74LVX273 LOW VOLTAGE CMOS OCTAL D-TYPE FLIP-FLOP WITH CLEAR (5V TOLERANT INPUTS) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ HIGH SPEED: fMAX = 150 MHz (TYP.) at VCC = 3.3V 5V TOLERANT INPUTS POWER-DOWN PROTECTION ON INPUTS INPUT VOLTAGE LEVEL: VIL = 0.8V, VIH = 2V at VCC =3V LOW POWER DISSIPATION: ICC = 4 µA (MAX.) at TA=25°C LOW NOISE: VOLP = 0.3V (TYP.) at VCC =3.3V SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 4 mA (MIN) at VCC =3V BALANCED PROPAGATION DELAYS: tPLH ≅ tPHL OPERATING VOLTAGE RANGE: VCC(OPR) = 2V to 3.6V (1.2V Data Retention) PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 273 IMPROVED LATCH-UP IMMUNITY DESCRIPTION The 74LVX273 is a low voltage CMOS OCTAL D-TYPE FLIP-FLOP WITH CLEAR fabricated with sub-micron silicon gate and double-layer metal wiring C2MOS technology. It is ideal for low power, battery operated and low noise 3.3V applications. Information signals applied to D inputs are SOP TSSOP Table 1: Order Codes PACKAGE T&R SOP TSSOP 74LVX273MTR 74LVX273TTR transferred to the Q outputs on the positive going edge of the clock pulse. When the CLEAR input is held low, the Q outputs are held low independently of the other inputs. Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V. It combines high speed performance with the true CMOS low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage. Figure 1: Pin Connection And IEC Logic Symbols August 2004 Rev. 3 1/12 74LVX273 Figure 2: Input Equivalent Circuit Table 2: Pin Description PIN N° SYMBOL NAME AND FUNCTION 1 CLEAR 2, 5, 6, 9, 12, 15, 16,19 3, 4, 7, 8, 13, 14, 17, 18 11 Q0 to Q7 Asynchronous Master Reset (Active LOW) Flip-Flop Outputs D0 to D7 Data Inputs CLOCK 10 20 GND VCC Clock Input (LOW-to-HIGH Edge Triggered) Ground (0V) Positive Supply Voltage Table 3: Truth Table INPUTS OUTPUT FUNCTION CLEAR D B X L X H L L H H H H X Qn X : Don’t Care Figure 3: Logic Diagram This logic diagram has not be used to estimate propagation delays 2/12 Q L CLEAR NO CHANGE 74LVX273 Table 4: Absolute Maximum Ratings Symbol VCC Parameter Supply Voltage VI DC Input Voltage VO DC Output Voltage IIK DC Input Diode Current IOK DC Output Diode Current IO DC Output Current Unit -0.5 to +7.0 V -0.5 to +7.0 V -0.5 to VCC + 0.5 - 20 V mA ± 20 mA ICC or IGND DC VCC or Ground Current Storage Temperature Tstg TL Value ± 25 mA ± 50 mA -65 to +150 °C 300 °C Lead Temperature (10 sec) Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied Table 5: Recommended Operating Conditions Symbol VCC Parameter Value Unit Supply Voltage (note 1) 2 to 3.6 V VI Input Voltage 0 to 5.5 V VO Output Voltage Top Operating Temperature dt/dv Input Rise and Fall Time (note 2) (VCC = 3V) 0 to VCC V -55 to 125 °C 0 to 100 ns/V 1) Truth Table guaranteed: 1.2V to 3.6V 2) VIN from 0.8V to 2.0V Table 6: DC Specifications Test Condition Symbol VIH VIL VOH VOL II ICC Parameter High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Quiescent Supply Current Value TA = 25°C VCC (V) Min. 2.0 3.0 3.6 2.0 3.0 3.6 Typ. Max. 1.5 2.0 2.4 -40 to 85°C -55 to 125°C Min. Min. Max. 1.5 2.0 2.4 0.5 0.8 0.8 Max. 1.5 2.0 2.4 0.5 0.8 0.8 Unit V 0.5 0.8 0.8 V 2.0 IO=-50 µA 3.0 3.0 2.0 IO=50 µA 0.0 0.1 0.1 0.1 3.0 IO=50 µA 0.0 0.1 0.1 0.1 3.0 IO=4 mA 0.36 0.44 0.55 3.6 VI = 5V or GND ± 0.1 ±1 ±1 µA 3.6 VI = VCC or GND 4 40 40 µA 1.9 2.0 IO=-50 µA 2.9 3.0 IO=-4 mA 2.58 1.9 1.9 2.9 2.9 2.48 2.4 V V 3/12 74LVX273 Table 7: Dynamic Switching Characteristics Test Condition Symbol VOLP VOLV VIHD VILD Parameter Dynamic Low Voltage Quiet Output (note 1, 2) Dynamic High Voltage Input (note 1, 3) Dynamic Low Voltage Input (note 1, 3) Value TA = 25°C VCC (V) Min. 3.3 -0.8 CL = 50 pF 3.3 Typ. Max. 0.3 0.8 -40 to 85°C -55 to 125°C Min. Min. Max. Unit Max. -0.3 V 2.0 3.3 0.8 1) Worst case package. 