STMICROELECTRONICS 74V1T66C-TR

74V1T66

SINGLE BILATERAL SWITCH
■
■
■
■
HIGH SPEED:
tPD = 0.1 ns (TYP.) at VCC = 5V
LOW POWER DISSIPATION:
ICC = 1 µA (MAX.) at TA = 25 oC
LOW ”ON” RESISTANCE:
RON = 10Ω (TYP.)AT VCC=5V II/O=100µA
SINE WAVE DISTORTION
0.04% (TYP.) AT VCC=5V f=1KHz
DESCRIPTION
The 74V1T66 is an high-speed CMOS SINGLE
BILATERAL SWITCH fabricated in silicon gate
C2MOS technology. It achieves high speed
propagation delay and VERY LOW ON
resistances while maintaining true CMOS low
power consumption. This feature makes this part
ideal for battery-powered equipment. This
bilateral switch handles rail to rail analog and
digital signals that may vary across the full
power-supply range (from Vcc to Ground).
The C input is provided to control the switch and
it’s compatible with standard TTL output; the
SOT23-5L
SC-70
ORDER CODES
PACKAGE
T UBE
T& R
SOT23-5L
74V1T66S-TR
SC-70
74V1T66C-TR
switch is ON when the C input is held high and off
when C is held low. It can be used in many
application as Battery Powered System, Audio
Signal Routing, Communications System, Test
Equipment. It’s available in the commercial
temperature range in SOT23-5L and SC-70-5L
package.
PIN CONNECTION AND IEC LOGIC SYMBOLS
February 2000
1/8
74V1T66
LOGIC DIAGRAM
PIN DESCRIPTION
PIN No
SYMBOL
NAME AND FUNCT ION
1
I/O
Independent Input/Output
2
O/I
Independent Output/Input
4
C
Enable Input (Active
HIGH)
3
GND
Ground (0V)
5
VCC
Positive Supply Voltage
TRUTH TABLE
CONTROL
SWITCH F UNCTIO N
H
ON
L
OFF
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Parameter
Supply Voltage
VI
DC Input Voltage
V IC
DC Control Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
Value
Unit
-0.5 to +7
V
-0.5 to VCC + 0.5
V
-0.5 to 7
V
-0.5 to VCC + 0.5
V
± 20
mA
IIK
DC Control Input Diode Current
- 20
mA
IOK
DC Output Diode Current
± 20
mA
IO
DC Output Current
± 50
mA
± 50
mA
ICC or IGND DC VCC or Ground Current
Tstg
Storage Temperature
TL
Lead Temperature (10 sec)
-65 to +150
o
300
o
C
C
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Valu e
Unit
Supply Voltage
Parameter
4.5 to 5.5
V
VI
Input Voltage
0 to VCC
V
V IC
Control Input Voltage
0 to 5.5
V
VO
Output Voltage
Top
Operating Temperature:
dt/dv
Input Rise and Fall Time (note 1)
1) VIN from 08V to2V
2/8
0 to VCC
-40 to +85
V
o
C
VCC=5V
0 to 20
ns/V
VCC=3.3V
0 to 100
ns/V
74V1T66
DC SPECIFICATIONS
Symb ol
Parameter
T est Cond ition s
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
Value
o
Min.
Typ .
-40 to 85 C
Max.
2.0
5.0 (*)
Un it
o
T A = 25 C
V CC
(V)
Min .
Max.
2.0
V
0.8
0.8
V
(*)
V IC = V IH
V I/O = V CC to G ND
I I/ O ≤ 1mA
12
17
20
Ω
10
14
18
Ω
R ON
ON Resistance
5.0
R ON
ON Resistance
5.0 (*)
V IC = V IH
V I/ O = VCC or GND
I I/ O ≤ 1mA
IOFF
Input/Output Leakage
Current (SWITCH OFF)
5.5
V OS = V CC to GND
V IS = V CC to G ND
V I C = VI L
±0.1
±1.0
µA
IIZ
Switch Input Leakage
Current (SWITCH ON,
OUTPUT OPEN)
5.5
VOS = VCC to GND
VIC = VIH
±0.1
±1.0
µA
IIN
Control Input Leakage
Current
0 to
5.5
VIC = 5.5V or GND
±0.1
±1.0
µA
ICC
Quiescent Supply Current
5.5
V IC = V CC or GND
1
10
µA
(*) Voltage range is 5V ± 0.5V
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input t r = tf =3 ns)
Symb ol
Parameter
Test Co ndition
Value
o
T A = 25 C
Min. Typ . Max.
