV
Ceramic Capacitor
C301
3.3nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Note
Inductor
5D-9
Resistor
BEAD101
BEAD
BEAD201
5uH
3A
R101
100kΩ
0.25 W
R102
150kΩ
0.25 W
D101
1N4937
Diode
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1.5kΩ
1W
R107
Open
R201
1kΩ
R202
R203
D105
Open
ZD101
1N4746
0.25 W
ZD102
Open
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP30J
3A, 600V
R205
220kΩ
0.25 W, 1%
D203
EGP30D
3A, 200V
R206
5.1kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
BD101
GSIB660
Bridge Diode
Capacitor
28
18V, 1W
C101
330n/275VAC
Box Capacitor
C102
220uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
3.9nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
1nF / 1kV
Film Capacitor
C108
Open
C201
100uF / 160V
C202
47uF / 160V
C203
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
Switch
SW201
ON/OFF
For MCU Signal
IC
IC101
FSCQ0965RT
Electrolytic
OPT101
FOD817A
Electrolytic
Q201
KA431LZ
1000uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
22nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
FSCQ-SERIES
FSCQ1265RT Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
8.5V (0.5A)
C-TV
132W
Universal input
15V (0.5A)
(90-270Vac)
140V (0.6A)
24V (1.5A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER4042
RT101
5D-11
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1265RT
GND
2
C103
10uF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10uF
1W 50V
D105
1N4937
8.5V, 0.5A
13
C107
1nF
1kV
12
C209
470pF
1kV
C205
1000uF
35V
D202
EGP30J
D106
1N4148
R105
470Ω
0.25W
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.3nF
50V
C207
470pF
1kV
L202
C201 BEAD
150uF
160V
140V, 0.6A
C202
68uF
160V
D203
EGP30D
24V, 1.5A
17
7
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
C301
3.3nF
C203
1000uF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
FUSE
250V
5.0A
C204
1000uF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
330uF
400V
D205
EGP20D
Q201
KA431
LZ
C206
150nF
50V
R203
39kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
Q202
KSC945
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
29
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4042
Np1 1
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
Np2
N8.5V
N140V/2
N140V/2
N140V/2
NP2
N140V/2
N8.5V
Na
7
12
NP1
8
11
N24V
9
10
N15V
3.Winding Specification
No
N24
Np1
Pin (s→f)
18 - 17
1-3
Wire
Turns
Winding Method
8
Space Winding
× 10 × 2
20
Center Winding
φ
0.65 × 2
0.1φ
φ
N140V/2
16 - 15
0.1 × 10 × 2
23
Center Winding
Np2
3-4
0.1φ × 10 × 2
20
Center Winding
0.1φ
22
Center Winding
3
Space Winding
0.6 × 1
6
Space Winding
0.3φ
13
Space Winding
N140V/2
N8.5V
N15V
Na
15 - 14
12 - 13
11 - 10
7-6
× 10 × 2
φ
0.6 × 1
φ
×1
4.Electrical Characteristics
Inductance
Leakage Inductance
5. Core & Bobbin
Core : EER4042
Bobbin : EER4042(18Pin)
Ae : 153 mm2
30
Pin
Specification
1-4
315uH ± 5%
1-4
10uH Max
Remarks
1kHz, 1V
2
nd
all short
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
Fuse
FUSE
250V / 5A
Part
Value
Note
C210
470pF / 1kV
Ceramic Capacitor
C301
3.3nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Inductor
5D-11
Resistor
R101
100kΩ
BEAD101
BEAD
BEAD201
5uH
3A
0.25 W
Diode
R102
150kΩ
0.25 W
D101
1N4937
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1kΩ
1W
D105
Open
R107
Open
ZD101
1N4746
R201
1kΩ
0.25 W
ZD102
Open
R202
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
R203
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP30J
3A, 600V
R205
240kΩ
0.25 W, 1%
D203
EGP30D
3A, 200V
R206
10kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
C101
330n/275Vac
Box Capacitor
C102
330uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