2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND. 3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (VILD), 0V to threshold (VIHD), f=1MHz. Table 8: AC Electrical Characteristics (Input tr = tf = 3ns) Test Condition Symbol tPLH tPHL tPHL Parameter Propagation Delay Time CK to Q Propagation Delay Time CLEAR to Q VCC (V) CL (pF) 2.7 2.7 Max. Min. Max. 15 50 9.0 11.5 16.9 20.4 1.0 1.0 20.5 24.0 1.0 1.0 22.0 25.5 3.3(*) 15 7.1 11.0 1.0 13.0 1.0 14.5 3.3(*) 50 9.6 14.5 1.0 16.5 1.0 18.0 (*) 15 9.3 17.6 1.0 20.5 1.0 22.0 3.3(*) 50 11.8 21.1 1.0 24.0 1.0 25.5 5.0(**) 15 7.3 11.5 1.0 13.5 1.0 15.5 5.0(**) 2.7 50 9.8 15.0 1.0 17.0 1.0 18.0 tW CLOCK pulse Width, HIGH tS Setup Time Q to CLOCK HIGH or LOW 3.3(*) 2.7 Hold Time Q to CLOCK HIGH or LOW 3.3(*) Recovery Time CLEAR to Q fMAX Maximum Clock Frequency tOSLH tOSHL Output to Output Skew Time (note 1,2) -55 to 125°C Min. 3.3 (*) 3.3 2.7 (*) 3.3 2.7 2.7 (*) 3.3 2.7 2.7 Min. -40 to 85°C Max. CLEAR pulse Width, HIGH tREM TA = 25°C Typ. tW(L) th Value 50 50 50 50 50 5.0 6.0 6.0 5.0 5.0 5.0 5.5 6.5 6.5 5.0 5.0 5.0 5.5 6.5 6.5 4.5 4.5 4.5 1.0 1.0 1.0 1.0 1.0 1.0 2.5 2.5 2.5 2.0 2.0 2.0 15 50 55 45 110 60 55 40 50 35 3.3(*) 15 95 150 80 75 3.3(*) 2.7 50 60 50 0.5 1.0 1.5 1.5 3.3(*) 50 0.5 1.0 1.5 1.5 90 55 Unit ns ns ns ns ns ns ns MHz 50 ns 1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW 2) Parameter guaranteed by design (*) Voltage range is 3.3V ± 0.3V 4/12 74LVX273 Table 4: CAPACITIVE CHARACTERISTICS Test Condition Symbol Parameter TA = 25°C VCC (V) CIN Input Capacitance 3.3 CPD Power Dissipation Capacitance (note 1) 3.3 Value Min. fIN = 10MHz Typ. Max. 5 10 40 -40 to 85°C -55 to 125°C Min. Min. Max. 10 Unit Max. 10 pF pF 1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without ad. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/8 (per circuit) Figure 5: Test Circuit CL =15/50pF or equivalent (includes jig and probe capacitance) RT = ZOUT of pulse generator (typically 50Ω) Figure 6: Waveform - Propagation Delays (f=1MHz; 50% duty cycle) 5/12 74LVX273 Figure 7: Waveform - Propagation Delays, Setup And Hold Times (f=1MHz; 50% duty cycle) Figure 8: Waveform - Recovery Time (f=1MHz; 50% duty cycle) 6/12 74LVX273 SO-20 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 2.35 2.65 0.093 0.104 A1 0.1 0.30 0.004 0.012 B 0.33 0.51 0.013 0.020 C 0.23 0.32 0.009 0.013 D 12.60 13.00 0.496 0.512 E 7.4 7.6 0.291 0.299 e 1.27 0.050 H 10.00 10.65 0.394 0.419 h 0.25 0.75 0.010 0.030 L 0.4 1.27 0.016 0.050 k 0° 8° 0° 8° ddd 0.100 0.004 0016022D 7/12 74LVX273 TSSOP20 MECHANICAL DATA mm. inch DIM. MIN. TYP MAX. A MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 6.4 6.5 6.6 0.252 0.256 0.260 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.0256 BSC 0.60 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b K e L E c D E1 PIN 1 IDENTIFICATION 1 0087225C 8/12 74LVX273 Tape & Reel SO-20 MECHANICAL DATA mm. inch DIM. MIN. A TYP MAX. MIN. 330 MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 13.2 TYP. 0.504 30.4 0.519 1.197 Ao 10.8 11 0.425 0.433 Bo 13.2 13.4 0.520 0.528 Ko 3.1 3.3 0.122 0.130 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 9/12 74LVX273 Tape & Reel TSSOP20 MECHANICAL DATA mm. inch DIM. MIN. A MAX. MIN. 330 13.2 TYP. MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 10/12 TYP 0.504 22.4 0.519 0.882 Ao 6.8 7 0.268 0.276 Bo 6.9 7.1 0.272 0.280 Ko 1.7 1.9 0.067 0.075 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 74LVX273 Table 9: Revision History Date Revision 27-Aug-2004 3 Description of Changes Ordering Codes Revision - pag. 1. 11/12 74LVX273 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 12/12