V CC
(V)
Un it
o
-40 to 85 C
Min . Max.
tPD
Delay Time
5.0
(*)
0.1
0.2
1.0
tPZL
tPZH
tPLZ
tPHZ
C IN
Output Enable Time
5.0(*)
2.0
4.0
5.0
5.0
7.5
9.0
Input Capacitance
5
CI/O
Switch Terminal
Capacitance
10
CPD
Power Dissipation
Capacitance (note 1)
Output Disable Time
R L = 1kΩ
(*)
5.0
5.0
R L = 1kΩ
3
ns
ns
ns
pF
pF
pF
1) CPD isdefined as the value of the IC’sinternal equivalent capacitance which is calculated fromthe operating current consumption without load. (Referto
Test Circuit).Average operating current can be obtained by the following equation. ICC(opr) = CPD • VCC •fIN + ICC (switch).
(*) Voltage range is 5V ± 0.5V
3/8
74V1T66
ANALOG SWITCH CHARACTERISTICS (GND = 0 V, TA = 25oC)
Symb ol
Parameter
Un it
0.04
%
Adjust fI N voltage to Obtain 0dBm at V OS .
Increase fIN Frequency until dB Meter reads -3dB
R L = 50Ω, C L = 10pF
180
MHz
5.0(*)
VIN is centered at VCC /2.
Adjust fIN Voltage to obtain 0dBm at VIS
RL = 600Ω, CL = 50pF, fIN = 1MHz sine wave
-60
dB
5.0(*)
R L = 600Ω, CL = 50pF, fIN = 1MHz square wave
tr = tf = 2.0ns
60
mV
Frequency Response
(Switch ON)
5.0(*)
Feedthrough
Attenuation
(Switch OFF)
Crosstalk (Control
Input to Signal Output)
(*) Voltage range is 5V ± 0.5V
4/8
Value
V IN
(Vp-p)
4
Sine Wave Distortion
(THD)
fMAX
Test Co nditi on
V CC
(V)
5.0(*)
fIN = 1 KHz
RL = 10KΩ
CL = 50 pF
74V1T66
SWITCHING CHARACTERISTICS TEST CIRCUIT
tPLZ, tPHZ, tPZL, tPZH.
FEEDTHROUGH ATTENUATION
BANDWIDTH ATTENUATION
CI–O CI/O
MAXIMUM CONTROL FREQUENCY
GND (VSS)
CROSSTALK (control to output)
5/8
74V1T66
CHANNEL RESITANCE (RON)
6/8
ICC (Opr.)
74V1T66
SOT23-5L MECHANICAL DATA
mm
DIM.
MIN.
TYP.
mils
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
L
0.35
0.55
13.7
21.6
e
0.95
37.4
e1
1.9
74.8
7/8
74V1T66
SC-70 MECHANICAL DATA
mm
DIM.
MIN.
8/8
TYP.
mils
MAX.
MIN.
TYP.
MAX.
A
0.80
1.10
31.5
43.3
A1
0.00
0.10
0.0
3.9
A2
0.80
1.00
31.5
39.4
b
0.15
0.30
5.9
11.8
C
0.10
0.18
3.9
7.1
D
1.80
2.20
70.9
86.6
E
1.80
2.40
70.9
94.5
E1
1.15
1.35
45.3
53.1
L
0.10
0.30
3.9
11.8
e
0.65
25.6
e1
1.3
51.2
74V1T66
Information furnished is believed to be accurate and reliable. However, STMicroelectronic s assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems withoutexpress written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
.
9/8