3.3nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
1nF / 1kV
Film Capacitor
C108
Open
C201
150uF / 160V
18V, 1W
Bridge Diode
Capacitor
BD101
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER4042
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1265RT
OPT101
FOD817A
C202
68uF / 160V
Electrolytic
Q201
KA431LZ
C203
1000uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
150nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
31
FSCQ-SERIES
FSCQ1465RT Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
8.5V (0.5A)
C-TV
146W
Universal input
15V (0.5A)
(90-270Vac)
140V (0.7A)
24V (1.5A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER4245
RT101
6D-22
3
R101
100kΩ
0.25W
BD101
R106 C104
1kΩ 10uF
1W 50V
Drain
SYNC
3 Vcc IC101
FSCQ1465RT
GND
2
C103
10uF
50V
C106
47nF
50V
D105
1N4937
8.5V, 0.5A
12
C209
470pF
1kV
D106
1N4148
R105
470Ω
0.25W
14
15
16
C105
2.7nF
50V
C207
470pF
1kV
L202
C201 BEAD
150uF
160V
140V, 0.7A
C202
68uF
160V
D203
EGP30D
24V, 1.5A
17
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
C301
3.3nF
C203
1000uF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
32
C205
1000uF
35V
D202
EGP30J
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
7
FUSE
250V
5.0A
C204
1000uF
35V
13
C107
1nF
1kV
5
FB
4
C210
470pF
1kV
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
330uF
400V
D205
EGP20D
Q201
KA431
LZ
C206
150nF
50V
R203
39kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
Q202
KSC945
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4245
Np1 1
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
Np2
N8.5V
N140V/2
N140V/2
N140V/2
NP2
N140V/2
N8.5V
Na
7
12
NP1
8
11
N24V
9
10
N15V
3.Winding Specification
No
N24
Np1
Pin (s→f)
18 - 17
1-3
Wire
Turns
Winding Method
5
Space Winding
× 20 × 2
13
Center Winding
φ
0.65 × 2
0.08φ
φ
N140V/2
16 - 15
0.08 × 20 × 2
15
Center Winding
Np2
3-4
0.08φ × 20 × 2
13
Center Winding
0.08φ
14
Center Winding
2
Space Winding
0.6 × 1
3
Space Winding
0.3φ
8
Space Winding
N140V/2
N8.5V
N15V
Na
15 - 14
12 - 13
11 - 10
7-6
× 20 × 2
φ
0.6 × 1
φ
×1
4.Electrical Characteristics
Inductance
Leakage Inductance
Pin
Specification
1-4
260uH ± 5%
1-4
10uH Max
Remarks
1kHz, 1V
2
nd
all short
5. Core & Bobbin
Core : EER4245
Bobbin : EER4245(18Pin)
Ae : 201.8 mm2
33
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
Fuse
FUSE
250V / 5A
Part
Value
Note
C210
470pF / 1kV
Ceramic Capacitor
C301
3.3nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Inductor
6D-22
Resistor
R101
100kΩ
BEAD101
BEAD
BEAD201
5uH
3A
0.25 W
Diode
R102
150kΩ
0.25 W
D101
1N4937
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1kΩ
1W
D105
Open
R107
Open
ZD101
1N4746
R201
1kΩ
0.25 W
ZD102
Open
R202
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
R203
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP30J
3A, 600V
R205
240kΩ
0.25 W, 1%
D203
EGP30D
3A, 200V
R206
10kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
C101
330n/275VAC
Box Capacitor
C102
330uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
2.7nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
1nF / 1kV
Film Capacitor
C108
Open
C201
150uF / 160V
Bridge Diode
Capacitor
34
18V, 1W
BD101
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1465RT
OPT101
FOD817A
C202
68uF / 160V
Electrolytic
Q201
KA431LZ
C203
1000uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
150nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
FSCQ-SERIES
FSCQ1565RT Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
8.5V (0.5A)
C-TV
160W
Universal input
15V (0.5A)
(90-270Vac)
140V (0.8A)
24V (1.5A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER4245
RT101
6D-22
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1565RT
GND
2
C103
10uF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10uF
1W 50V
D105
1N4937
8.5V, 0.5A
13
C107
1nF
1kV
12
C209
470pF
1kV
C205
1000uF
35V
D202
EGP30J
D106
1N4148
R105
470Ω
0.25W
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
2.7nF
50V
C207
470pF
1kV
L202
C201 BEAD
220uF
160V
140V, 0.8A
C202
68uF
160V
D203
EGP30D
24V, 1.5A
17
7
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
C301
3.3nF
C203
1000uF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
FUSE
250V
5.0A
C204
1000uF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
470uF
400V
D205
EGP20D
Q201
KA431
LZ
C206
150nF
50V
R203
39kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
35
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4245
Np1 1
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
Np2
N8.5V
N140V/2
N140V/2
N140V/2
NP2
N140V/2
N8.5V
Na
7
12
NP1
8
11
N24V
9
10
N15V
3.Winding Specification
No
N24
Np1
Pin (s→f)
18 - 17
1-3
Wire
Turns
Winding Method
5
Space Winding
× 20 × 2
13
Center Winding
φ
0.65 × 2
0.08φ
φ
N140V/2
16 - 15
0.08 × 20 × 2
15
Center Winding
Np2
3-4
0.08φ × 20 × 2
13
Center Winding
0.08φ
14
Center Winding
2
Space Winding
0.6 × 1
3
Space Winding
0.3φ
8
Space Winding
N140V/2
N8.5V
N15V
Na
15 - 14
12 - 13
11 - 10
7-6
× 20 × 2
φ
0.6 × 1
φ
×1
4.Electrical Characteristics
Inductance
Leakage Inductance
5. Core & Bobbin
Core : EER4245
Bobbin : EER4245(18Pin)
Ae : 201.8 mm2
36
Pin
Specification
1-4
220uH ± 5%
1-4
10uH Max
Remarks
1kHz, 1V
2
nd
all short
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
Fuse
FUSE
250V / 5A
Part
Value
Note
C210
470pF / 1kV
Ceramic Capacitor
C301
3.3nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Inductor
6D-22
Resistor
R101
100kΩ
BEAD101
BEAD
BEAD201
5uH
3A
0.25 W
Diode
R102
150kΩ
0.25 W
D101
1N4937
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1kΩ
1W
D105
Open
R107
Open
ZD101
1N4746
R201
1kΩ
0.25 W
ZD102
Open
R202
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
R203
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP30J
3A, 600V
R205
240kΩ
0.25 W, 1%
D203
EGP30D
3A, 200V
R206
10kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
C101
330n/275Vac
Box Capacitor
C102
470uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
2.7nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
1nF / 1kV
Film Capacitor
C108
Open
C201
220uF / 160V
18V, 1W
Bridge Diode
Capacitor
BD101
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER4245
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1565RT
OPT101
FOD817A
C202
68uF / 160V
Electrolytic
Q201
KA431LZ
C203
1000uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
150nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
37
FSCQ-SERIES
FSCQ1565RP Typical Application Circuit
Application
Output Power
Input Voltage
Output Voltage (Max Current)
8.5V (1A)
C-TV
198W
Universal input
15V (1A)
(90-270Vac)
140V (0.9A)
24V (2A)
Features
•
•
•
•
•
•
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
• 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1
EER4942
RT101
6D-22
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1565RP
GND
2
C103
10uF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10uF
1W 50V
D105
1N4937
8.5V, 1A
13
C107
1nF
1kV
12
C209
470pF
1kV
D106
1N4148
R105
470Ω
0.25W
14
15
16
C105
2.7nF
50V
C207
470pF
1kV
L202
C201 BEAD
220uF
160V
140V, 0.9A
C202
100uF
160V
D203
EGP30D
24V, 2A
17
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
C301
3.3nF
C203
2200uF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
38
C205
1000uF
35V
D202
EGP30J
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
7
FUSE
250V
5.0A
C204
1000uF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 1A
10
1
C102
470uF
400V
D205
EGP20D
Q201
KA431
LZ
C206
22nF
50V
R203
39kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4942
Np1 1
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
Np2
N8.5V
N140V/2
N140V/2
N140V/2
NP2
N140V/2
N8.5V
Na
7
12
NP1
8
11
N24V
9
10
N15V
3.Winding Specification
No
N24
Pin (s→f)
18 - 17
Np1
1-3
N140V/2
16 - 15
Np2
N140V/2
N8.5V
3-4
15 - 14
12 - 13
Wire
Turns
Winding Method
5
Space Winding
× 20 × 2
13
Center Winding
0.08φ × 20 × 2
15
Center Winding
0.08 × 20 × 2
13
Center Winding
0.08φ
14
Center Winding
2
Space Winding
φ
0.65 × 2
0.08φ
φ
× 20 × 2
0.6φ
×1
φ
N15V
11 - 10
0.6 × 1
3
Space Winding
Na
7-6
0.3φ × 1
8
Space Winding
4.Electrical Characteristics
Inductance
Leakage Inductance
Pin
Specification
1-4
210uH ± 5%
1-4
10uH Max
Remarks
1kHz, 1V
2
nd
all short
5. Core & Bobbin
Core : EER4942
Bobbin : EER4942(18Pin)
Ae : 231 mm2
39
FSCQ-SERIES
6.Demo Circuit Part List
Part
Value
Note
Fuse
FUSE
250V / 5A
Part
Value
Note
C210
470pF / 1kV
Ceramic Capacitor
C301
3.3nF / 1kV
AC Ceramic Capacitor
NTC
RT101
Inductor
6D-22
Resistor
R101
100kΩ
BEAD101
BEAD
BEAD201
5uH
3A
0.25 W
Diode
R102
150kΩ
0.25 W
D101
1N4937
1A, 600V
R103
5.1Ω
0.25 W
D102
1N4937
1A, 600V
R104
1.5kΩ
0.25 W
D103
1N4148
0.15A, 50V
R105
470Ω
0.25 W
D104
Short
R106
1kΩ
1W
D105
Open
R107
Open
ZD101
1N4746
R201
1kΩ
0.25 W
ZD102
Open
R202
1kΩ
0.25 W
ZD201
1N5231
5.1V, 0.5W
R203
39kΩ
0.25 W
D201
1N4148
0.15A, 50V
R204
4.7kΩ
0.25 W, 1%
D202
EGP30J
3A, 600V
R205
240kΩ
0.25 W, 1%
D203
EGP30D
3A, 200V
R206
10kΩ
0.25 W
D204
EGP20D
2A, 200V
R207
5.1kΩ
0.25 W
D205
EGP20D
2A, 200V
R208
1kΩ
0.25 W
VR201
30kΩ
C101
330n/275Vac
Box Capacitor
C102
470uF / 400V
Electrolytic
C103
10uF / 50V
Electrolytic
C104
10uF / 50V
Electrolytic
C105
2.7nF / 50V
Film Capacitor
C106
47nF / 50V
Film Capacitor
C107
1nF / 1kV
Film Capacitor
C108
Open
C201
220uF / 200V
Bridge Diode
Capacitor
40
18V, 1W
BD101
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER4942
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1565RP
OPT101
FOD817A
C202
100uF / 200V
Electrolytic
Q201
KA431LZ
C203
2200uF / 35V
Electrolytic
Q202
KSC945
C204
1000uF / 35V
Electrolytic
C205
1000uF / 35V
Electrolytic
C206
22nF / 50V
Film Capacitor
C207
470pF / 1kV
Ceramic Capacitor
C208
470pF / 1kV
Ceramic Capacitor
C209
470pF / 1kV
Ceramic Capacitor
TO-220F-5L
TO-92
FSCQ-SERIES
PCB Layout
41
FSCQ-SERIES
Package Dimensions
Dimensions in Millimeters
TO-220F-5L(Forming)
42
FSCQ-SERIES
Package Dimensions
Dimensions in Millimeters
TO-3PF-7L(Forming)
6.05
5.65
15.70
15.30
3.55
3.15
9.70
9.30
(1.65)
4.70
4.30
10.20
9.80
2.10
1.70
23.20
22.80
24.70
24.30
36.50
35.50
1.70
1.30
4.30
3.70
(1.00)
2.55
2.15
3.65
3.05
3.06
2.46
R0.90
MAX 1.00
12.00
11.00
R0.90
0.90
0.70
MAX 2.00
2.80
2.20
R0.90
5.30
4.70
2.54
0.80
0.50
3.48
2.88
1.50
4.50
NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE DOES NOT COMPLY
TO ANY CURRENT PACKAGING STANDARD.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH, AND TIE BAR EXTRUSIONS.
MKT-TO3PFC05revA
43
FSCQ-SERIES
Ordering Information
Product Number
Package
Marking Code
BVdss
Rds(ON) Max.
FSCQ0565RTYDTU
TO-220F-5L(Forming)
CQ0565RT
650V
2.2 Ω
FSCQ0765RTYDTU
TO-220F-5L(Forming)
CQ0765RT
650V
1.6 Ω
FSCQ0965RTYDTU
TO-220F-5L(Forming)
CQ0965RT
650V
1.2 Ω
FSCQ1265RTYDTU
TO-220F-5L(Forming)
CQ1265RT
650V
0.9 Ω
FSCQ1465RTYDTU
TO-220F-5L(Forming)
CQ1465RT
650V
0.8 Ω
FSCQ1565RTYDTU
TO-220F-5L(Forming)
CQ1565RT
650V
0.7Ω
FSCQ1565RPSYDTU
TO-3PF-7L(Forming)
CQ1565RP
650V
0.7 Ω
YDTU : Forming Type
SYDTU : Forming Type
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
10/4/05 0.0m 001
© 2005 Fairchild Semiconductor Corporation